kernel-fxtec-pro1x/sound/usb/usx2y/usbusx2yaudio.c
Takashi Iwai e2439a5401 ALSA: usx2y: Don't peep the card internal object
Avoid traversing the device object list of the card instance just for
checking the PCM streams.  The driver's private object already
contains the array of substream pointers, so it can be simply looked
through.  The card internal may be restructured in future, thus better
not to rely on it.

Also, this fixes the possible deadlocks in PCM mutex.  Instead of
taking multiple PCM mutexes, just take the common mutex in all
places.  Along with it, rename prepare_mutex as pcm_mutex.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-02-17 10:16:25 +01:00

1020 lines
28 KiB
C

/*
* US-X2Y AUDIO
* Copyright (c) 2002-2004 by Karsten Wiese
*
* based on
*
* (Tentative) USB Audio Driver for ALSA
*
* Main and PCM part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "usx2y.h"
#include "usbusx2y.h"
#define USX2Y_NRPACKS 4 /* Default value used for nr of packs per urb.
1 to 4 have been tested ok on uhci.
To use 3 on ohci, you'd need a patch:
look for "0000425-linux-2.6.9-rc4-mm1_ohci-hcd.patch.gz" on
"https://bugtrack.alsa-project.org/alsa-bug/bug_view_page.php?bug_id=0000425"
.
1, 2 and 4 work out of the box on ohci, if I recall correctly.
Bigger is safer operation,
smaller gives lower latencies.
*/
#define USX2Y_NRPACKS_VARIABLE y /* If your system works ok with this module's parameter
nrpacks set to 1, you might as well comment
this #define out, and thereby produce smaller, faster code.
You'd also set USX2Y_NRPACKS to 1 then.
*/
#ifdef USX2Y_NRPACKS_VARIABLE
static int nrpacks = USX2Y_NRPACKS; /* number of packets per urb */
#define nr_of_packs() nrpacks
module_param(nrpacks, int, 0444);
MODULE_PARM_DESC(nrpacks, "Number of packets per URB.");
#else
#define nr_of_packs() USX2Y_NRPACKS
#endif
static int usX2Y_urb_capt_retire(struct snd_usX2Y_substream *subs)
{
struct urb *urb = subs->completed_urb;
struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime;
unsigned char *cp;
int i, len, lens = 0, hwptr_done = subs->hwptr_done;
struct usX2Ydev *usX2Y = subs->usX2Y;
for (i = 0; i < nr_of_packs(); i++) {
cp = (unsigned char*)urb->transfer_buffer + urb->iso_frame_desc[i].offset;
if (urb->iso_frame_desc[i].status) { /* active? hmm, skip this */
snd_printk(KERN_ERR "active frame status %i. "
"Most probably some hardware problem.\n",
urb->iso_frame_desc[i].status);
return urb->iso_frame_desc[i].status;
}
len = urb->iso_frame_desc[i].actual_length / usX2Y->stride;
if (! len) {
snd_printd("0 == len ERROR!\n");
continue;
}
/* copy a data chunk */
if ((hwptr_done + len) > runtime->buffer_size) {
int cnt = runtime->buffer_size - hwptr_done;
int blen = cnt * usX2Y->stride;
memcpy(runtime->dma_area + hwptr_done * usX2Y->stride, cp, blen);
memcpy(runtime->dma_area, cp + blen, len * usX2Y->stride - blen);
} else {
memcpy(runtime->dma_area + hwptr_done * usX2Y->stride, cp,
len * usX2Y->stride);
}
lens += len;
if ((hwptr_done += len) >= runtime->buffer_size)
hwptr_done -= runtime->buffer_size;
}
subs->hwptr_done = hwptr_done;
subs->transfer_done += lens;
/* update the pointer, call callback if necessary */
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
snd_pcm_period_elapsed(subs->pcm_substream);
}
return 0;
}
/*
* prepare urb for playback data pipe
*
* we copy the data directly from the pcm buffer.
* the current position to be copied is held in hwptr field.
* since a urb can handle only a single linear buffer, if the total
* transferred area overflows the buffer boundary, we cannot send
* it directly from the buffer. thus the data is once copied to
* a temporary buffer and urb points to that.
*/
static int usX2Y_urb_play_prepare(struct snd_usX2Y_substream *subs,
struct urb *cap_urb,
struct urb *urb)
{
int count, counts, pack;
struct usX2Ydev *usX2Y = subs->usX2Y;
struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime;
count = 0;
for (pack = 0; pack < nr_of_packs(); pack++) {
/* calculate the size of a packet */
counts = cap_urb->iso_frame_desc[pack].actual_length / usX2Y->stride;
count += counts;
if (counts < 43 || counts > 50) {
snd_printk(KERN_ERR "should not be here with counts=%i\n", counts);
return -EPIPE;
}
/* set up descriptor */
urb->iso_frame_desc[pack].offset = pack ?
urb->iso_frame_desc[pack - 1].offset +
urb->iso_frame_desc[pack - 1].length :
0;
urb->iso_frame_desc[pack].length = cap_urb->iso_frame_desc[pack].actual_length;
}
if (atomic_read(&subs->state) >= state_PRERUNNING)
if (subs->hwptr + count > runtime->buffer_size) {
/* err, the transferred area goes over buffer boundary.
* copy the data to the temp buffer.
*/
int len;
len = runtime->buffer_size - subs->hwptr;
urb->transfer_buffer = subs->tmpbuf;
memcpy(subs->tmpbuf, runtime->dma_area +
subs->hwptr * usX2Y->stride, len * usX2Y->stride);
memcpy(subs->tmpbuf + len * usX2Y->stride,
runtime->dma_area, (count - len) * usX2Y->stride);
subs->hwptr += count;
subs->hwptr -= runtime->buffer_size;
} else {
/* set the buffer pointer */
urb->transfer_buffer = runtime->dma_area + subs->hwptr * usX2Y->stride;
if ((subs->hwptr += count) >= runtime->buffer_size)
subs->hwptr -= runtime->buffer_size;
}
else
urb->transfer_buffer = subs->tmpbuf;
urb->transfer_buffer_length = count * usX2Y->stride;
return 0;
}
/*
* process after playback data complete
*
* update the current position and call callback if a period is processed.
*/
static void usX2Y_urb_play_retire(struct snd_usX2Y_substream *subs, struct urb *urb)
{
struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime;
int len = urb->actual_length / subs->usX2Y->stride;
subs->transfer_done += len;
subs->hwptr_done += len;
if (subs->hwptr_done >= runtime->buffer_size)
subs->hwptr_done -= runtime->buffer_size;
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
snd_pcm_period_elapsed(subs->pcm_substream);
}
}
static int usX2Y_urb_submit(struct snd_usX2Y_substream *subs, struct urb *urb, int frame)
{
int err;
if (!urb)
return -ENODEV;
urb->start_frame = (frame + NRURBS * nr_of_packs()); // let hcd do rollover sanity checks
urb->hcpriv = NULL;
urb->dev = subs->usX2Y->dev; /* we need to set this at each time */
if ((err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
snd_printk(KERN_ERR "usb_submit_urb() returned %i\n", err);
return err;
}
return 0;
}
static inline int usX2Y_usbframe_complete(struct snd_usX2Y_substream *capsubs,
struct snd_usX2Y_substream *playbacksubs,
int frame)
{
int err, state;
struct urb *urb = playbacksubs->completed_urb;
state = atomic_read(&playbacksubs->state);
if (NULL != urb) {
if (state == state_RUNNING)
usX2Y_urb_play_retire(playbacksubs, urb);
else if (state >= state_PRERUNNING)
atomic_inc(&playbacksubs->state);
} else {
switch (state) {
case state_STARTING1:
urb = playbacksubs->urb[0];
atomic_inc(&playbacksubs->state);
break;
case state_STARTING2:
urb = playbacksubs->urb[1];
atomic_inc(&playbacksubs->state);
break;
}
}
if (urb) {
if ((err = usX2Y_urb_play_prepare(playbacksubs, capsubs->completed_urb, urb)) ||
(err = usX2Y_urb_submit(playbacksubs, urb, frame))) {
return err;
}
}
playbacksubs->completed_urb = NULL;
state = atomic_read(&capsubs->state);
if (state >= state_PREPARED) {
if (state == state_RUNNING) {
if ((err = usX2Y_urb_capt_retire(capsubs)))
return err;
} else if (state >= state_PRERUNNING)
atomic_inc(&capsubs->state);
if ((err = usX2Y_urb_submit(capsubs, capsubs->completed_urb, frame)))
return err;
}
capsubs->completed_urb = NULL;
return 0;
}
static void usX2Y_clients_stop(struct usX2Ydev *usX2Y)
{
int s, u;
for (s = 0; s < 4; s++) {
struct snd_usX2Y_substream *subs = usX2Y->subs[s];
if (subs) {
snd_printdd("%i %p state=%i\n", s, subs, atomic_read(&subs->state));
atomic_set(&subs->state, state_STOPPED);
}
}
for (s = 0; s < 4; s++) {
struct snd_usX2Y_substream *subs = usX2Y->subs[s];
if (subs) {
if (atomic_read(&subs->state) >= state_PRERUNNING) {
unsigned long flags;
snd_pcm_stream_lock_irqsave(subs->pcm_substream, flags);
snd_pcm_stop(subs->pcm_substream, SNDRV_PCM_STATE_XRUN);
snd_pcm_stream_unlock_irqrestore(subs->pcm_substream, flags);
}
for (u = 0; u < NRURBS; u++) {
struct urb *urb = subs->urb[u];
if (NULL != urb)
snd_printdd("%i status=%i start_frame=%i\n",
u, urb->status, urb->start_frame);
}
}
}
usX2Y->prepare_subs = NULL;
wake_up(&usX2Y->prepare_wait_queue);
}
static void usX2Y_error_urb_status(struct usX2Ydev *usX2Y,
struct snd_usX2Y_substream *subs, struct urb *urb)
{
snd_printk(KERN_ERR "ep=%i stalled with status=%i\n", subs->endpoint, urb->status);
urb->status = 0;
usX2Y_clients_stop(usX2Y);
}
static void i_usX2Y_urb_complete(struct urb *urb)
{
struct snd_usX2Y_substream *subs = urb->context;
struct usX2Ydev *usX2Y = subs->usX2Y;
if (unlikely(atomic_read(&subs->state) < state_PREPARED)) {
snd_printdd("hcd_frame=%i ep=%i%s status=%i start_frame=%i\n",
usb_get_current_frame_number(usX2Y->dev),
subs->endpoint, usb_pipein(urb->pipe) ? "in" : "out",
urb->status, urb->start_frame);
return;
}
if (unlikely(urb->status)) {
usX2Y_error_urb_status(usX2Y, subs, urb);
return;
}
subs->completed_urb = urb;
{
struct snd_usX2Y_substream *capsubs = usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE],
*playbacksubs = usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK];
if (capsubs->completed_urb &&
atomic_read(&capsubs->state) >= state_PREPARED &&
(playbacksubs->completed_urb ||
atomic_read(&playbacksubs->state) < state_PREPARED)) {
if (!usX2Y_usbframe_complete(capsubs, playbacksubs, urb->start_frame))
usX2Y->wait_iso_frame += nr_of_packs();
else {
snd_printdd("\n");
usX2Y_clients_stop(usX2Y);
}
}
}
}
static void usX2Y_urbs_set_complete(struct usX2Ydev * usX2Y,
void (*complete)(struct urb *))
{
int s, u;
for (s = 0; s < 4; s++) {
struct snd_usX2Y_substream *subs = usX2Y->subs[s];
if (NULL != subs)
for (u = 0; u < NRURBS; u++) {
struct urb * urb = subs->urb[u];
if (NULL != urb)
urb->complete = complete;
}
}
}
static void usX2Y_subs_startup_finish(struct usX2Ydev * usX2Y)
{
usX2Y_urbs_set_complete(usX2Y, i_usX2Y_urb_complete);
usX2Y->prepare_subs = NULL;
}
static void i_usX2Y_subs_startup(struct urb *urb)
{
struct snd_usX2Y_substream *subs = urb->context;
struct usX2Ydev *usX2Y = subs->usX2Y;
struct snd_usX2Y_substream *prepare_subs = usX2Y->prepare_subs;
if (NULL != prepare_subs)
if (urb->start_frame == prepare_subs->urb[0]->start_frame) {
usX2Y_subs_startup_finish(usX2Y);
atomic_inc(&prepare_subs->state);
wake_up(&usX2Y->prepare_wait_queue);
}
i_usX2Y_urb_complete(urb);
}
static void usX2Y_subs_prepare(struct snd_usX2Y_substream *subs)
{
snd_printdd("usX2Y_substream_prepare(%p) ep=%i urb0=%p urb1=%p\n",
subs, subs->endpoint, subs->urb[0], subs->urb[1]);
/* reset the pointer */
subs->hwptr = 0;
subs->hwptr_done = 0;
subs->transfer_done = 0;
}
static void usX2Y_urb_release(struct urb **urb, int free_tb)
{
if (*urb) {
usb_kill_urb(*urb);
if (free_tb)
kfree((*urb)->transfer_buffer);
usb_free_urb(*urb);
*urb = NULL;
}
}
/*
* release a substreams urbs
*/
static void usX2Y_urbs_release(struct snd_usX2Y_substream *subs)
{
int i;
snd_printdd("usX2Y_urbs_release() %i\n", subs->endpoint);
for (i = 0; i < NRURBS; i++)
usX2Y_urb_release(subs->urb + i,
subs != subs->usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK]);
kfree(subs->tmpbuf);
subs->tmpbuf = NULL;
}
/*
* initialize a substream's urbs
*/
static int usX2Y_urbs_allocate(struct snd_usX2Y_substream *subs)
{
int i;
unsigned int pipe;
int is_playback = subs == subs->usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK];
struct usb_device *dev = subs->usX2Y->dev;
pipe = is_playback ? usb_sndisocpipe(dev, subs->endpoint) :
usb_rcvisocpipe(dev, subs->endpoint);
subs->maxpacksize = usb_maxpacket(dev, pipe, is_playback);
if (!subs->maxpacksize)
return -EINVAL;
if (is_playback && NULL == subs->tmpbuf) { /* allocate a temporary buffer for playback */
subs->tmpbuf = kcalloc(nr_of_packs(), subs->maxpacksize, GFP_KERNEL);
if (NULL == subs->tmpbuf) {
snd_printk(KERN_ERR "cannot malloc tmpbuf\n");
return -ENOMEM;
}
}
/* allocate and initialize data urbs */
for (i = 0; i < NRURBS; i++) {
struct urb **purb = subs->urb + i;
if (*purb) {
usb_kill_urb(*purb);
continue;
}
*purb = usb_alloc_urb(nr_of_packs(), GFP_KERNEL);
if (NULL == *purb) {
usX2Y_urbs_release(subs);
return -ENOMEM;
}
if (!is_playback && !(*purb)->transfer_buffer) {
/* allocate a capture buffer per urb */
(*purb)->transfer_buffer = kmalloc(subs->maxpacksize * nr_of_packs(), GFP_KERNEL);
if (NULL == (*purb)->transfer_buffer) {
usX2Y_urbs_release(subs);
return -ENOMEM;
}
}
(*purb)->dev = dev;
(*purb)->pipe = pipe;
(*purb)->number_of_packets = nr_of_packs();
(*purb)->context = subs;
(*purb)->interval = 1;
(*purb)->complete = i_usX2Y_subs_startup;
}
return 0;
}
static void usX2Y_subs_startup(struct snd_usX2Y_substream *subs)
{
struct usX2Ydev *usX2Y = subs->usX2Y;
usX2Y->prepare_subs = subs;
subs->urb[0]->start_frame = -1;
wmb();
usX2Y_urbs_set_complete(usX2Y, i_usX2Y_subs_startup);
}
static int usX2Y_urbs_start(struct snd_usX2Y_substream *subs)
{
int i, err;
struct usX2Ydev *usX2Y = subs->usX2Y;
if ((err = usX2Y_urbs_allocate(subs)) < 0)
return err;
subs->completed_urb = NULL;
for (i = 0; i < 4; i++) {
struct snd_usX2Y_substream *subs = usX2Y->subs[i];
if (subs != NULL && atomic_read(&subs->state) >= state_PREPARED)
goto start;
}
start:
usX2Y_subs_startup(subs);
for (i = 0; i < NRURBS; i++) {
struct urb *urb = subs->urb[i];
if (usb_pipein(urb->pipe)) {
unsigned long pack;
if (0 == i)
atomic_set(&subs->state, state_STARTING3);
urb->dev = usX2Y->dev;
for (pack = 0; pack < nr_of_packs(); pack++) {
urb->iso_frame_desc[pack].offset = subs->maxpacksize * pack;
urb->iso_frame_desc[pack].length = subs->maxpacksize;
}
urb->transfer_buffer_length = subs->maxpacksize * nr_of_packs();
if ((err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
snd_printk (KERN_ERR "cannot submit datapipe for urb %d, err = %d\n", i, err);
err = -EPIPE;
goto cleanup;
} else
if (i == 0)
usX2Y->wait_iso_frame = urb->start_frame;
urb->transfer_flags = 0;
} else {
atomic_set(&subs->state, state_STARTING1);
break;
}
}
err = 0;
wait_event(usX2Y->prepare_wait_queue, NULL == usX2Y->prepare_subs);
if (atomic_read(&subs->state) != state_PREPARED)
err = -EPIPE;
cleanup:
if (err) {
usX2Y_subs_startup_finish(usX2Y);
usX2Y_clients_stop(usX2Y); // something is completely wroong > stop evrything
}
return err;
}
/*
* return the current pcm pointer. just return the hwptr_done value.
*/
static snd_pcm_uframes_t snd_usX2Y_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_usX2Y_substream *subs = substream->runtime->private_data;
return subs->hwptr_done;
}
/*
* start/stop substream
*/
static int snd_usX2Y_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_usX2Y_substream *subs = substream->runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_printdd("snd_usX2Y_pcm_trigger(START)\n");
if (atomic_read(&subs->state) == state_PREPARED &&
atomic_read(&subs->usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE]->state) >= state_PREPARED) {
atomic_set(&subs->state, state_PRERUNNING);
} else {
snd_printdd("\n");
return -EPIPE;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
snd_printdd("snd_usX2Y_pcm_trigger(STOP)\n");
if (atomic_read(&subs->state) >= state_PRERUNNING)
atomic_set(&subs->state, state_PREPARED);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* allocate a buffer, setup samplerate
*
* so far we use a physically linear buffer although packetize transfer
* doesn't need a continuous area.
* if sg buffer is supported on the later version of alsa, we'll follow
* that.
*/
static struct s_c2
{
char c1, c2;
}
SetRate44100[] =
{
{ 0x14, 0x08}, // this line sets 44100, well actually a little less
{ 0x18, 0x40}, // only tascam / frontier design knows the further lines .......
{ 0x18, 0x42},
{ 0x18, 0x45},
{ 0x18, 0x46},
{ 0x18, 0x48},
{ 0x18, 0x4A},
{ 0x18, 0x4C},
{ 0x18, 0x4E},
{ 0x18, 0x50},
{ 0x18, 0x52},
{ 0x18, 0x54},
{ 0x18, 0x56},
{ 0x18, 0x58},
{ 0x18, 0x5A},
{ 0x18, 0x5C},
{ 0x18, 0x5E},
{ 0x18, 0x60},
{ 0x18, 0x62},
{ 0x18, 0x64},
{ 0x18, 0x66},
{ 0x18, 0x68},
{ 0x18, 0x6A},
{ 0x18, 0x6C},
{ 0x18, 0x6E},
{ 0x18, 0x70},
{ 0x18, 0x72},
{ 0x18, 0x74},
{ 0x18, 0x76},
{ 0x18, 0x78},
{ 0x18, 0x7A},
{ 0x18, 0x7C},
{ 0x18, 0x7E}
};
static struct s_c2 SetRate48000[] =
{
{ 0x14, 0x09}, // this line sets 48000, well actually a little less
{ 0x18, 0x40}, // only tascam / frontier design knows the further lines .......
{ 0x18, 0x42},
{ 0x18, 0x45},
{ 0x18, 0x46},
{ 0x18, 0x48},
{ 0x18, 0x4A},
{ 0x18, 0x4C},
{ 0x18, 0x4E},
{ 0x18, 0x50},
{ 0x18, 0x52},
{ 0x18, 0x54},
{ 0x18, 0x56},
{ 0x18, 0x58},
{ 0x18, 0x5A},
{ 0x18, 0x5C},
{ 0x18, 0x5E},
{ 0x18, 0x60},
{ 0x18, 0x62},
{ 0x18, 0x64},
{ 0x18, 0x66},
{ 0x18, 0x68},
{ 0x18, 0x6A},
{ 0x18, 0x6C},
{ 0x18, 0x6E},
{ 0x18, 0x70},
{ 0x18, 0x73},
{ 0x18, 0x74},
{ 0x18, 0x76},
{ 0x18, 0x78},
{ 0x18, 0x7A},
{ 0x18, 0x7C},
{ 0x18, 0x7E}
};
#define NOOF_SETRATE_URBS ARRAY_SIZE(SetRate48000)
static void i_usX2Y_04Int(struct urb *urb)
{
struct usX2Ydev *usX2Y = urb->context;
if (urb->status)
snd_printk(KERN_ERR "snd_usX2Y_04Int() urb->status=%i\n", urb->status);
if (0 == --usX2Y->US04->len)
wake_up(&usX2Y->In04WaitQueue);
}
static int usX2Y_rate_set(struct usX2Ydev *usX2Y, int rate)
{
int err = 0, i;
struct snd_usX2Y_urbSeq *us = NULL;
int *usbdata = NULL;
struct s_c2 *ra = rate == 48000 ? SetRate48000 : SetRate44100;
if (usX2Y->rate != rate) {
us = kzalloc(sizeof(*us) + sizeof(struct urb*) * NOOF_SETRATE_URBS, GFP_KERNEL);
if (NULL == us) {
err = -ENOMEM;
goto cleanup;
}
usbdata = kmalloc(sizeof(int) * NOOF_SETRATE_URBS, GFP_KERNEL);
if (NULL == usbdata) {
err = -ENOMEM;
goto cleanup;
}
for (i = 0; i < NOOF_SETRATE_URBS; ++i) {
if (NULL == (us->urb[i] = usb_alloc_urb(0, GFP_KERNEL))) {
err = -ENOMEM;
goto cleanup;
}
((char*)(usbdata + i))[0] = ra[i].c1;
((char*)(usbdata + i))[1] = ra[i].c2;
usb_fill_bulk_urb(us->urb[i], usX2Y->dev, usb_sndbulkpipe(usX2Y->dev, 4),
usbdata + i, 2, i_usX2Y_04Int, usX2Y);
}
us->submitted = 0;
us->len = NOOF_SETRATE_URBS;
usX2Y->US04 = us;
wait_event_timeout(usX2Y->In04WaitQueue, 0 == us->len, HZ);
usX2Y->US04 = NULL;
if (us->len)
err = -ENODEV;
cleanup:
if (us) {
us->submitted = 2*NOOF_SETRATE_URBS;
for (i = 0; i < NOOF_SETRATE_URBS; ++i) {
struct urb *urb = us->urb[i];
if (urb->status) {
if (!err)
err = -ENODEV;
usb_kill_urb(urb);
}
usb_free_urb(urb);
}
usX2Y->US04 = NULL;
kfree(usbdata);
kfree(us);
if (!err)
usX2Y->rate = rate;
}
}
return err;
}
static int usX2Y_format_set(struct usX2Ydev *usX2Y, snd_pcm_format_t format)
{
int alternate, err;
struct list_head* p;
if (format == SNDRV_PCM_FORMAT_S24_3LE) {
alternate = 2;
usX2Y->stride = 6;
} else {
alternate = 1;
usX2Y->stride = 4;
}
list_for_each(p, &usX2Y->midi_list) {
snd_usbmidi_input_stop(p);
}
usb_kill_urb(usX2Y->In04urb);
if ((err = usb_set_interface(usX2Y->dev, 0, alternate))) {
snd_printk(KERN_ERR "usb_set_interface error \n");
return err;
}
usX2Y->In04urb->dev = usX2Y->dev;
err = usb_submit_urb(usX2Y->In04urb, GFP_KERNEL);
list_for_each(p, &usX2Y->midi_list) {
snd_usbmidi_input_start(p);
}
usX2Y->format = format;
usX2Y->rate = 0;
return err;
}
static int snd_usX2Y_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
int err = 0;
unsigned int rate = params_rate(hw_params);
snd_pcm_format_t format = params_format(hw_params);
struct snd_card *card = substream->pstr->pcm->card;
struct usX2Ydev *dev = usX2Y(card);
int i;
mutex_lock(&usX2Y(card)->pcm_mutex);
snd_printdd("snd_usX2Y_hw_params(%p, %p)\n", substream, hw_params);
/* all pcm substreams off one usX2Y have to operate at the same
* rate & format
*/
for (i = 0; i < dev->pcm_devs * 2; i++) {
struct snd_usX2Y_substream *subs = dev->subs[i];
struct snd_pcm_substream *test_substream;
if (!subs)
continue;
test_substream = subs->pcm_substream;
if (!test_substream || test_substream == substream ||
!test_substream->runtime)
continue;
if ((test_substream->runtime->format &&
test_substream->runtime->format != format) ||
(test_substream->runtime->rate &&
test_substream->runtime->rate != rate)) {
err = -EINVAL;
goto error;
}
}
err = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
if (err < 0) {
snd_printk(KERN_ERR "snd_pcm_lib_malloc_pages(%p, %i) returned %i\n",
substream, params_buffer_bytes(hw_params), err);
goto error;
}
error:
mutex_unlock(&usX2Y(card)->pcm_mutex);
return err;
}
/*
* free the buffer
*/
static int snd_usX2Y_pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usX2Y_substream *subs = runtime->private_data;
mutex_lock(&subs->usX2Y->pcm_mutex);
snd_printdd("snd_usX2Y_hw_free(%p)\n", substream);
if (SNDRV_PCM_STREAM_PLAYBACK == substream->stream) {
struct snd_usX2Y_substream *cap_subs = subs->usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE];
atomic_set(&subs->state, state_STOPPED);
usX2Y_urbs_release(subs);
if (!cap_subs->pcm_substream ||
!cap_subs->pcm_substream->runtime ||
!cap_subs->pcm_substream->runtime->status ||
cap_subs->pcm_substream->runtime->status->state < SNDRV_PCM_STATE_PREPARED) {
atomic_set(&cap_subs->state, state_STOPPED);
usX2Y_urbs_release(cap_subs);
}
} else {
struct snd_usX2Y_substream *playback_subs = subs->usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK];
if (atomic_read(&playback_subs->state) < state_PREPARED) {
atomic_set(&subs->state, state_STOPPED);
usX2Y_urbs_release(subs);
}
}
mutex_unlock(&subs->usX2Y->pcm_mutex);
return snd_pcm_lib_free_pages(substream);
}
/*
* prepare callback
*
* set format and initialize urbs
*/
static int snd_usX2Y_pcm_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usX2Y_substream *subs = runtime->private_data;
struct usX2Ydev *usX2Y = subs->usX2Y;
struct snd_usX2Y_substream *capsubs = subs->usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE];
int err = 0;
snd_printdd("snd_usX2Y_pcm_prepare(%p)\n", substream);
mutex_lock(&usX2Y->pcm_mutex);
usX2Y_subs_prepare(subs);
// Start hardware streams
// SyncStream first....
if (atomic_read(&capsubs->state) < state_PREPARED) {
if (usX2Y->format != runtime->format)
if ((err = usX2Y_format_set(usX2Y, runtime->format)) < 0)
goto up_prepare_mutex;
if (usX2Y->rate != runtime->rate)
if ((err = usX2Y_rate_set(usX2Y, runtime->rate)) < 0)
goto up_prepare_mutex;
snd_printdd("starting capture pipe for %s\n", subs == capsubs ? "self" : "playpipe");
if (0 > (err = usX2Y_urbs_start(capsubs)))
goto up_prepare_mutex;
}
if (subs != capsubs && atomic_read(&subs->state) < state_PREPARED)
err = usX2Y_urbs_start(subs);
up_prepare_mutex:
mutex_unlock(&usX2Y->pcm_mutex);
return err;
}
static struct snd_pcm_hardware snd_usX2Y_2c =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH),
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_3LE,
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (2*128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0
};
static int snd_usX2Y_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_usX2Y_substream *subs = ((struct snd_usX2Y_substream **)
snd_pcm_substream_chip(substream))[substream->stream];
struct snd_pcm_runtime *runtime = substream->runtime;
if (subs->usX2Y->chip_status & USX2Y_STAT_CHIP_MMAP_PCM_URBS)
return -EBUSY;
runtime->hw = snd_usX2Y_2c;
runtime->private_data = subs;
subs->pcm_substream = substream;
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1000, 200000);
return 0;
}
static int snd_usX2Y_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_usX2Y_substream *subs = runtime->private_data;
subs->pcm_substream = NULL;
return 0;
}
static struct snd_pcm_ops snd_usX2Y_pcm_ops =
{
.open = snd_usX2Y_pcm_open,
.close = snd_usX2Y_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_usX2Y_pcm_hw_params,
.hw_free = snd_usX2Y_pcm_hw_free,
.prepare = snd_usX2Y_pcm_prepare,
.trigger = snd_usX2Y_pcm_trigger,
.pointer = snd_usX2Y_pcm_pointer,
};
/*
* free a usb stream instance
*/
static void usX2Y_audio_stream_free(struct snd_usX2Y_substream **usX2Y_substream)
{
kfree(usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]);
usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK] = NULL;
kfree(usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE]);
usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE] = NULL;
}
static void snd_usX2Y_pcm_private_free(struct snd_pcm *pcm)
{
struct snd_usX2Y_substream **usX2Y_stream = pcm->private_data;
if (usX2Y_stream)
usX2Y_audio_stream_free(usX2Y_stream);
}
static int usX2Y_audio_stream_new(struct snd_card *card, int playback_endpoint, int capture_endpoint)
{
struct snd_pcm *pcm;
int err, i;
struct snd_usX2Y_substream **usX2Y_substream =
usX2Y(card)->subs + 2 * usX2Y(card)->pcm_devs;
for (i = playback_endpoint ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
i <= SNDRV_PCM_STREAM_CAPTURE; ++i) {
usX2Y_substream[i] = kzalloc(sizeof(struct snd_usX2Y_substream), GFP_KERNEL);
if (NULL == usX2Y_substream[i]) {
snd_printk(KERN_ERR "cannot malloc\n");
return -ENOMEM;
}
usX2Y_substream[i]->usX2Y = usX2Y(card);
}
if (playback_endpoint)
usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]->endpoint = playback_endpoint;
usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE]->endpoint = capture_endpoint;
err = snd_pcm_new(card, NAME_ALLCAPS" Audio", usX2Y(card)->pcm_devs,
playback_endpoint ? 1 : 0, 1,
&pcm);
if (err < 0) {
usX2Y_audio_stream_free(usX2Y_substream);
return err;
}
if (playback_endpoint)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_usX2Y_pcm_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_usX2Y_pcm_ops);
pcm->private_data = usX2Y_substream;
pcm->private_free = snd_usX2Y_pcm_private_free;
pcm->info_flags = 0;
sprintf(pcm->name, NAME_ALLCAPS" Audio #%d", usX2Y(card)->pcm_devs);
if ((playback_endpoint &&
0 > (err = snd_pcm_lib_preallocate_pages(pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
64*1024, 128*1024))) ||
0 > (err = snd_pcm_lib_preallocate_pages(pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
64*1024, 128*1024))) {
snd_usX2Y_pcm_private_free(pcm);
return err;
}
usX2Y(card)->pcm_devs++;
return 0;
}
/*
* create a chip instance and set its names.
*/
int usX2Y_audio_create(struct snd_card *card)
{
int err = 0;
INIT_LIST_HEAD(&usX2Y(card)->pcm_list);
if (0 > (err = usX2Y_audio_stream_new(card, 0xA, 0x8)))
return err;
if (le16_to_cpu(usX2Y(card)->dev->descriptor.idProduct) == USB_ID_US428)
if (0 > (err = usX2Y_audio_stream_new(card, 0, 0xA)))
return err;
if (le16_to_cpu(usX2Y(card)->dev->descriptor.idProduct) != USB_ID_US122)
err = usX2Y_rate_set(usX2Y(card), 44100); // Lets us428 recognize output-volume settings, disturbs us122.
return err;
}