kernel-fxtec-pro1x/drivers/macintosh/therm_pm72.c
Benjamin Herrenschmidt 7eebde700f [POWERPC] Souped-up of_platform_device support
This patch first splits of_device.c and of_platform.c, the later containing
the bits relative to of_platform_device's. On the "breaks" side of things,
drivers uisng of_platform_device(s) need to include asm/of_platform.h now
and of_(un)register_driver is now of_(un)register_platform_driver.

In addition to a few utility functions to locate of_platform_device(s),
the main new addition is of_platform_bus_probe() which allows the platform
code to trigger an automatic creation of of_platform_devices for a whole
tree of devices.

The function acts based on the type of the various "parent" devices encountered
from a provided root, using either a default known list of bus types that can be
"probed" or a passed-in list. It will only register devices on busses matching
that list, which mean that typically, it will not register PCI devices, as
expected (since they will be picked up by the PCI layer).

This will be used by Cell platforms using 4xx-type IOs in the Axon bridge
and can be used by any embedded-type device as well.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-12-04 16:08:52 +11:00

2259 lines
61 KiB
C

/*
* Device driver for the thermostats & fan controller of the
* Apple G5 "PowerMac7,2" desktop machines.
*
* (c) Copyright IBM Corp. 2003-2004
*
* Maintained by: Benjamin Herrenschmidt
* <benh@kernel.crashing.org>
*
*
* The algorithm used is the PID control algorithm, used the same
* way the published Darwin code does, using the same values that
* are present in the Darwin 7.0 snapshot property lists.
*
* As far as the CPUs control loops are concerned, I use the
* calibration & PID constants provided by the EEPROM,
* I do _not_ embed any value from the property lists, as the ones
* provided by Darwin 7.0 seem to always have an older version that
* what I've seen on the actual computers.
* It would be interesting to verify that though. Darwin has a
* version code of 1.0.0d11 for all control loops it seems, while
* so far, the machines EEPROMs contain a dataset versioned 1.0.0f
*
* Darwin doesn't provide source to all parts, some missing
* bits like the AppleFCU driver or the actual scale of some
* of the values returned by sensors had to be "guessed" some
* way... or based on what Open Firmware does.
*
* I didn't yet figure out how to get the slots power consumption
* out of the FCU, so that part has not been implemented yet and
* the slots fan is set to a fixed 50% PWM, hoping this value is
* safe enough ...
*
* Note: I have observed strange oscillations of the CPU control
* loop on a dual G5 here. When idle, the CPU exhaust fan tend to
* oscillates slowly (over several minutes) between the minimum
* of 300RPMs and approx. 1000 RPMs. I don't know what is causing
* this, it could be some incorrect constant or an error in the
* way I ported the algorithm, or it could be just normal. I
* don't have full understanding on the way Apple tweaked the PID
* algorithm for the CPU control, it is definitely not a standard
* implementation...
*
* TODO: - Check MPU structure version/signature
* - Add things like /sbin/overtemp for non-critical
* overtemp conditions so userland can take some policy
* decisions, like slewing down CPUs
* - Deal with fan and i2c failures in a better way
* - Maybe do a generic PID based on params used for
* U3 and Drives ? Definitely need to factor code a bit
* bettter... also make sensor detection more robust using
* the device-tree to probe for them
* - Figure out how to get the slots consumption and set the
* slots fan accordingly
*
* History:
*
* Nov. 13, 2003 : 0.5
* - First release
*
* Nov. 14, 2003 : 0.6
* - Read fan speed from FCU, low level fan routines now deal
* with errors & check fan status, though higher level don't
* do much.
* - Move a bunch of definitions to .h file
*
* Nov. 18, 2003 : 0.7
* - Fix build on ppc64 kernel
* - Move back statics definitions to .c file
* - Avoid calling schedule_timeout with a negative number
*
* Dec. 18, 2003 : 0.8
* - Fix typo when reading back fan speed on 2 CPU machines
*
* Mar. 11, 2004 : 0.9
* - Rework code accessing the ADC chips, make it more robust and
* closer to the chip spec. Also make sure it is configured properly,
* I've seen yet unexplained cases where on startup, I would have stale
* values in the configuration register
* - Switch back to use of target fan speed for PID, thus lowering
* pressure on i2c
*
* Oct. 20, 2004 : 1.1
* - Add device-tree lookup for fan IDs, should detect liquid cooling
* pumps when present
* - Enable driver for PowerMac7,3 machines
* - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
* - Add new CPU cooling algorithm for machines with liquid cooling
* - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
* - Fix a signed/unsigned compare issue in some PID loops
*
* Mar. 10, 2005 : 1.2
* - Add basic support for Xserve G5
* - Retreive pumps min/max from EEPROM image in device-tree (broken)
* - Use min/max macros here or there
* - Latest darwin updated U3H min fan speed to 20% PWM
*
* July. 06, 2006 : 1.3
* - Fix setting of RPM fans on Xserve G5 (they were going too fast)
* - Add missing slots fan control loop for Xserve G5
* - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
* still can't properly implement the control loop for these, so let's
* reduce the noise a little bit, it appears that 40% still gives us
* a pretty good air flow
* - Add code to "tickle" the FCU regulary so it doesn't think that
* we are gone while in fact, the machine just didn't need any fan
* speed change lately
*
*/
#include <linux/types.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/wait.h>
#include <linux/reboot.h>
#include <linux/kmod.h>
#include <linux/i2c.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/sections.h>
#include <asm/of_device.h>
#include <asm/macio.h>
#include <asm/of_platform.h>
#include "therm_pm72.h"
#define VERSION "1.3"
#undef DEBUG
#ifdef DEBUG
#define DBG(args...) printk(args)
#else
#define DBG(args...) do { } while(0)
#endif
/*
* Driver statics
*/
static struct of_device * of_dev;
static struct i2c_adapter * u3_0;
static struct i2c_adapter * u3_1;
static struct i2c_adapter * k2;
static struct i2c_client * fcu;
static struct cpu_pid_state cpu_state[2];
static struct basckside_pid_params backside_params;
static struct backside_pid_state backside_state;
static struct drives_pid_state drives_state;
static struct dimm_pid_state dimms_state;
static struct slots_pid_state slots_state;
static int state;
static int cpu_count;
static int cpu_pid_type;
static pid_t ctrl_task;
static struct completion ctrl_complete;
static int critical_state;
static int rackmac;
static s32 dimm_output_clamp;
static int fcu_rpm_shift;
static int fcu_tickle_ticks;
static DECLARE_MUTEX(driver_lock);
/*
* We have 3 types of CPU PID control. One is "split" old style control
* for intake & exhaust fans, the other is "combined" control for both
* CPUs that also deals with the pumps when present. To be "compatible"
* with OS X at this point, we only use "COMBINED" on the machines that
* are identified as having the pumps (though that identification is at
* least dodgy). Ultimately, we could probably switch completely to this
* algorithm provided we hack it to deal with the UP case
*/
#define CPU_PID_TYPE_SPLIT 0
#define CPU_PID_TYPE_COMBINED 1
#define CPU_PID_TYPE_RACKMAC 2
/*
* This table describes all fans in the FCU. The "id" and "type" values
* are defaults valid for all earlier machines. Newer machines will
* eventually override the table content based on the device-tree
*/
struct fcu_fan_table
{
char* loc; /* location code */
int type; /* 0 = rpm, 1 = pwm, 2 = pump */
int id; /* id or -1 */
};
#define FCU_FAN_RPM 0
#define FCU_FAN_PWM 1
#define FCU_FAN_ABSENT_ID -1
#define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
struct fcu_fan_table fcu_fans[] = {
[BACKSIDE_FAN_PWM_INDEX] = {
.loc = "BACKSIDE,SYS CTRLR FAN",
.type = FCU_FAN_PWM,
.id = BACKSIDE_FAN_PWM_DEFAULT_ID,
},
[DRIVES_FAN_RPM_INDEX] = {
.loc = "DRIVE BAY",
.type = FCU_FAN_RPM,
.id = DRIVES_FAN_RPM_DEFAULT_ID,
},
[SLOTS_FAN_PWM_INDEX] = {
.loc = "SLOT,PCI FAN",
.type = FCU_FAN_PWM,
.id = SLOTS_FAN_PWM_DEFAULT_ID,
},
[CPUA_INTAKE_FAN_RPM_INDEX] = {
.loc = "CPU A INTAKE",
.type = FCU_FAN_RPM,
.id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
},
[CPUA_EXHAUST_FAN_RPM_INDEX] = {
.loc = "CPU A EXHAUST",
.type = FCU_FAN_RPM,
.id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
},
[CPUB_INTAKE_FAN_RPM_INDEX] = {
.loc = "CPU B INTAKE",
.type = FCU_FAN_RPM,
.id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
},
[CPUB_EXHAUST_FAN_RPM_INDEX] = {
.loc = "CPU B EXHAUST",
.type = FCU_FAN_RPM,
.id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
},
/* pumps aren't present by default, have to be looked up in the
* device-tree
*/
[CPUA_PUMP_RPM_INDEX] = {
.loc = "CPU A PUMP",
.type = FCU_FAN_RPM,
.id = FCU_FAN_ABSENT_ID,
},
[CPUB_PUMP_RPM_INDEX] = {
.loc = "CPU B PUMP",
.type = FCU_FAN_RPM,
.id = FCU_FAN_ABSENT_ID,
},
/* Xserve fans */
[CPU_A1_FAN_RPM_INDEX] = {
.loc = "CPU A 1",
.type = FCU_FAN_RPM,
.id = FCU_FAN_ABSENT_ID,
},
[CPU_A2_FAN_RPM_INDEX] = {
.loc = "CPU A 2",
.type = FCU_FAN_RPM,
.id = FCU_FAN_ABSENT_ID,
},
[CPU_A3_FAN_RPM_INDEX] = {
.loc = "CPU A 3",
.type = FCU_FAN_RPM,
.id = FCU_FAN_ABSENT_ID,
},
[CPU_B1_FAN_RPM_INDEX] = {
.loc = "CPU B 1",
.type = FCU_FAN_RPM,
.id = FCU_FAN_ABSENT_ID,
},
[CPU_B2_FAN_RPM_INDEX] = {
.loc = "CPU B 2",
.type = FCU_FAN_RPM,
.id = FCU_FAN_ABSENT_ID,
},
[CPU_B3_FAN_RPM_INDEX] = {
.loc = "CPU B 3",
.type = FCU_FAN_RPM,
.id = FCU_FAN_ABSENT_ID,
},
};
/*
* i2c_driver structure to attach to the host i2c controller
*/
static int therm_pm72_attach(struct i2c_adapter *adapter);
static int therm_pm72_detach(struct i2c_adapter *adapter);
static struct i2c_driver therm_pm72_driver =
{
.driver = {
.name = "therm_pm72",
},
.attach_adapter = therm_pm72_attach,
.detach_adapter = therm_pm72_detach,
};
/*
* Utility function to create an i2c_client structure and
* attach it to one of u3 adapters
*/
static struct i2c_client *attach_i2c_chip(int id, const char *name)
{
struct i2c_client *clt;
struct i2c_adapter *adap;
if (id & 0x200)
adap = k2;
else if (id & 0x100)
adap = u3_1;
else
adap = u3_0;
if (adap == NULL)
return NULL;
clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
if (clt == NULL)
return NULL;
memset(clt, 0, sizeof(struct i2c_client));
clt->addr = (id >> 1) & 0x7f;
clt->adapter = adap;
clt->driver = &therm_pm72_driver;
strncpy(clt->name, name, I2C_NAME_SIZE-1);
if (i2c_attach_client(clt)) {
printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
kfree(clt);
return NULL;
}
return clt;
}
/*
* Utility function to get rid of the i2c_client structure
* (will also detach from the adapter hopepfully)
*/
static void detach_i2c_chip(struct i2c_client *clt)
{
i2c_detach_client(clt);
kfree(clt);
}
/*
* Here are the i2c chip access wrappers
*/
static void initialize_adc(struct cpu_pid_state *state)
{
int rc;
u8 buf[2];
/* Read ADC the configuration register and cache it. We
* also make sure Config2 contains proper values, I've seen
* cases where we got stale grabage in there, thus preventing
* proper reading of conv. values
*/
/* Clear Config2 */
buf[0] = 5;
buf[1] = 0;
i2c_master_send(state->monitor, buf, 2);
/* Read & cache Config1 */
buf[0] = 1;
rc = i2c_master_send(state->monitor, buf, 1);
if (rc > 0) {
rc = i2c_master_recv(state->monitor, buf, 1);
if (rc > 0) {
state->adc_config = buf[0];
DBG("ADC config reg: %02x\n", state->adc_config);
/* Disable shutdown mode */
state->adc_config &= 0xfe;
buf[0] = 1;
buf[1] = state->adc_config;
rc = i2c_master_send(state->monitor, buf, 2);
}
}
if (rc <= 0)
printk(KERN_ERR "therm_pm72: Error reading ADC config"
" register !\n");
}
static int read_smon_adc(struct cpu_pid_state *state, int chan)
{
int rc, data, tries = 0;
u8 buf[2];
for (;;) {
/* Set channel */
buf[0] = 1;
buf[1] = (state->adc_config & 0x1f) | (chan << 5);
rc = i2c_master_send(state->monitor, buf, 2);
if (rc <= 0)
goto error;
/* Wait for convertion */
msleep(1);
/* Switch to data register */
buf[0] = 4;
rc = i2c_master_send(state->monitor, buf, 1);
if (rc <= 0)
goto error;
/* Read result */
rc = i2c_master_recv(state->monitor, buf, 2);
if (rc < 0)
goto error;
data = ((u16)buf[0]) << 8 | (u16)buf[1];
return data >> 6;
error:
DBG("Error reading ADC, retrying...\n");
if (++tries > 10) {
printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
return -1;
}
msleep(10);
}
}
static int read_lm87_reg(struct i2c_client * chip, int reg)
{
int rc, tries = 0;
u8 buf;
for (;;) {
/* Set address */
buf = (u8)reg;
rc = i2c_master_send(chip, &buf, 1);
if (rc <= 0)
goto error;
rc = i2c_master_recv(chip, &buf, 1);
if (rc <= 0)
goto error;
return (int)buf;
error:
DBG("Error reading LM87, retrying...\n");
if (++tries > 10) {
printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
return -1;
}
msleep(10);
}
}
static int fan_read_reg(int reg, unsigned char *buf, int nb)
{
int tries, nr, nw;
buf[0] = reg;
tries = 0;
for (;;) {
nw = i2c_master_send(fcu, buf, 1);
if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
break;
msleep(10);
++tries;
}
if (nw <= 0) {
printk(KERN_ERR "Failure writing address to FCU: %d", nw);
return -EIO;
}
tries = 0;
for (;;) {
nr = i2c_master_recv(fcu, buf, nb);
if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
break;
msleep(10);
++tries;
}
if (nr <= 0)
printk(KERN_ERR "Failure reading data from FCU: %d", nw);
return nr;
}
static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
{
int tries, nw;
unsigned char buf[16];
buf[0] = reg;
memcpy(buf+1, ptr, nb);
++nb;
tries = 0;
for (;;) {
nw = i2c_master_send(fcu, buf, nb);
if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
break;
msleep(10);
++tries;
}
if (nw < 0)
printk(KERN_ERR "Failure writing to FCU: %d", nw);
return nw;
}
static int start_fcu(void)
{
unsigned char buf = 0xff;
int rc;
rc = fan_write_reg(0xe, &buf, 1);
if (rc < 0)
return -EIO;
rc = fan_write_reg(0x2e, &buf, 1);
if (rc < 0)
return -EIO;
rc = fan_read_reg(0, &buf, 1);
if (rc < 0)
return -EIO;
fcu_rpm_shift = (buf == 1) ? 2 : 3;
printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
fcu_rpm_shift);
return 0;
}
static int set_rpm_fan(int fan_index, int rpm)
{
unsigned char buf[2];
int rc, id, min, max;
if (fcu_fans[fan_index].type != FCU_FAN_RPM)
return -EINVAL;
id = fcu_fans[fan_index].id;
if (id == FCU_FAN_ABSENT_ID)
return -EINVAL;
min = 2400 >> fcu_rpm_shift;
max = 56000 >> fcu_rpm_shift;
if (rpm < min)
rpm = min;
else if (rpm > max)
rpm = max;
buf[0] = rpm >> (8 - fcu_rpm_shift);
buf[1] = rpm << fcu_rpm_shift;
rc = fan_write_reg(0x10 + (id * 2), buf, 2);
if (rc < 0)
return -EIO;
return 0;
}
static int get_rpm_fan(int fan_index, int programmed)
{
unsigned char failure;
unsigned char active;
unsigned char buf[2];
int rc, id, reg_base;
if (fcu_fans[fan_index].type != FCU_FAN_RPM)
return -EINVAL;
id = fcu_fans[fan_index].id;
if (id == FCU_FAN_ABSENT_ID)
return -EINVAL;
rc = fan_read_reg(0xb, &failure, 1);
if (rc != 1)
return -EIO;
if ((failure & (1 << id)) != 0)
return -EFAULT;
rc = fan_read_reg(0xd, &active, 1);
if (rc != 1)
return -EIO;
if ((active & (1 << id)) == 0)
return -ENXIO;
/* Programmed value or real current speed */
reg_base = programmed ? 0x10 : 0x11;
rc = fan_read_reg(reg_base + (id * 2), buf, 2);
if (rc != 2)
return -EIO;
return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
}
static int set_pwm_fan(int fan_index, int pwm)
{
unsigned char buf[2];
int rc, id;
if (fcu_fans[fan_index].type != FCU_FAN_PWM)
return -EINVAL;
id = fcu_fans[fan_index].id;
if (id == FCU_FAN_ABSENT_ID)
return -EINVAL;
if (pwm < 10)
pwm = 10;
else if (pwm > 100)
pwm = 100;
pwm = (pwm * 2559) / 1000;
buf[0] = pwm;
rc = fan_write_reg(0x30 + (id * 2), buf, 1);
if (rc < 0)
return rc;
return 0;
}
static int get_pwm_fan(int fan_index)
{
unsigned char failure;
unsigned char active;
unsigned char buf[2];
int rc, id;
if (fcu_fans[fan_index].type != FCU_FAN_PWM)
return -EINVAL;
id = fcu_fans[fan_index].id;
if (id == FCU_FAN_ABSENT_ID)
return -EINVAL;
rc = fan_read_reg(0x2b, &failure, 1);
if (rc != 1)
return -EIO;
if ((failure & (1 << id)) != 0)
return -EFAULT;
rc = fan_read_reg(0x2d, &active, 1);
if (rc != 1)
return -EIO;
if ((active & (1 << id)) == 0)
return -ENXIO;
/* Programmed value or real current speed */
rc = fan_read_reg(0x30 + (id * 2), buf, 1);
if (rc != 1)
return -EIO;
return (buf[0] * 1000) / 2559;
}
static void tickle_fcu(void)
{
int pwm;
pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
DBG("FCU Tickle, slots fan is: %d\n", pwm);
if (pwm < 0)
pwm = 100;
if (!rackmac) {
pwm = SLOTS_FAN_DEFAULT_PWM;
} else if (pwm < SLOTS_PID_OUTPUT_MIN)
pwm = SLOTS_PID_OUTPUT_MIN;
/* That is hopefully enough to make the FCU happy */
set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
}
/*
* Utility routine to read the CPU calibration EEPROM data
* from the device-tree
*/
static int read_eeprom(int cpu, struct mpu_data *out)
{
struct device_node *np;
char nodename[64];
const u8 *data;
int len;
/* prom.c routine for finding a node by path is a bit brain dead
* and requires exact @xxx unit numbers. This is a bit ugly but
* will work for these machines
*/
sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
np = of_find_node_by_path(nodename);
if (np == NULL) {
printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
return -ENODEV;
}
data = get_property(np, "cpuid", &len);
if (data == NULL) {
printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
of_node_put(np);
return -ENODEV;
}
memcpy(out, data, sizeof(struct mpu_data));
of_node_put(np);
return 0;
}
static void fetch_cpu_pumps_minmax(void)
{
struct cpu_pid_state *state0 = &cpu_state[0];
struct cpu_pid_state *state1 = &cpu_state[1];
u16 pump_min = 0, pump_max = 0xffff;
u16 tmp[4];
/* Try to fetch pumps min/max infos from eeprom */
memcpy(&tmp, &state0->mpu.processor_part_num, 8);
if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
pump_min = max(pump_min, tmp[0]);
pump_max = min(pump_max, tmp[1]);
}
if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
pump_min = max(pump_min, tmp[2]);
pump_max = min(pump_max, tmp[3]);
}
/* Double check the values, this _IS_ needed as the EEPROM on
* some dual 2.5Ghz G5s seem, at least, to have both min & max
* same to the same value ... (grrrr)
*/
if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
pump_min = CPU_PUMP_OUTPUT_MIN;
pump_max = CPU_PUMP_OUTPUT_MAX;
}
state0->pump_min = state1->pump_min = pump_min;
state0->pump_max = state1->pump_max = pump_max;
}
/*
* Now, unfortunately, sysfs doesn't give us a nice void * we could
* pass around to the attribute functions, so we don't really have
* choice but implement a bunch of them...
*
* That sucks a bit, we take the lock because FIX32TOPRINT evaluates
* the input twice... I accept patches :)
*/
#define BUILD_SHOW_FUNC_FIX(name, data) \
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
ssize_t r; \
down(&driver_lock); \
r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
up(&driver_lock); \
return r; \
}
#define BUILD_SHOW_FUNC_INT(name, data) \
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return sprintf(buf, "%d", data); \
}
BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
/*
* CPUs fans control loop
*/
static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
{
s32 ltemp, volts, amps;
int index, rc = 0;
/* Default (in case of error) */
*temp = state->cur_temp;
*power = state->cur_power;
if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
index = (state->index == 0) ?
CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
else
index = (state->index == 0) ?
CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
/* Read current fan status */
rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
if (rc < 0) {
/* XXX What do we do now ? Nothing for now, keep old value, but
* return error upstream
*/
DBG(" cpu %d, fan reading error !\n", state->index);
} else {
state->rpm = rc;
DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
}
/* Get some sensor readings and scale it */
ltemp = read_smon_adc(state, 1);
if (ltemp == -1) {
/* XXX What do we do now ? */
state->overtemp++;
if (rc == 0)
rc = -EIO;
DBG(" cpu %d, temp reading error !\n", state->index);
} else {
/* Fixup temperature according to diode calibration
*/
DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
state->index,
ltemp, state->mpu.mdiode, state->mpu.bdiode);
*temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
state->last_temp = *temp;
DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
}
/*
* Read voltage & current and calculate power
*/
volts = read_smon_adc(state, 3);
amps = read_smon_adc(state, 4);
/* Scale voltage and current raw sensor values according to fixed scales
* obtained in Darwin and calculate power from I and V
*/
volts *= ADC_CPU_VOLTAGE_SCALE;
amps *= ADC_CPU_CURRENT_SCALE;
*power = (((u64)volts) * ((u64)amps)) >> 16;
state->voltage = volts;
state->current_a = amps;
state->last_power = *power;
DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
state->index, FIX32TOPRINT(state->current_a),
FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
return 0;
}
static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
{
s32 power_target, integral, derivative, proportional, adj_in_target, sval;
s64 integ_p, deriv_p, prop_p, sum;
int i;
/* Calculate power target value (could be done once for all)
* and convert to a 16.16 fp number
*/
power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
DBG(" power target: %d.%03d, error: %d.%03d\n",
FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
/* Store temperature and power in history array */
state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
state->temp_history[state->cur_temp] = temp;
state->cur_power = (state->cur_power + 1) % state->count_power;
state->power_history[state->cur_power] = power;
state->error_history[state->cur_power] = power_target - power;
/* If first loop, fill the history table */
if (state->first) {
for (i = 0; i < (state->count_power - 1); i++) {
state->cur_power = (state->cur_power + 1) % state->count_power;
state->power_history[state->cur_power] = power;
state->error_history[state->cur_power] = power_target - power;
}
for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
state->temp_history[state->cur_temp] = temp;
}
state->first = 0;
}
/* Calculate the integral term normally based on the "power" values */
sum = 0;
integral = 0;
for (i = 0; i < state->count_power; i++)
integral += state->error_history[i];
integral *= CPU_PID_INTERVAL;
DBG(" integral: %08x\n", integral);
/* Calculate the adjusted input (sense value).
* G_r is 12.20
* integ is 16.16
* so the result is 28.36
*
* input target is mpu.ttarget, input max is mpu.tmax
*/
integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
adj_in_target = (state->mpu.ttarget << 16);
if (adj_in_target > sval)
adj_in_target = sval;
DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
state->mpu.ttarget);
/* Calculate the derivative term */
derivative = state->temp_history[state->cur_temp] -
state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
% CPU_TEMP_HISTORY_SIZE];
derivative /= CPU_PID_INTERVAL;
deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
sum += deriv_p;
/* Calculate the proportional term */
proportional = temp - adj_in_target;
prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
sum += prop_p;
/* Scale sum */
sum >>= 36;
DBG(" sum: %d\n", (int)sum);
state->rpm += (s32)sum;
}
static void do_monitor_cpu_combined(void)
{
struct cpu_pid_state *state0 = &cpu_state[0];
struct cpu_pid_state *state1 = &cpu_state[1];
s32 temp0, power0, temp1, power1;
s32 temp_combi, power_combi;
int rc, intake, pump;
rc = do_read_one_cpu_values(state0, &temp0, &power0);
if (rc < 0) {
/* XXX What do we do now ? */
}
state1->overtemp = 0;
rc = do_read_one_cpu_values(state1, &temp1, &power1);
if (rc < 0) {
/* XXX What do we do now ? */
}
if (state1->overtemp)
state0->overtemp++;
temp_combi = max(temp0, temp1);
power_combi = max(power0, power1);
/* Check tmax, increment overtemp if we are there. At tmax+8, we go
* full blown immediately and try to trigger a shutdown
*/
if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
temp_combi >> 16);
state0->overtemp += CPU_MAX_OVERTEMP / 4;
} else if (temp_combi > (state0->mpu.tmax << 16))
state0->overtemp++;
else
state0->overtemp = 0;
if (state0->overtemp >= CPU_MAX_OVERTEMP)
critical_state = 1;
if (state0->overtemp > 0) {
state0->rpm = state0->mpu.rmaxn_exhaust_fan;
state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
pump = state0->pump_max;
goto do_set_fans;
}
/* Do the PID */
do_cpu_pid(state0, temp_combi, power_combi);
/* Range check */
state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
/* Calculate intake fan speed */
intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
intake = max(intake, (int)state0->mpu.rminn_intake_fan);
intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
state0->intake_rpm = intake;
/* Calculate pump speed */
pump = (state0->rpm * state0->pump_max) /
state0->mpu.rmaxn_exhaust_fan;
pump = min(pump, state0->pump_max);
pump = max(pump, state0->pump_min);
do_set_fans:
/* We copy values from state 0 to state 1 for /sysfs */
state1->rpm = state0->rpm;
state1->intake_rpm = state0->intake_rpm;
DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
/* We should check for errors, shouldn't we ? But then, what
* do we do once the error occurs ? For FCU notified fan
* failures (-EFAULT) we probably want to notify userland
* some way...
*/
set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
}
static void do_monitor_cpu_split(struct cpu_pid_state *state)
{
s32 temp, power;
int rc, intake;
/* Read current fan status */
rc = do_read_one_cpu_values(state, &temp, &power);
if (rc < 0) {
/* XXX What do we do now ? */
}
/* Check tmax, increment overtemp if we are there. At tmax+8, we go
* full blown immediately and try to trigger a shutdown
*/
if (temp >= ((state->mpu.tmax + 8) << 16)) {
printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
" (%d) !\n",
state->index, temp >> 16);
state->overtemp += CPU_MAX_OVERTEMP / 4;
} else if (temp > (state->mpu.tmax << 16))
state->overtemp++;
else
state->overtemp = 0;
if (state->overtemp >= CPU_MAX_OVERTEMP)
critical_state = 1;
if (state->overtemp > 0) {
state->rpm = state->mpu.rmaxn_exhaust_fan;
state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
goto do_set_fans;
}
/* Do the PID */
do_cpu_pid(state, temp, power);
/* Range check */
state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
/* Calculate intake fan */
intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
intake = max(intake, (int)state->mpu.rminn_intake_fan);
intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
state->intake_rpm = intake;
do_set_fans:
DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
state->index, (int)state->rpm, intake, state->overtemp);
/* We should check for errors, shouldn't we ? But then, what
* do we do once the error occurs ? For FCU notified fan
* failures (-EFAULT) we probably want to notify userland
* some way...
*/
if (state->index == 0) {
set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
} else {
set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
}
}
static void do_monitor_cpu_rack(struct cpu_pid_state *state)
{
s32 temp, power, fan_min;
int rc;
/* Read current fan status */
rc = do_read_one_cpu_values(state, &temp, &power);
if (rc < 0) {
/* XXX What do we do now ? */
}
/* Check tmax, increment overtemp if we are there. At tmax+8, we go
* full blown immediately and try to trigger a shutdown
*/
if (temp >= ((state->mpu.tmax + 8) << 16)) {
printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
" (%d) !\n",
state->index, temp >> 16);
state->overtemp = CPU_MAX_OVERTEMP / 4;
} else if (temp > (state->mpu.tmax << 16))
state->overtemp++;
else
state->overtemp = 0;
if (state->overtemp >= CPU_MAX_OVERTEMP)
critical_state = 1;
if (state->overtemp > 0) {
state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
goto do_set_fans;
}
/* Do the PID */
do_cpu_pid(state, temp, power);
/* Check clamp from dimms */
fan_min = dimm_output_clamp;
fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
DBG(" CPU min mpu = %d, min dimm = %d\n",
state->mpu.rminn_intake_fan, dimm_output_clamp);
state->rpm = max(state->rpm, (int)fan_min);
state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
state->intake_rpm = state->rpm;
do_set_fans:
DBG("** CPU %d RPM: %d overtemp: %d\n",
state->index, (int)state->rpm, state->overtemp);
/* We should check for errors, shouldn't we ? But then, what
* do we do once the error occurs ? For FCU notified fan
* failures (-EFAULT) we probably want to notify userland
* some way...
*/
if (state->index == 0) {
set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
} else {
set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
}
}
/*
* Initialize the state structure for one CPU control loop
*/
static int init_cpu_state(struct cpu_pid_state *state, int index)
{
state->index = index;
state->first = 1;
state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
state->overtemp = 0;
state->adc_config = 0x00;
if (index == 0)
state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
else if (index == 1)
state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
if (state->monitor == NULL)
goto fail;
if (read_eeprom(index, &state->mpu))
goto fail;
state->count_power = state->mpu.tguardband;
if (state->count_power > CPU_POWER_HISTORY_SIZE) {
printk(KERN_WARNING "Warning ! too many power history slots\n");
state->count_power = CPU_POWER_HISTORY_SIZE;
}
DBG("CPU %d Using %d power history entries\n", index, state->count_power);
if (index == 0) {
device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
} else {
device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
}
return 0;
fail:
if (state->monitor)
detach_i2c_chip(state->monitor);
state->monitor = NULL;
return -ENODEV;
}
/*
* Dispose of the state data for one CPU control loop
*/
static void dispose_cpu_state(struct cpu_pid_state *state)
{
if (state->monitor == NULL)
return;
if (state->index == 0) {
device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
} else {
device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
}
detach_i2c_chip(state->monitor);
state->monitor = NULL;
}
/*
* Motherboard backside & U3 heatsink fan control loop
*/
static void do_monitor_backside(struct backside_pid_state *state)
{
s32 temp, integral, derivative, fan_min;
s64 integ_p, deriv_p, prop_p, sum;
int i, rc;
if (--state->ticks != 0)
return;
state->ticks = backside_params.interval;
DBG("backside:\n");
/* Check fan status */
rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
if (rc < 0) {
printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
/* XXX What do we do now ? */
} else
state->pwm = rc;
DBG(" current pwm: %d\n", state->pwm);
/* Get some sensor readings */
temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
state->last_temp = temp;
DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
FIX32TOPRINT(backside_params.input_target));
/* Store temperature and error in history array */
state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
state->sample_history[state->cur_sample] = temp;
state->error_history[state->cur_sample] = temp - backside_params.input_target;
/* If first loop, fill the history table */
if (state->first) {
for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
state->cur_sample = (state->cur_sample + 1) %
BACKSIDE_PID_HISTORY_SIZE;
state->sample_history[state->cur_sample] = temp;
state->error_history[state->cur_sample] =
temp - backside_params.input_target;
}
state->first = 0;
}
/* Calculate the integral term */
sum = 0;
integral = 0;
for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
integral += state->error_history[i];
integral *= backside_params.interval;
DBG(" integral: %08x\n", integral);
integ_p = ((s64)backside_params.G_r) * (s64)integral;
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
sum += integ_p;
/* Calculate the derivative term */
derivative = state->error_history[state->cur_sample] -
state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
% BACKSIDE_PID_HISTORY_SIZE];
derivative /= backside_params.interval;
deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
sum += deriv_p;
/* Calculate the proportional term */
prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
sum += prop_p;
/* Scale sum */
sum >>= 36;
DBG(" sum: %d\n", (int)sum);
if (backside_params.additive)
state->pwm += (s32)sum;
else
state->pwm = sum;
/* Check for clamp */
fan_min = (dimm_output_clamp * 100) / 14000;
fan_min = max(fan_min, backside_params.output_min);
state->pwm = max(state->pwm, fan_min);
state->pwm = min(state->pwm, backside_params.output_max);
DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
}
/*
* Initialize the state structure for the backside fan control loop
*/
static int init_backside_state(struct backside_pid_state *state)
{
struct device_node *u3;
int u3h = 1; /* conservative by default */
/*
* There are different PID params for machines with U3 and machines
* with U3H, pick the right ones now
*/
u3 = of_find_node_by_path("/u3@0,f8000000");
if (u3 != NULL) {
const u32 *vers = get_property(u3, "device-rev", NULL);
if (vers)
if (((*vers) & 0x3f) < 0x34)
u3h = 0;
of_node_put(u3);
}
if (rackmac) {
backside_params.G_d = BACKSIDE_PID_RACK_G_d;
backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
backside_params.G_p = BACKSIDE_PID_RACK_G_p;
backside_params.G_r = BACKSIDE_PID_G_r;
backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
backside_params.additive = 0;
} else if (u3h) {
backside_params.G_d = BACKSIDE_PID_U3H_G_d;
backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
backside_params.interval = BACKSIDE_PID_INTERVAL;
backside_params.G_p = BACKSIDE_PID_G_p;
backside_params.G_r = BACKSIDE_PID_G_r;
backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
backside_params.additive = 1;
} else {
backside_params.G_d = BACKSIDE_PID_U3_G_d;
backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
backside_params.interval = BACKSIDE_PID_INTERVAL;
backside_params.G_p = BACKSIDE_PID_G_p;
backside_params.G_r = BACKSIDE_PID_G_r;
backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
backside_params.additive = 1;
}
state->ticks = 1;
state->first = 1;
state->pwm = 50;
state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
if (state->monitor == NULL)
return -ENODEV;
device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
return 0;
}
/*
* Dispose of the state data for the backside control loop
*/
static void dispose_backside_state(struct backside_pid_state *state)
{
if (state->monitor == NULL)
return;
device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
detach_i2c_chip(state->monitor);
state->monitor = NULL;
}
/*
* Drives bay fan control loop
*/
static void do_monitor_drives(struct drives_pid_state *state)
{
s32 temp, integral, derivative;
s64 integ_p, deriv_p, prop_p, sum;
int i, rc;
if (--state->ticks != 0)
return;
state->ticks = DRIVES_PID_INTERVAL;
DBG("drives:\n");
/* Check fan status */
rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
if (rc < 0) {
printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
/* XXX What do we do now ? */
} else
state->rpm = rc;
DBG(" current rpm: %d\n", state->rpm);
/* Get some sensor readings */
temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
DS1775_TEMP)) << 8;
state->last_temp = temp;
DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
/* Store temperature and error in history array */
state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
state->sample_history[state->cur_sample] = temp;
state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
/* If first loop, fill the history table */
if (state->first) {
for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
state->cur_sample = (state->cur_sample + 1) %
DRIVES_PID_HISTORY_SIZE;
state->sample_history[state->cur_sample] = temp;
state->error_history[state->cur_sample] =
temp - DRIVES_PID_INPUT_TARGET;
}
state->first = 0;
}
/* Calculate the integral term */
sum = 0;
integral = 0;
for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
integral += state->error_history[i];
integral *= DRIVES_PID_INTERVAL;
DBG(" integral: %08x\n", integral);
integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
sum += integ_p;
/* Calculate the derivative term */
derivative = state->error_history[state->cur_sample] -
state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
% DRIVES_PID_HISTORY_SIZE];
derivative /= DRIVES_PID_INTERVAL;
deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
sum += deriv_p;
/* Calculate the proportional term */
prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
sum += prop_p;
/* Scale sum */
sum >>= 36;
DBG(" sum: %d\n", (int)sum);
state->rpm += (s32)sum;
state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
DBG("** DRIVES RPM: %d\n", (int)state->rpm);
set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
}
/*
* Initialize the state structure for the drives bay fan control loop
*/
static int init_drives_state(struct drives_pid_state *state)
{
state->ticks = 1;
state->first = 1;
state->rpm = 1000;
state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
if (state->monitor == NULL)
return -ENODEV;
device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
return 0;
}
/*
* Dispose of the state data for the drives control loop
*/
static void dispose_drives_state(struct drives_pid_state *state)
{
if (state->monitor == NULL)
return;
device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
detach_i2c_chip(state->monitor);
state->monitor = NULL;
}
/*
* DIMMs temp control loop
*/
static void do_monitor_dimms(struct dimm_pid_state *state)
{
s32 temp, integral, derivative, fan_min;
s64 integ_p, deriv_p, prop_p, sum;
int i;
if (--state->ticks != 0)
return;
state->ticks = DIMM_PID_INTERVAL;
DBG("DIMM:\n");
DBG(" current value: %d\n", state->output);
temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
if (temp < 0)
return;
temp <<= 16;
state->last_temp = temp;
DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
/* Store temperature and error in history array */
state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
state->sample_history[state->cur_sample] = temp;
state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
/* If first loop, fill the history table */
if (state->first) {
for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
state->cur_sample = (state->cur_sample + 1) %
DIMM_PID_HISTORY_SIZE;
state->sample_history[state->cur_sample] = temp;
state->error_history[state->cur_sample] =
temp - DIMM_PID_INPUT_TARGET;
}
state->first = 0;
}
/* Calculate the integral term */
sum = 0;
integral = 0;
for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
integral += state->error_history[i];
integral *= DIMM_PID_INTERVAL;
DBG(" integral: %08x\n", integral);
integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
sum += integ_p;
/* Calculate the derivative term */
derivative = state->error_history[state->cur_sample] -
state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
% DIMM_PID_HISTORY_SIZE];
derivative /= DIMM_PID_INTERVAL;
deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
sum += deriv_p;
/* Calculate the proportional term */
prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
sum += prop_p;
/* Scale sum */
sum >>= 36;
DBG(" sum: %d\n", (int)sum);
state->output = (s32)sum;
state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
dimm_output_clamp = state->output;
DBG("** DIMM clamp value: %d\n", (int)state->output);
/* Backside PID is only every 5 seconds, force backside fan clamping now */
fan_min = (dimm_output_clamp * 100) / 14000;
fan_min = max(fan_min, backside_params.output_min);
if (backside_state.pwm < fan_min) {
backside_state.pwm = fan_min;
DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
}
}
/*
* Initialize the state structure for the DIMM temp control loop
*/
static int init_dimms_state(struct dimm_pid_state *state)
{
state->ticks = 1;
state->first = 1;
state->output = 4000;
state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
if (state->monitor == NULL)
return -ENODEV;
device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
return 0;
}
/*
* Dispose of the state data for the DIMM control loop
*/
static void dispose_dimms_state(struct dimm_pid_state *state)
{
if (state->monitor == NULL)
return;
device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
detach_i2c_chip(state->monitor);
state->monitor = NULL;
}
/*
* Slots fan control loop
*/
static void do_monitor_slots(struct slots_pid_state *state)
{
s32 temp, integral, derivative;
s64 integ_p, deriv_p, prop_p, sum;
int i, rc;
if (--state->ticks != 0)
return;
state->ticks = SLOTS_PID_INTERVAL;
DBG("slots:\n");
/* Check fan status */
rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
if (rc < 0) {
printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
/* XXX What do we do now ? */
} else
state->pwm = rc;
DBG(" current pwm: %d\n", state->pwm);
/* Get some sensor readings */
temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
DS1775_TEMP)) << 8;
state->last_temp = temp;
DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
/* Store temperature and error in history array */
state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
state->sample_history[state->cur_sample] = temp;
state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
/* If first loop, fill the history table */
if (state->first) {
for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
state->cur_sample = (state->cur_sample + 1) %
SLOTS_PID_HISTORY_SIZE;
state->sample_history[state->cur_sample] = temp;
state->error_history[state->cur_sample] =
temp - SLOTS_PID_INPUT_TARGET;
}
state->first = 0;
}
/* Calculate the integral term */
sum = 0;
integral = 0;
for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
integral += state->error_history[i];
integral *= SLOTS_PID_INTERVAL;
DBG(" integral: %08x\n", integral);
integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
DBG(" integ_p: %d\n", (int)(integ_p >> 36));
sum += integ_p;
/* Calculate the derivative term */
derivative = state->error_history[state->cur_sample] -
state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
% SLOTS_PID_HISTORY_SIZE];
derivative /= SLOTS_PID_INTERVAL;
deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
sum += deriv_p;
/* Calculate the proportional term */
prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
DBG(" prop_p: %d\n", (int)(prop_p >> 36));
sum += prop_p;
/* Scale sum */
sum >>= 36;
DBG(" sum: %d\n", (int)sum);
state->pwm = (s32)sum;
state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
DBG("** DRIVES PWM: %d\n", (int)state->pwm);
set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
}
/*
* Initialize the state structure for the slots bay fan control loop
*/
static int init_slots_state(struct slots_pid_state *state)
{
state->ticks = 1;
state->first = 1;
state->pwm = 50;
state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
if (state->monitor == NULL)
return -ENODEV;
device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
return 0;
}
/*
* Dispose of the state data for the slots control loop
*/
static void dispose_slots_state(struct slots_pid_state *state)
{
if (state->monitor == NULL)
return;
device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
detach_i2c_chip(state->monitor);
state->monitor = NULL;
}
static int call_critical_overtemp(void)
{
char *argv[] = { critical_overtemp_path, NULL };
static char *envp[] = { "HOME=/",
"TERM=linux",
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
NULL };
return call_usermodehelper(critical_overtemp_path, argv, envp, 0);
}
/*
* Here's the kernel thread that calls the various control loops
*/
static int main_control_loop(void *x)
{
daemonize("kfand");
DBG("main_control_loop started\n");
down(&driver_lock);
if (start_fcu() < 0) {
printk(KERN_ERR "kfand: failed to start FCU\n");
up(&driver_lock);
goto out;
}
/* Set the PCI fan once for now on non-RackMac */
if (!rackmac)
set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
/* Initialize ADCs */
initialize_adc(&cpu_state[0]);
if (cpu_state[1].monitor != NULL)
initialize_adc(&cpu_state[1]);
fcu_tickle_ticks = FCU_TICKLE_TICKS;
up(&driver_lock);
while (state == state_attached) {
unsigned long elapsed, start;
start = jiffies;
down(&driver_lock);
/* Tickle the FCU just in case */
if (--fcu_tickle_ticks < 0) {
fcu_tickle_ticks = FCU_TICKLE_TICKS;
tickle_fcu();
}
/* First, we always calculate the new DIMMs state on an Xserve */
if (rackmac)
do_monitor_dimms(&dimms_state);
/* Then, the CPUs */
if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
do_monitor_cpu_combined();
else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
do_monitor_cpu_rack(&cpu_state[0]);
if (cpu_state[1].monitor != NULL)
do_monitor_cpu_rack(&cpu_state[1]);
// better deal with UP
} else {
do_monitor_cpu_split(&cpu_state[0]);
if (cpu_state[1].monitor != NULL)
do_monitor_cpu_split(&cpu_state[1]);
// better deal with UP
}
/* Then, the rest */
do_monitor_backside(&backside_state);
if (rackmac)
do_monitor_slots(&slots_state);
else
do_monitor_drives(&drives_state);
up(&driver_lock);
if (critical_state == 1) {
printk(KERN_WARNING "Temperature control detected a critical condition\n");
printk(KERN_WARNING "Attempting to shut down...\n");
if (call_critical_overtemp()) {
printk(KERN_WARNING "Can't call %s, power off now!\n",
critical_overtemp_path);
machine_power_off();
}
}
if (critical_state > 0)
critical_state++;
if (critical_state > MAX_CRITICAL_STATE) {
printk(KERN_WARNING "Shutdown timed out, power off now !\n");
machine_power_off();
}
// FIXME: Deal with signals
elapsed = jiffies - start;
if (elapsed < HZ)
schedule_timeout_interruptible(HZ - elapsed);
}
out:
DBG("main_control_loop ended\n");
ctrl_task = 0;
complete_and_exit(&ctrl_complete, 0);
}
/*
* Dispose the control loops when tearing down
*/
static void dispose_control_loops(void)
{
dispose_cpu_state(&cpu_state[0]);
dispose_cpu_state(&cpu_state[1]);
dispose_backside_state(&backside_state);
dispose_drives_state(&drives_state);
dispose_slots_state(&slots_state);
dispose_dimms_state(&dimms_state);
}
/*
* Create the control loops. U3-0 i2c bus is up, so we can now
* get to the various sensors
*/
static int create_control_loops(void)
{
struct device_node *np;
/* Count CPUs from the device-tree, we don't care how many are
* actually used by Linux
*/
cpu_count = 0;
for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
cpu_count++;
DBG("counted %d CPUs in the device-tree\n", cpu_count);
/* Decide the type of PID algorithm to use based on the presence of
* the pumps, though that may not be the best way, that is good enough
* for now
*/
if (rackmac)
cpu_pid_type = CPU_PID_TYPE_RACKMAC;
else if (machine_is_compatible("PowerMac7,3")
&& (cpu_count > 1)
&& fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
&& fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
cpu_pid_type = CPU_PID_TYPE_COMBINED;
} else
cpu_pid_type = CPU_PID_TYPE_SPLIT;
/* Create control loops for everything. If any fail, everything
* fails
*/
if (init_cpu_state(&cpu_state[0], 0))
goto fail;
if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
fetch_cpu_pumps_minmax();
if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
goto fail;
if (init_backside_state(&backside_state))
goto fail;
if (rackmac && init_dimms_state(&dimms_state))
goto fail;
if (rackmac && init_slots_state(&slots_state))
goto fail;
if (!rackmac && init_drives_state(&drives_state))
goto fail;
DBG("all control loops up !\n");
return 0;
fail:
DBG("failure creating control loops, disposing\n");
dispose_control_loops();
return -ENODEV;
}
/*
* Start the control loops after everything is up, that is create
* the thread that will make them run
*/
static void start_control_loops(void)
{
init_completion(&ctrl_complete);
ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
}
/*
* Stop the control loops when tearing down
*/
static void stop_control_loops(void)
{
if (ctrl_task != 0)
wait_for_completion(&ctrl_complete);
}
/*
* Attach to the i2c FCU after detecting U3-1 bus
*/
static int attach_fcu(void)
{
fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
if (fcu == NULL)
return -ENODEV;
DBG("FCU attached\n");
return 0;
}
/*
* Detach from the i2c FCU when tearing down
*/
static void detach_fcu(void)
{
if (fcu)
detach_i2c_chip(fcu);
fcu = NULL;
}
/*
* Attach to the i2c controller. We probe the various chips based
* on the device-tree nodes and build everything for the driver to
* run, we then kick the driver monitoring thread
*/
static int therm_pm72_attach(struct i2c_adapter *adapter)
{
down(&driver_lock);
/* Check state */
if (state == state_detached)
state = state_attaching;
if (state != state_attaching) {
up(&driver_lock);
return 0;
}
/* Check if we are looking for one of these */
if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
u3_0 = adapter;
DBG("found U3-0\n");
if (k2 || !rackmac)
if (create_control_loops())
u3_0 = NULL;
} else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
u3_1 = adapter;
DBG("found U3-1, attaching FCU\n");
if (attach_fcu())
u3_1 = NULL;
} else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
k2 = adapter;
DBG("Found K2\n");
if (u3_0 && rackmac)
if (create_control_loops())
k2 = NULL;
}
/* We got all we need, start control loops */
if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
DBG("everything up, starting control loops\n");
state = state_attached;
start_control_loops();
}
up(&driver_lock);
return 0;
}
/*
* Called on every adapter when the driver or the i2c controller
* is going away.
*/
static int therm_pm72_detach(struct i2c_adapter *adapter)
{
down(&driver_lock);
if (state != state_detached)
state = state_detaching;
/* Stop control loops if any */
DBG("stopping control loops\n");
up(&driver_lock);
stop_control_loops();
down(&driver_lock);
if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
DBG("lost U3-0, disposing control loops\n");
dispose_control_loops();
u3_0 = NULL;
}
if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
DBG("lost U3-1, detaching FCU\n");
detach_fcu();
u3_1 = NULL;
}
if (u3_0 == NULL && u3_1 == NULL)
state = state_detached;
up(&driver_lock);
return 0;
}
static int fan_check_loc_match(const char *loc, int fan)
{
char tmp[64];
char *c, *e;
strlcpy(tmp, fcu_fans[fan].loc, 64);
c = tmp;
for (;;) {
e = strchr(c, ',');
if (e)
*e = 0;
if (strcmp(loc, c) == 0)
return 1;
if (e == NULL)
break;
c = e + 1;
}
return 0;
}
static void fcu_lookup_fans(struct device_node *fcu_node)
{
struct device_node *np = NULL;
int i;
/* The table is filled by default with values that are suitable
* for the old machines without device-tree informations. We scan
* the device-tree and override those values with whatever is
* there
*/
DBG("Looking up FCU controls in device-tree...\n");
while ((np = of_get_next_child(fcu_node, np)) != NULL) {
int type = -1;
const char *loc;
const u32 *reg;
DBG(" control: %s, type: %s\n", np->name, np->type);
/* Detect control type */
if (!strcmp(np->type, "fan-rpm-control") ||
!strcmp(np->type, "fan-rpm"))
type = FCU_FAN_RPM;
if (!strcmp(np->type, "fan-pwm-control") ||
!strcmp(np->type, "fan-pwm"))
type = FCU_FAN_PWM;
/* Only care about fans for now */
if (type == -1)
continue;
/* Lookup for a matching location */
loc = get_property(np, "location", NULL);
reg = get_property(np, "reg", NULL);
if (loc == NULL || reg == NULL)
continue;
DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
for (i = 0; i < FCU_FAN_COUNT; i++) {
int fan_id;
if (!fan_check_loc_match(loc, i))
continue;
DBG(" location match, index: %d\n", i);
fcu_fans[i].id = FCU_FAN_ABSENT_ID;
if (type != fcu_fans[i].type) {
printk(KERN_WARNING "therm_pm72: Fan type mismatch "
"in device-tree for %s\n", np->full_name);
break;
}
if (type == FCU_FAN_RPM)
fan_id = ((*reg) - 0x10) / 2;
else
fan_id = ((*reg) - 0x30) / 2;
if (fan_id > 7) {
printk(KERN_WARNING "therm_pm72: Can't parse "
"fan ID in device-tree for %s\n", np->full_name);
break;
}
DBG(" fan id -> %d, type -> %d\n", fan_id, type);
fcu_fans[i].id = fan_id;
}
}
/* Now dump the array */
printk(KERN_INFO "Detected fan controls:\n");
for (i = 0; i < FCU_FAN_COUNT; i++) {
if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
continue;
printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
fcu_fans[i].id, fcu_fans[i].loc);
}
}
static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
{
state = state_detached;
/* Lookup the fans in the device tree */
fcu_lookup_fans(dev->node);
/* Add the driver */
return i2c_add_driver(&therm_pm72_driver);
}
static int fcu_of_remove(struct of_device* dev)
{
i2c_del_driver(&therm_pm72_driver);
return 0;
}
static struct of_device_id fcu_match[] =
{
{
.type = "fcu",
},
{},
};
static struct of_platform_driver fcu_of_platform_driver =
{
.name = "temperature",
.match_table = fcu_match,
.probe = fcu_of_probe,
.remove = fcu_of_remove
};
/*
* Check machine type, attach to i2c controller
*/
static int __init therm_pm72_init(void)
{
struct device_node *np;
rackmac = machine_is_compatible("RackMac3,1");
if (!machine_is_compatible("PowerMac7,2") &&
!machine_is_compatible("PowerMac7,3") &&
!rackmac)
return -ENODEV;
printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
np = of_find_node_by_type(NULL, "fcu");
if (np == NULL) {
/* Some machines have strangely broken device-tree */
np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
if (np == NULL) {
printk(KERN_ERR "Can't find FCU in device-tree !\n");
return -ENODEV;
}
}
of_dev = of_platform_device_create(np, "temperature", NULL);
if (of_dev == NULL) {
printk(KERN_ERR "Can't register FCU platform device !\n");
return -ENODEV;
}
of_register_platform_driver(&fcu_of_platform_driver);
return 0;
}
static void __exit therm_pm72_exit(void)
{
of_unregister_platform_driver(&fcu_of_platform_driver);
if (of_dev)
of_device_unregister(of_dev);
}
module_init(therm_pm72_init);
module_exit(therm_pm72_exit);
MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
MODULE_LICENSE("GPL");