kernel-fxtec-pro1x/drivers/net/wireless/ath9k/hw.c
Alina Friedrichsen 27abe060aa ath9k: Read and write the TSF via debugfs
This patch adds an ath9k specific entry to read, write and reset the TSF into the debugfs, like in ath5k. This makes debugging the IBSS handling of wifi drivers _much_ easier.

Signed-off-by: Alina Friedrichsen <x-alina@gmx.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-01-29 16:01:22 -05:00

3847 lines
101 KiB
C

/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/io.h>
#include <asm/unaligned.h>
#include "core.h"
#include "hw.h"
#include "reg.h"
#include "phy.h"
#include "initvals.h"
static int btcoex_enable;
module_param(btcoex_enable, bool, 0);
MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
#define ATH9K_CLOCK_RATE_CCK 22
#define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
#define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type);
static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode);
static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
struct ar5416_eeprom_def *pEepData,
u32 reg, u32 value);
static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan);
static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan);
/********************/
/* Helper Functions */
/********************/
static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
if (!ah->ah_curchan) /* should really check for CCK instead */
return clks / ATH9K_CLOCK_RATE_CCK;
if (conf->channel->band == IEEE80211_BAND_2GHZ)
return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
}
static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
if (conf_is_ht40(conf))
return ath9k_hw_mac_usec(ah, clks) / 2;
else
return ath9k_hw_mac_usec(ah, clks);
}
static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
if (!ah->ah_curchan) /* should really check for CCK instead */
return usecs *ATH9K_CLOCK_RATE_CCK;
if (conf->channel->band == IEEE80211_BAND_2GHZ)
return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
}
static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
if (conf_is_ht40(conf))
return ath9k_hw_mac_clks(ah, usecs) * 2;
else
return ath9k_hw_mac_clks(ah, usecs);
}
bool ath9k_hw_wait(struct ath_hal *ah, u32 reg, u32 mask, u32 val)
{
int i;
for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) {
if ((REG_READ(ah, reg) & mask) == val)
return true;
udelay(AH_TIME_QUANTUM);
}
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
reg, REG_READ(ah, reg), mask, val);
return false;
}
u32 ath9k_hw_reverse_bits(u32 val, u32 n)
{
u32 retval;
int i;
for (i = 0, retval = 0; i < n; i++) {
retval = (retval << 1) | (val & 1);
val >>= 1;
}
return retval;
}
bool ath9k_get_channel_edges(struct ath_hal *ah,
u16 flags, u16 *low,
u16 *high)
{
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
if (flags & CHANNEL_5GHZ) {
*low = pCap->low_5ghz_chan;
*high = pCap->high_5ghz_chan;
return true;
}
if ((flags & CHANNEL_2GHZ)) {
*low = pCap->low_2ghz_chan;
*high = pCap->high_2ghz_chan;
return true;
}
return false;
}
u16 ath9k_hw_computetxtime(struct ath_hal *ah,
struct ath_rate_table *rates,
u32 frameLen, u16 rateix,
bool shortPreamble)
{
u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
u32 kbps;
kbps = rates->info[rateix].ratekbps;
if (kbps == 0)
return 0;
switch (rates->info[rateix].phy) {
case WLAN_RC_PHY_CCK:
phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
if (shortPreamble && rates->info[rateix].short_preamble)
phyTime >>= 1;
numBits = frameLen << 3;
txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
break;
case WLAN_RC_PHY_OFDM:
if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_QUARTER
+ OFDM_PREAMBLE_TIME_QUARTER
+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
} else if (ah->ah_curchan &&
IS_CHAN_HALF_RATE(ah->ah_curchan)) {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME_HALF +
OFDM_PREAMBLE_TIME_HALF
+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
} else {
bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
numBits = OFDM_PLCP_BITS + (frameLen << 3);
numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
+ (numSymbols * OFDM_SYMBOL_TIME);
}
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"Unknown phy %u (rate ix %u)\n",
rates->info[rateix].phy, rateix);
txTime = 0;
break;
}
return txTime;
}
void ath9k_hw_get_channel_centers(struct ath_hal *ah,
struct ath9k_channel *chan,
struct chan_centers *centers)
{
int8_t extoff;
struct ath_hal_5416 *ahp = AH5416(ah);
if (!IS_CHAN_HT40(chan)) {
centers->ctl_center = centers->ext_center =
centers->synth_center = chan->channel;
return;
}
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
(chan->chanmode == CHANNEL_G_HT40PLUS)) {
centers->synth_center =
chan->channel + HT40_CHANNEL_CENTER_SHIFT;
extoff = 1;
} else {
centers->synth_center =
chan->channel - HT40_CHANNEL_CENTER_SHIFT;
extoff = -1;
}
centers->ctl_center =
centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
centers->ext_center =
centers->synth_center + (extoff *
((ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
HT40_CHANNEL_CENTER_SHIFT : 15));
}
/******************/
/* Chip Revisions */
/******************/
static void ath9k_hw_read_revisions(struct ath_hal *ah)
{
u32 val;
val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
if (val == 0xFF) {
val = REG_READ(ah, AR_SREV);
ah->ah_macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
ah->ah_macRev = MS(val, AR_SREV_REVISION2);
ah->ah_isPciExpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
} else {
if (!AR_SREV_9100(ah))
ah->ah_macVersion = MS(val, AR_SREV_VERSION);
ah->ah_macRev = val & AR_SREV_REVISION;
if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE)
ah->ah_isPciExpress = true;
}
}
static int ath9k_hw_get_radiorev(struct ath_hal *ah)
{
u32 val;
int i;
REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
for (i = 0; i < 8; i++)
REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
return ath9k_hw_reverse_bits(val, 8);
}
/************************************/
/* HW Attach, Detach, Init Routines */
/************************************/
static void ath9k_hw_disablepcie(struct ath_hal *ah)
{
if (!AR_SREV_9100(ah))
return;
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
}
static bool ath9k_hw_chip_test(struct ath_hal *ah)
{
u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
u32 regHold[2];
u32 patternData[4] = { 0x55555555,
0xaaaaaaaa,
0x66666666,
0x99999999 };
int i, j;
for (i = 0; i < 2; i++) {
u32 addr = regAddr[i];
u32 wrData, rdData;
regHold[i] = REG_READ(ah, addr);
for (j = 0; j < 0x100; j++) {
wrData = (j << 16) | j;
REG_WRITE(ah, addr, wrData);
rdData = REG_READ(ah, addr);
if (rdData != wrData) {
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"address test failed "
"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
addr, wrData, rdData);
return false;
}
}
for (j = 0; j < 4; j++) {
wrData = patternData[j];
REG_WRITE(ah, addr, wrData);
rdData = REG_READ(ah, addr);
if (wrData != rdData) {
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"address test failed "
"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
addr, wrData, rdData);
return false;
}
}
REG_WRITE(ah, regAddr[i], regHold[i]);
}
udelay(100);
return true;
}
static const char *ath9k_hw_devname(u16 devid)
{
switch (devid) {
case AR5416_DEVID_PCI:
return "Atheros 5416";
case AR5416_DEVID_PCIE:
return "Atheros 5418";
case AR9160_DEVID_PCI:
return "Atheros 9160";
case AR5416_AR9100_DEVID:
return "Atheros 9100";
case AR9280_DEVID_PCI:
case AR9280_DEVID_PCIE:
return "Atheros 9280";
case AR9285_DEVID_PCIE:
return "Atheros 9285";
}
return NULL;
}
static void ath9k_hw_set_defaults(struct ath_hal *ah)
{
int i;
ah->ah_config.dma_beacon_response_time = 2;
ah->ah_config.sw_beacon_response_time = 10;
ah->ah_config.additional_swba_backoff = 0;
ah->ah_config.ack_6mb = 0x0;
ah->ah_config.cwm_ignore_extcca = 0;
ah->ah_config.pcie_powersave_enable = 0;
ah->ah_config.pcie_l1skp_enable = 0;
ah->ah_config.pcie_clock_req = 0;
ah->ah_config.pcie_power_reset = 0x100;
ah->ah_config.pcie_restore = 0;
ah->ah_config.pcie_waen = 0;
ah->ah_config.analog_shiftreg = 1;
ah->ah_config.ht_enable = 1;
ah->ah_config.ofdm_trig_low = 200;
ah->ah_config.ofdm_trig_high = 500;
ah->ah_config.cck_trig_high = 200;
ah->ah_config.cck_trig_low = 100;
ah->ah_config.enable_ani = 1;
ah->ah_config.noise_immunity_level = 4;
ah->ah_config.ofdm_weaksignal_det = 1;
ah->ah_config.cck_weaksignal_thr = 0;
ah->ah_config.spur_immunity_level = 2;
ah->ah_config.firstep_level = 0;
ah->ah_config.rssi_thr_high = 40;
ah->ah_config.rssi_thr_low = 7;
ah->ah_config.diversity_control = 0;
ah->ah_config.antenna_switch_swap = 0;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
ah->ah_config.spurchans[i][0] = AR_NO_SPUR;
ah->ah_config.spurchans[i][1] = AR_NO_SPUR;
}
ah->ah_config.intr_mitigation = 1;
}
static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid,
struct ath_softc *sc,
void __iomem *mem,
int *status)
{
static const u8 defbssidmask[ETH_ALEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
struct ath_hal_5416 *ahp;
struct ath_hal *ah;
ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL);
if (ahp == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"Cannot allocate memory for state block\n");
*status = -ENOMEM;
return NULL;
}
ah = &ahp->ah;
ah->ah_sc = sc;
ah->ah_sh = mem;
ah->ah_magic = AR5416_MAGIC;
ah->ah_countryCode = CTRY_DEFAULT;
ah->ah_devid = devid;
ah->ah_subvendorid = 0;
ah->ah_flags = 0;
if ((devid == AR5416_AR9100_DEVID))
ah->ah_macVersion = AR_SREV_VERSION_9100;
if (!AR_SREV_9100(ah))
ah->ah_flags = AH_USE_EEPROM;
ah->ah_powerLimit = MAX_RATE_POWER;
ah->ah_tpScale = ATH9K_TP_SCALE_MAX;
ahp->ah_atimWindow = 0;
ahp->ah_diversityControl = ah->ah_config.diversity_control;
ahp->ah_antennaSwitchSwap =
ah->ah_config.antenna_switch_swap;
ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
ahp->ah_beaconInterval = 100;
ahp->ah_enable32kHzClock = DONT_USE_32KHZ;
ahp->ah_slottime = (u32) -1;
ahp->ah_acktimeout = (u32) -1;
ahp->ah_ctstimeout = (u32) -1;
ahp->ah_globaltxtimeout = (u32) -1;
memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN);
ahp->ah_gBeaconRate = 0;
return ahp;
}
static int ath9k_hw_rfattach(struct ath_hal *ah)
{
bool rfStatus = false;
int ecode = 0;
rfStatus = ath9k_hw_init_rf(ah, &ecode);
if (!rfStatus) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"RF setup failed, status %u\n", ecode);
return ecode;
}
return 0;
}
static int ath9k_hw_rf_claim(struct ath_hal *ah)
{
u32 val;
REG_WRITE(ah, AR_PHY(0), 0x00000007);
val = ath9k_hw_get_radiorev(ah);
switch (val & AR_RADIO_SREV_MAJOR) {
case 0:
val = AR_RAD5133_SREV_MAJOR;
break;
case AR_RAD5133_SREV_MAJOR:
case AR_RAD5122_SREV_MAJOR:
case AR_RAD2133_SREV_MAJOR:
case AR_RAD2122_SREV_MAJOR:
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"5G Radio Chip Rev 0x%02X is not "
"supported by this driver\n",
ah->ah_analog5GhzRev);
return -EOPNOTSUPP;
}
ah->ah_analog5GhzRev = val;
return 0;
}
static int ath9k_hw_init_macaddr(struct ath_hal *ah)
{
u32 sum;
int i;
u16 eeval;
struct ath_hal_5416 *ahp = AH5416(ah);
sum = 0;
for (i = 0; i < 3; i++) {
eeval = ath9k_hw_get_eeprom(ah, AR_EEPROM_MAC(i));
sum += eeval;
ahp->ah_macaddr[2 * i] = eeval >> 8;
ahp->ah_macaddr[2 * i + 1] = eeval & 0xff;
}
if (sum == 0 || sum == 0xffff * 3) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"mac address read failed: %pM\n",
ahp->ah_macaddr);
return -EADDRNOTAVAIL;
}
return 0;
}
static void ath9k_hw_init_rxgain_ini(struct ath_hal *ah)
{
u32 rxgain_type;
struct ath_hal_5416 *ahp = AH5416(ah);
if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
rxgain_type = ath9k_hw_get_eeprom(ah, EEP_RXGAIN_TYPE);
if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
ar9280Modes_backoff_13db_rxgain_9280_2,
ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
ar9280Modes_backoff_23db_rxgain_9280_2,
ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
else
INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
ar9280Modes_original_rxgain_9280_2,
ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
} else
INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
ar9280Modes_original_rxgain_9280_2,
ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
}
static void ath9k_hw_init_txgain_ini(struct ath_hal *ah)
{
u32 txgain_type;
struct ath_hal_5416 *ahp = AH5416(ah);
if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
txgain_type = ath9k_hw_get_eeprom(ah, EEP_TXGAIN_TYPE);
if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
ar9280Modes_high_power_tx_gain_9280_2,
ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
else
INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
ar9280Modes_original_tx_gain_9280_2,
ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
} else
INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
ar9280Modes_original_tx_gain_9280_2,
ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
}
static int ath9k_hw_post_attach(struct ath_hal *ah)
{
int ecode;
if (!ath9k_hw_chip_test(ah)) {
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"hardware self-test failed\n");
return -ENODEV;
}
ecode = ath9k_hw_rf_claim(ah);
if (ecode != 0)
return ecode;
ecode = ath9k_hw_eeprom_attach(ah);
if (ecode != 0)
return ecode;
ecode = ath9k_hw_rfattach(ah);
if (ecode != 0)
return ecode;
if (!AR_SREV_9100(ah)) {
ath9k_hw_ani_setup(ah);
ath9k_hw_ani_attach(ah);
}
return 0;
}
static struct ath_hal *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
void __iomem *mem, int *status)
{
struct ath_hal_5416 *ahp;
struct ath_hal *ah;
int ecode;
u32 i, j;
ahp = ath9k_hw_newstate(devid, sc, mem, status);
if (ahp == NULL)
return NULL;
ah = &ahp->ah;
ath9k_hw_set_defaults(ah);
if (ah->ah_config.intr_mitigation != 0)
ahp->ah_intrMitigation = true;
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "Couldn't reset chip\n");
ecode = -EIO;
goto bad;
}
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "Couldn't wakeup chip\n");
ecode = -EIO;
goto bad;
}
if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) {
if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) {
ah->ah_config.serialize_regmode =
SER_REG_MODE_ON;
} else {
ah->ah_config.serialize_regmode =
SER_REG_MODE_OFF;
}
}
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"serialize_regmode is %d\n",
ah->ah_config.serialize_regmode);
if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) &&
(ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) &&
(ah->ah_macVersion != AR_SREV_VERSION_9160) &&
(!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"Mac Chip Rev 0x%02x.%x is not supported by "
"this driver\n", ah->ah_macVersion, ah->ah_macRev);
ecode = -EOPNOTSUPP;
goto bad;
}
if (AR_SREV_9100(ah)) {
ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
ahp->ah_suppCals = IQ_MISMATCH_CAL;
ah->ah_isPciExpress = false;
}
ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
if (AR_SREV_9160_10_OR_LATER(ah)) {
if (AR_SREV_9280_10_OR_LATER(ah)) {
ahp->ah_iqCalData.calData = &iq_cal_single_sample;
ahp->ah_adcGainCalData.calData =
&adc_gain_cal_single_sample;
ahp->ah_adcDcCalData.calData =
&adc_dc_cal_single_sample;
ahp->ah_adcDcCalInitData.calData =
&adc_init_dc_cal;
} else {
ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
ahp->ah_adcGainCalData.calData =
&adc_gain_cal_multi_sample;
ahp->ah_adcDcCalData.calData =
&adc_dc_cal_multi_sample;
ahp->ah_adcDcCalInitData.calData =
&adc_init_dc_cal;
}
ahp->ah_suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
}
if (AR_SREV_9160(ah)) {
ah->ah_config.enable_ani = 1;
ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
ATH9K_ANI_FIRSTEP_LEVEL);
} else {
ahp->ah_ani_function = ATH9K_ANI_ALL;
if (AR_SREV_9280_10_OR_LATER(ah)) {
ahp->ah_ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
}
}
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"This Mac Chip Rev 0x%02x.%x is \n",
ah->ah_macVersion, ah->ah_macRev);
if (AR_SREV_9285_12_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar9285Modes_9285_1_2,
ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9285Common_9285_1_2,
ARRAY_SIZE(ar9285Common_9285_1_2), 2);
if (ah->ah_config.pcie_clock_req) {
INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
ar9285PciePhy_clkreq_off_L1_9285_1_2,
ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
} else {
INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
2);
}
} else if (AR_SREV_9285_10_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar9285Modes_9285,
ARRAY_SIZE(ar9285Modes_9285), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9285Common_9285,
ARRAY_SIZE(ar9285Common_9285), 2);
if (ah->ah_config.pcie_clock_req) {
INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
ar9285PciePhy_clkreq_off_L1_9285,
ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
} else {
INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
ar9285PciePhy_clkreq_always_on_L1_9285,
ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
}
} else if (AR_SREV_9280_20_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2,
ARRAY_SIZE(ar9280Modes_9280_2), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2,
ARRAY_SIZE(ar9280Common_9280_2), 2);
if (ah->ah_config.pcie_clock_req) {
INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
ar9280PciePhy_clkreq_off_L1_9280,
ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
} else {
INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
ar9280PciePhy_clkreq_always_on_L1_9280,
ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
}
INIT_INI_ARRAY(&ahp->ah_iniModesAdditional,
ar9280Modes_fast_clock_9280_2,
ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
} else if (AR_SREV_9280_10_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280,
ARRAY_SIZE(ar9280Modes_9280), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280,
ARRAY_SIZE(ar9280Common_9280), 2);
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160,
ARRAY_SIZE(ar5416Modes_9160), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160,
ARRAY_SIZE(ar5416Common_9160), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160,
ARRAY_SIZE(ar5416Bank0_9160), 2);
INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160,
ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160,
ARRAY_SIZE(ar5416Bank1_9160), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160,
ARRAY_SIZE(ar5416Bank2_9160), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160,
ARRAY_SIZE(ar5416Bank3_9160), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160,
ARRAY_SIZE(ar5416Bank6_9160), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160,
ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160,
ARRAY_SIZE(ar5416Bank7_9160), 2);
if (AR_SREV_9160_11(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniAddac,
ar5416Addac_91601_1,
ARRAY_SIZE(ar5416Addac_91601_1), 2);
} else {
INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160,
ARRAY_SIZE(ar5416Addac_9160), 2);
}
} else if (AR_SREV_9100_OR_LATER(ah)) {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100,
ARRAY_SIZE(ar5416Modes_9100), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100,
ARRAY_SIZE(ar5416Common_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100,
ARRAY_SIZE(ar5416Bank0_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100,
ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100,
ARRAY_SIZE(ar5416Bank1_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100,
ARRAY_SIZE(ar5416Bank2_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100,
ARRAY_SIZE(ar5416Bank3_9100), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100,
ARRAY_SIZE(ar5416Bank6_9100), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100,
ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100,
ARRAY_SIZE(ar5416Bank7_9100), 2);
INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100,
ARRAY_SIZE(ar5416Addac_9100), 2);
} else {
INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes,
ARRAY_SIZE(ar5416Modes), 6);
INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common,
ARRAY_SIZE(ar5416Common), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0,
ARRAY_SIZE(ar5416Bank0), 2);
INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain,
ARRAY_SIZE(ar5416BB_RfGain), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1,
ARRAY_SIZE(ar5416Bank1), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2,
ARRAY_SIZE(ar5416Bank2), 2);
INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3,
ARRAY_SIZE(ar5416Bank3), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6,
ARRAY_SIZE(ar5416Bank6), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC,
ARRAY_SIZE(ar5416Bank6TPC), 3);
INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7,
ARRAY_SIZE(ar5416Bank7), 2);
INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac,
ARRAY_SIZE(ar5416Addac), 2);
}
if (ah->ah_isPciExpress)
ath9k_hw_configpcipowersave(ah, 0);
else
ath9k_hw_disablepcie(ah);
ecode = ath9k_hw_post_attach(ah);
if (ecode != 0)
goto bad;
/* rxgain table */
if (AR_SREV_9280_20(ah))
ath9k_hw_init_rxgain_ini(ah);
/* txgain table */
if (AR_SREV_9280_20(ah))
ath9k_hw_init_txgain_ini(ah);
if (ah->ah_devid == AR9280_DEVID_PCI) {
for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) {
u32 val = INI_RA(&ahp->ah_iniModes, i, j);
INI_RA(&ahp->ah_iniModes, i, j) =
ath9k_hw_ini_fixup(ah,
&ahp->ah_eeprom.def,
reg, val);
}
}
}
if (!ath9k_hw_fill_cap_info(ah)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"failed ath9k_hw_fill_cap_info\n");
ecode = -EINVAL;
goto bad;
}
ecode = ath9k_hw_init_macaddr(ah);
if (ecode != 0) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"failed initializing mac address\n");
goto bad;
}
if (AR_SREV_9285(ah))
ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S);
else
ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S);
ath9k_init_nfcal_hist_buffer(ah);
return ah;
bad:
if (ahp)
ath9k_hw_detach((struct ath_hal *) ahp);
if (status)
*status = ecode;
return NULL;
}
static void ath9k_hw_init_bb(struct ath_hal *ah,
struct ath9k_channel *chan)
{
u32 synthDelay;
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(chan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
udelay(synthDelay + BASE_ACTIVATE_DELAY);
}
static void ath9k_hw_init_qos(struct ath_hal *ah)
{
REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
REG_WRITE(ah, AR_QOS_NO_ACK,
SM(2, AR_QOS_NO_ACK_TWO_BIT) |
SM(5, AR_QOS_NO_ACK_BIT_OFF) |
SM(0, AR_QOS_NO_ACK_BYTE_OFF));
REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
}
static void ath9k_hw_init_pll(struct ath_hal *ah,
struct ath9k_channel *chan)
{
u32 pll;
if (AR_SREV_9100(ah)) {
if (chan && IS_CHAN_5GHZ(chan))
pll = 0x1450;
else
pll = 0x1458;
} else {
if (AR_SREV_9280_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan)) {
pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
if (AR_SREV_9280_20(ah)) {
if (((chan->channel % 20) == 0)
|| ((chan->channel % 10) == 0))
pll = 0x2850;
else
pll = 0x142c;
}
} else {
pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
}
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan))
pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
else
pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
} else {
pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan))
pll |= SM(0xa, AR_RTC_PLL_DIV);
else
pll |= SM(0xb, AR_RTC_PLL_DIV);
}
}
REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
udelay(RTC_PLL_SETTLE_DELAY);
REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
}
static void ath9k_hw_init_chain_masks(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int rx_chainmask, tx_chainmask;
rx_chainmask = ahp->ah_rxchainmask;
tx_chainmask = ahp->ah_txchainmask;
switch (rx_chainmask) {
case 0x5:
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
case 0x3:
if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) {
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
break;
}
case 0x1:
case 0x2:
case 0x7:
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
break;
default:
break;
}
REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
if (tx_chainmask == 0x5) {
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
}
if (AR_SREV_9100(ah))
REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
}
static void ath9k_hw_init_interrupt_masks(struct ath_hal *ah,
enum nl80211_iftype opmode)
{
struct ath_hal_5416 *ahp = AH5416(ah);
ahp->ah_maskReg = AR_IMR_TXERR |
AR_IMR_TXURN |
AR_IMR_RXERR |
AR_IMR_RXORN |
AR_IMR_BCNMISC;
if (ahp->ah_intrMitigation)
ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
else
ahp->ah_maskReg |= AR_IMR_RXOK;
ahp->ah_maskReg |= AR_IMR_TXOK;
if (opmode == NL80211_IFTYPE_AP)
ahp->ah_maskReg |= AR_IMR_MIB;
REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
}
}
static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
ahp->ah_acktimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
ahp->ah_acktimeout = us;
return true;
}
}
static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
ahp->ah_ctstimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
ahp->ah_ctstimeout = us;
return true;
}
}
static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah, u32 tu)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (tu > 0xFFFF) {
DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
"bad global tx timeout %u\n", tu);
ahp->ah_globaltxtimeout = (u32) -1;
return false;
} else {
REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
ahp->ah_globaltxtimeout = tu;
return true;
}
}
static void ath9k_hw_init_user_settings(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ahp->ah_miscMode 0x%x\n",
ahp->ah_miscMode);
if (ahp->ah_miscMode != 0)
REG_WRITE(ah, AR_PCU_MISC,
REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode);
if (ahp->ah_slottime != (u32) -1)
ath9k_hw_setslottime(ah, ahp->ah_slottime);
if (ahp->ah_acktimeout != (u32) -1)
ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout);
if (ahp->ah_ctstimeout != (u32) -1)
ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout);
if (ahp->ah_globaltxtimeout != (u32) -1)
ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout);
}
const char *ath9k_hw_probe(u16 vendorid, u16 devid)
{
return vendorid == ATHEROS_VENDOR_ID ?
ath9k_hw_devname(devid) : NULL;
}
void ath9k_hw_detach(struct ath_hal *ah)
{
if (!AR_SREV_9100(ah))
ath9k_hw_ani_detach(ah);
ath9k_hw_rfdetach(ah);
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
kfree(ah);
}
struct ath_hal *ath9k_hw_attach(u16 devid, struct ath_softc *sc,
void __iomem *mem, int *error)
{
struct ath_hal *ah = NULL;
switch (devid) {
case AR5416_DEVID_PCI:
case AR5416_DEVID_PCIE:
case AR5416_AR9100_DEVID:
case AR9160_DEVID_PCI:
case AR9280_DEVID_PCI:
case AR9280_DEVID_PCIE:
case AR9285_DEVID_PCIE:
ah = ath9k_hw_do_attach(devid, sc, mem, error);
break;
default:
*error = -ENXIO;
break;
}
return ah;
}
/*******/
/* INI */
/*******/
static void ath9k_hw_override_ini(struct ath_hal *ah,
struct ath9k_channel *chan)
{
/*
* Set the RX_ABORT and RX_DIS and clear if off only after
* RXE is set for MAC. This prevents frames with corrupted
* descriptor status.
*/
REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
if (!AR_SREV_5416_V20_OR_LATER(ah) ||
AR_SREV_9280_10_OR_LATER(ah))
return;
REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
}
static u32 ath9k_hw_def_ini_fixup(struct ath_hal *ah,
struct ar5416_eeprom_def *pEepData,
u32 reg, u32 value)
{
struct base_eep_header *pBase = &(pEepData->baseEepHeader);
switch (ah->ah_devid) {
case AR9280_DEVID_PCI:
if (reg == 0x7894) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"ini VAL: %x EEPROM: %x\n", value,
(pBase->version & 0xff));
if ((pBase->version & 0xff) > 0x0a) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"PWDCLKIND: %d\n",
pBase->pwdclkind);
value &= ~AR_AN_TOP2_PWDCLKIND;
value |= AR_AN_TOP2_PWDCLKIND &
(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
} else {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"PWDCLKIND Earlier Rev\n");
}
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"final ini VAL: %x\n", value);
}
break;
}
return value;
}
static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
struct ar5416_eeprom_def *pEepData,
u32 reg, u32 value)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (ahp->ah_eep_map == EEP_MAP_4KBITS)
return value;
else
return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
}
static int ath9k_hw_process_ini(struct ath_hal *ah,
struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode)
{
int i, regWrites = 0;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ieee80211_channel *channel = chan->chan;
u32 modesIndex, freqIndex;
int status;
switch (chan->chanmode) {
case CHANNEL_A:
case CHANNEL_A_HT20:
modesIndex = 1;
freqIndex = 1;
break;
case CHANNEL_A_HT40PLUS:
case CHANNEL_A_HT40MINUS:
modesIndex = 2;
freqIndex = 1;
break;
case CHANNEL_G:
case CHANNEL_G_HT20:
case CHANNEL_B:
modesIndex = 4;
freqIndex = 2;
break;
case CHANNEL_G_HT40PLUS:
case CHANNEL_G_HT40MINUS:
modesIndex = 3;
freqIndex = 2;
break;
default:
return -EINVAL;
}
REG_WRITE(ah, AR_PHY(0), 0x00000007);
REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
ath9k_hw_set_addac(ah, chan);
if (AR_SREV_5416_V22_OR_LATER(ah)) {
REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites);
} else {
struct ar5416IniArray temp;
u32 addacSize =
sizeof(u32) * ahp->ah_iniAddac.ia_rows *
ahp->ah_iniAddac.ia_columns;
memcpy(ahp->ah_addac5416_21,
ahp->ah_iniAddac.ia_array, addacSize);
(ahp->ah_addac5416_21)[31 * ahp->ah_iniAddac.ia_columns + 1] = 0;
temp.ia_array = ahp->ah_addac5416_21;
temp.ia_columns = ahp->ah_iniAddac.ia_columns;
temp.ia_rows = ahp->ah_iniAddac.ia_rows;
REG_WRITE_ARRAY(&temp, 1, regWrites);
}
REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex);
REG_WRITE(ah, reg, val);
if (reg >= 0x7800 && reg < 0x78a0
&& ah->ah_config.analog_shiftreg) {
udelay(100);
}
DO_DELAY(regWrites);
}
if (AR_SREV_9280(ah))
REG_WRITE_ARRAY(&ahp->ah_iniModesRxGain, modesIndex, regWrites);
if (AR_SREV_9280(ah))
REG_WRITE_ARRAY(&ahp->ah_iniModesTxGain, modesIndex, regWrites);
for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) {
u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0);
u32 val = INI_RA(&ahp->ah_iniCommon, i, 1);
REG_WRITE(ah, reg, val);
if (reg >= 0x7800 && reg < 0x78a0
&& ah->ah_config.analog_shiftreg) {
udelay(100);
}
DO_DELAY(regWrites);
}
ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex,
regWrites);
}
ath9k_hw_override_ini(ah, chan);
ath9k_hw_set_regs(ah, chan, macmode);
ath9k_hw_init_chain_masks(ah);
status = ath9k_hw_set_txpower(ah, chan,
ath9k_regd_get_ctl(ah, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) ah->ah_powerLimit));
if (status != 0) {
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
"error init'ing transmit power\n");
return -EIO;
}
if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"ar5416SetRfRegs failed\n");
return -EIO;
}
return 0;
}
/****************************************/
/* Reset and Channel Switching Routines */
/****************************************/
static void ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan)
{
u32 rfMode = 0;
if (chan == NULL)
return;
rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (!AR_SREV_9280_10_OR_LATER(ah))
rfMode |= (IS_CHAN_5GHZ(chan)) ?
AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah)
{
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
}
static inline void ath9k_hw_set_dma(struct ath_hal *ah)
{
u32 regval;
regval = REG_READ(ah, AR_AHB_MODE);
REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel);
regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
if (AR_SREV_9285(ah)) {
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
} else {
REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
AR_PCU_TXBUF_CTRL_USABLE_SIZE);
}
}
static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode)
{
u32 val;
val = REG_READ(ah, AR_STA_ID1);
val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
switch (opmode) {
case NL80211_IFTYPE_AP:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
| AR_STA_ID1_KSRCH_MODE);
REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case NL80211_IFTYPE_ADHOC:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
| AR_STA_ID1_KSRCH_MODE);
REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_MONITOR:
REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
break;
}
}
static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah,
u32 coef_scaled,
u32 *coef_mantissa,
u32 *coef_exponent)
{
u32 coef_exp, coef_man;
for (coef_exp = 31; coef_exp > 0; coef_exp--)
if ((coef_scaled >> coef_exp) & 0x1)
break;
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
*coef_exponent = coef_exp - 16;
}
static void ath9k_hw_set_delta_slope(struct ath_hal *ah,
struct ath9k_channel *chan)
{
u32 coef_scaled, ds_coef_exp, ds_coef_man;
u32 clockMhzScaled = 0x64000000;
struct chan_centers centers;
if (IS_CHAN_HALF_RATE(chan))
clockMhzScaled = clockMhzScaled >> 1;
else if (IS_CHAN_QUARTER_RATE(chan))
clockMhzScaled = clockMhzScaled >> 2;
ath9k_hw_get_channel_centers(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
coef_scaled = (9 * coef_scaled) / 10;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_HALFGI,
AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
}
static bool ath9k_hw_set_reset(struct ath_hal *ah, int type)
{
u32 rst_flags;
u32 tmpReg;
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
AR_RTC_FORCE_WAKE_ON_INT);
if (AR_SREV_9100(ah)) {
rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
} else {
tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (tmpReg &
(AR_INTR_SYNC_LOCAL_TIMEOUT |
AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
} else {
REG_WRITE(ah, AR_RC, AR_RC_AHB);
}
rst_flags = AR_RTC_RC_MAC_WARM;
if (type == ATH9K_RESET_COLD)
rst_flags |= AR_RTC_RC_MAC_COLD;
}
REG_WRITE(ah, AR_RTC_RC, rst_flags);
udelay(50);
REG_WRITE(ah, AR_RTC_RC, 0);
if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"RTC stuck in MAC reset\n");
return false;
}
if (!AR_SREV_9100(ah))
REG_WRITE(ah, AR_RC, 0);
ath9k_hw_init_pll(ah, NULL);
if (AR_SREV_9100(ah))
udelay(50);
return true;
}
static bool ath9k_hw_set_reset_power_on(struct ath_hal *ah)
{
REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
AR_RTC_FORCE_WAKE_ON_INT);
REG_WRITE(ah, AR_RTC_RESET, 0);
REG_WRITE(ah, AR_RTC_RESET, 1);
if (!ath9k_hw_wait(ah,
AR_RTC_STATUS,
AR_RTC_STATUS_M,
AR_RTC_STATUS_ON)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
return false;
}
ath9k_hw_read_revisions(ah);
return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
}
static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type)
{
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
switch (type) {
case ATH9K_RESET_POWER_ON:
return ath9k_hw_set_reset_power_on(ah);
break;
case ATH9K_RESET_WARM:
case ATH9K_RESET_COLD:
return ath9k_hw_set_reset(ah, type);
break;
default:
return false;
}
}
static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode)
{
u32 phymode;
u32 enableDacFifo = 0;
struct ath_hal_5416 *ahp = AH5416(ah);
if (AR_SREV_9285_10_OR_LATER(ah))
enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
AR_PHY_FC_ENABLE_DAC_FIFO);
phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
if (IS_CHAN_HT40(chan)) {
phymode |= AR_PHY_FC_DYN2040_EN;
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
(chan->chanmode == CHANNEL_G_HT40PLUS))
phymode |= AR_PHY_FC_DYN2040_PRI_CH;
if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
phymode |= AR_PHY_FC_DYN2040_EXT_CH;
}
REG_WRITE(ah, AR_PHY_TURBO, phymode);
ath9k_hw_set11nmac2040(ah, macmode);
REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
}
static bool ath9k_hw_chip_reset(struct ath_hal *ah,
struct ath9k_channel *chan)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
return false;
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return false;
ahp->ah_chipFullSleep = false;
ath9k_hw_init_pll(ah, chan);
ath9k_hw_set_rfmode(ah, chan);
return true;
}
static bool ath9k_hw_channel_change(struct ath_hal *ah,
struct ath9k_channel *chan,
enum ath9k_ht_macmode macmode)
{
struct ieee80211_channel *channel = chan->chan;
u32 synthDelay, qnum;
for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
if (ath9k_hw_numtxpending(ah, qnum)) {
DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
"Transmit frames pending on queue %d\n", qnum);
return false;
}
}
REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
AR_PHY_RFBUS_GRANT_EN)) {
DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
"Could not kill baseband RX\n");
return false;
}
ath9k_hw_set_regs(ah, chan, macmode);
if (AR_SREV_9280_10_OR_LATER(ah)) {
if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"failed to set channel\n");
return false;
}
} else {
if (!(ath9k_hw_set_channel(ah, chan))) {
DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
"failed to set channel\n");
return false;
}
}
if (ath9k_hw_set_txpower(ah, chan,
ath9k_regd_get_ctl(ah, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) ah->ah_powerLimit)) != 0) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"error init'ing transmit power\n");
return false;
}
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(chan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
udelay(synthDelay + BASE_ACTIVATE_DELAY);
REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
ath9k_hw_set_delta_slope(ah, chan);
if (AR_SREV_9280_10_OR_LATER(ah))
ath9k_hw_9280_spur_mitigate(ah, chan);
else
ath9k_hw_spur_mitigate(ah, chan);
if (!chan->oneTimeCalsDone)
chan->oneTimeCalsDone = true;
return true;
}
static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int freq;
int bin, cur_bin;
int bb_spur_off, spur_subchannel_sd;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, newVal;
int i;
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
};
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
};
int inc[4] = { 0, 100, 0, 0 };
struct chan_centers centers;
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
memset(&mask_m, 0, sizeof(int8_t) * 123);
memset(&mask_p, 0, sizeof(int8_t) * 123);
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
ah->ah_config.spurmode = SPUR_ENABLE_EEPROM;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
if (is2GHz)
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
else
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - freq;
if (IS_CHAN_HT40(chan)) {
if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
bb_spur = cur_bb_spur;
break;
}
} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur) {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
return;
} else {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
}
bin = bb_spur * 320;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
if (IS_CHAN_HT40(chan)) {
if (bb_spur < 0) {
spur_subchannel_sd = 1;
bb_spur_off = bb_spur + 10;
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur - 10;
}
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur;
}
if (IS_CHAN_HT40(chan))
spur_delta_phase =
((bb_spur * 262144) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
else
spur_delta_phase =
((bb_spur * 524288) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, newVal);
newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
/* workaround for gcc bug #37014 */
volatile int tmp_v = abs(cur_vit_mask - bin);
if (tmp_v < 75)
mask_amt = 1;
else
mask_amt = 0;
if (cur_vit_mask < 0)
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
else
mask_p[cur_vit_mask / 100] = mask_amt;
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
| (mask_m[2] << 26) | (mask_m[3] << 24)
| (mask_m[4] << 22) | (mask_m[5] << 20)
| (mask_m[6] << 18) | (mask_m[7] << 16)
| (mask_m[8] << 14) | (mask_m[9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[9] << 16)
| (mask_p[8] << 14) | (mask_p[7] << 12)
| (mask_p[6] << 10) | (mask_p[5] << 8)
| (mask_p[4] << 6) | (mask_p[3] << 4)
| (mask_p[2] << 2) | (mask_p[1] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int bin, cur_bin;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, new;
int i;
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
};
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
};
int inc[4] = { 0, 100, 0, 0 };
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
memset(&mask_m, 0, sizeof(int8_t) * 123);
memset(&mask_p, 0, sizeof(int8_t) * 123);
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - (chan->channel * 10);
if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur)
return;
bin = bb_spur * 32;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, new);
spur_delta_phase = ((bb_spur * 524288) / 100) &
AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, new);
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
/* workaround for gcc bug #37014 */
volatile int tmp_v = abs(cur_vit_mask - bin);
if (tmp_v < 75)
mask_amt = 1;
else
mask_amt = 0;
if (cur_vit_mask < 0)
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
else
mask_p[cur_vit_mask / 100] = mask_amt;
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
| (mask_m[2] << 26) | (mask_m[3] << 24)
| (mask_m[4] << 22) | (mask_m[5] << 20)
| (mask_m[6] << 18) | (mask_m[7] << 16)
| (mask_m[8] << 14) | (mask_m[9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[9] << 16)
| (mask_p[8] << 14) | (mask_p[7] << 12)
| (mask_p[6] << 10) | (mask_p[5] << 8)
| (mask_p[4] << 6) | (mask_p[3] << 4)
| (mask_p[2] << 2) | (mask_p[1] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
int ath9k_hw_reset(struct ath_hal *ah, struct ath9k_channel *chan,
bool bChannelChange)
{
u32 saveLedState;
struct ath_softc *sc = ah->ah_sc;
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_channel *curchan = ah->ah_curchan;
u32 saveDefAntenna;
u32 macStaId1;
int i, rx_chainmask, r;
ahp->ah_extprotspacing = sc->sc_ht_extprotspacing;
ahp->ah_txchainmask = sc->sc_tx_chainmask;
ahp->ah_rxchainmask = sc->sc_rx_chainmask;
if (AR_SREV_9280(ah)) {
ahp->ah_txchainmask &= 0x3;
ahp->ah_rxchainmask &= 0x3;
}
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return -EIO;
if (curchan)
ath9k_hw_getnf(ah, curchan);
if (bChannelChange &&
(ahp->ah_chipFullSleep != true) &&
(ah->ah_curchan != NULL) &&
(chan->channel != ah->ah_curchan->channel) &&
((chan->channelFlags & CHANNEL_ALL) ==
(ah->ah_curchan->channelFlags & CHANNEL_ALL)) &&
(!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
!IS_CHAN_A_5MHZ_SPACED(ah->ah_curchan)))) {
if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
ath9k_hw_loadnf(ah, ah->ah_curchan);
ath9k_hw_start_nfcal(ah);
return 0;
}
}
saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
if (saveDefAntenna == 0)
saveDefAntenna = 1;
macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
saveLedState = REG_READ(ah, AR_CFG_LED) &
(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
ath9k_hw_mark_phy_inactive(ah);
if (!ath9k_hw_chip_reset(ah, chan)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "chip reset failed\n");
return -EINVAL;
}
if (AR_SREV_9280_10_OR_LATER(ah))
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
if (r)
return r;
/* Setup MFP options for CCMP */
if (AR_SREV_9280_20_OR_LATER(ah)) {
/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
* frames when constructing CCMP AAD. */
REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
0xc7ff);
ah->sw_mgmt_crypto = false;
} else if (AR_SREV_9160_10_OR_LATER(ah)) {
/* Disable hardware crypto for management frames */
REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
ah->sw_mgmt_crypto = true;
} else
ah->sw_mgmt_crypto = true;
if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
ath9k_hw_set_delta_slope(ah, chan);
if (AR_SREV_9280_10_OR_LATER(ah))
ath9k_hw_9280_spur_mitigate(ah, chan);
else
ath9k_hw_spur_mitigate(ah, chan);
if (!ath9k_hw_eeprom_set_board_values(ah, chan)) {
DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
"error setting board options\n");
return -EIO;
}
ath9k_hw_decrease_chain_power(ah, chan);
REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr));
REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4)
| macStaId1
| AR_STA_ID1_RTS_USE_DEF
| (ah->ah_config.
ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
| ahp->ah_staId1Defaults);
ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S));
REG_WRITE(ah, AR_ISR, ~0);
REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
if (AR_SREV_9280_10_OR_LATER(ah)) {
if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
return -EIO;
} else {
if (!(ath9k_hw_set_channel(ah, chan)))
return -EIO;
}
for (i = 0; i < AR_NUM_DCU; i++)
REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
ahp->ah_intrTxqs = 0;
for (i = 0; i < ah->ah_caps.total_queues; i++)
ath9k_hw_resettxqueue(ah, i);
ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode);
ath9k_hw_init_qos(ah);
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
ath9k_enable_rfkill(ah);
#endif
ath9k_hw_init_user_settings(ah);
REG_WRITE(ah, AR_STA_ID1,
REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
ath9k_hw_set_dma(ah);
REG_WRITE(ah, AR_OBS, 8);
if (ahp->ah_intrMitigation) {
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
}
ath9k_hw_init_bb(ah, chan);
if (!ath9k_hw_init_cal(ah, chan))
return -EIO;;
rx_chainmask = ahp->ah_rxchainmask;
if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
}
REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
if (AR_SREV_9100(ah)) {
u32 mask;
mask = REG_READ(ah, AR_CFG);
if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"CFG Byte Swap Set 0x%x\n", mask);
} else {
mask =
INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
REG_WRITE(ah, AR_CFG, mask);
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
}
} else {
#ifdef __BIG_ENDIAN
REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
#endif
}
return 0;
}
/************************/
/* Key Cache Management */
/************************/
bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry)
{
u32 keyType;
if (entry >= ah->ah_caps.keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"entry %u out of range\n", entry);
return false;
}
keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
u16 micentry = entry + 64;
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
}
if (ah->ah_curchan == NULL)
return true;
return true;
}
bool ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry, const u8 *mac)
{
u32 macHi, macLo;
if (entry >= ah->ah_caps.keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"entry %u out of range\n", entry);
return false;
}
if (mac != NULL) {
macHi = (mac[5] << 8) | mac[4];
macLo = (mac[3] << 24) |
(mac[2] << 16) |
(mac[1] << 8) |
mac[0];
macLo >>= 1;
macLo |= (macHi & 1) << 31;
macHi >>= 1;
} else {
macLo = macHi = 0;
}
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
return true;
}
bool ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry,
const struct ath9k_keyval *k,
const u8 *mac, int xorKey)
{
const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
u32 key0, key1, key2, key3, key4;
u32 keyType;
u32 xorMask = xorKey ?
(ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8
| ATH9K_KEY_XOR) : 0;
struct ath_hal_5416 *ahp = AH5416(ah);
if (entry >= pCap->keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"entry %u out of range\n", entry);
return false;
}
switch (k->kv_type) {
case ATH9K_CIPHER_AES_OCB:
keyType = AR_KEYTABLE_TYPE_AES;
break;
case ATH9K_CIPHER_AES_CCM:
if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"AES-CCM not supported by mac rev 0x%x\n",
ah->ah_macRev);
return false;
}
keyType = AR_KEYTABLE_TYPE_CCM;
break;
case ATH9K_CIPHER_TKIP:
keyType = AR_KEYTABLE_TYPE_TKIP;
if (ATH9K_IS_MIC_ENABLED(ah)
&& entry + 64 >= pCap->keycache_size) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"entry %u inappropriate for TKIP\n", entry);
return false;
}
break;
case ATH9K_CIPHER_WEP:
if (k->kv_len < LEN_WEP40) {
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"WEP key length %u too small\n", k->kv_len);
return false;
}
if (k->kv_len <= LEN_WEP40)
keyType = AR_KEYTABLE_TYPE_40;
else if (k->kv_len <= LEN_WEP104)
keyType = AR_KEYTABLE_TYPE_104;
else
keyType = AR_KEYTABLE_TYPE_128;
break;
case ATH9K_CIPHER_CLR:
keyType = AR_KEYTABLE_TYPE_CLR;
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
"cipher %u not supported\n", k->kv_type);
return false;
}
key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask;
key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff;
key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask;
key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff;
key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask;
if (k->kv_len <= LEN_WEP104)
key4 &= 0xff;
if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
u16 micentry = entry + 64;
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
(void) ath9k_hw_keysetmac(ah, entry, mac);
if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) {
u32 mic0, mic1, mic2, mic3, mic4;
mic0 = get_unaligned_le32(k->kv_mic + 0);
mic2 = get_unaligned_le32(k->kv_mic + 4);
mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
mic4 = get_unaligned_le32(k->kv_txmic + 4);
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
AR_KEYTABLE_TYPE_CLR);
} else {
u32 mic0, mic2;
mic0 = get_unaligned_le32(k->kv_mic + 0);
mic2 = get_unaligned_le32(k->kv_mic + 4);
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
AR_KEYTABLE_TYPE_CLR);
}
REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
} else {
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
(void) ath9k_hw_keysetmac(ah, entry, mac);
}
if (ah->ah_curchan == NULL)
return true;
return true;
}
bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry)
{
if (entry < ah->ah_caps.keycache_size) {
u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
if (val & AR_KEYTABLE_VALID)
return true;
}
return false;
}
/******************************/
/* Power Management (Chipset) */
/******************************/
static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip)
{
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
if (setChip) {
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
if (!AR_SREV_9100(ah))
REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
REG_CLR_BIT(ah, (AR_RTC_RESET),
AR_RTC_RESET_EN);
}
}
static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip)
{
REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
if (setChip) {
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
REG_WRITE(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_ON_INT);
} else {
REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
}
}
}
static bool ath9k_hw_set_power_awake(struct ath_hal *ah,
int setChip)
{
u32 val;
int i;
if (setChip) {
if ((REG_READ(ah, AR_RTC_STATUS) &
AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
if (ath9k_hw_set_reset_reg(ah,
ATH9K_RESET_POWER_ON) != true) {
return false;
}
}
if (AR_SREV_9100(ah))
REG_SET_BIT(ah, AR_RTC_RESET,
AR_RTC_RESET_EN);
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
udelay(50);
for (i = POWER_UP_TIME / 50; i > 0; i--) {
val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
if (val == AR_RTC_STATUS_ON)
break;
udelay(50);
REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
AR_RTC_FORCE_WAKE_EN);
}
if (i == 0) {
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
"Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
return false;
}
}
REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
return true;
}
bool ath9k_hw_setpower(struct ath_hal *ah,
enum ath9k_power_mode mode)
{
struct ath_hal_5416 *ahp = AH5416(ah);
static const char *modes[] = {
"AWAKE",
"FULL-SLEEP",
"NETWORK SLEEP",
"UNDEFINED"
};
int status = true, setChip = true;
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s -> %s (%s)\n",
modes[ah->ah_power_mode], modes[mode],
setChip ? "set chip " : "");
switch (mode) {
case ATH9K_PM_AWAKE:
status = ath9k_hw_set_power_awake(ah, setChip);
break;
case ATH9K_PM_FULL_SLEEP:
ath9k_set_power_sleep(ah, setChip);
ahp->ah_chipFullSleep = true;
break;
case ATH9K_PM_NETWORK_SLEEP:
ath9k_set_power_network_sleep(ah, setChip);
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
"Unknown power mode %u\n", mode);
return false;
}
ah->ah_power_mode = mode;
return status;
}
void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u8 i;
if (ah->ah_isPciExpress != true)
return;
if (ah->ah_config.pcie_powersave_enable == 2)
return;
if (restore)
return;
if (AR_SREV_9280_20_OR_LATER(ah)) {
for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) {
REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0),
INI_RA(&ahp->ah_iniPcieSerdes, i, 1));
}
udelay(1000);
} else if (AR_SREV_9280(ah) &&
(ah->ah_macRev == AR_SREV_REVISION_9280_10)) {
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
if (ah->ah_config.pcie_clock_req)
REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
else
REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
udelay(1000);
} else {
REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
}
REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
if (ah->ah_config.pcie_waen) {
REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen);
} else {
if (AR_SREV_9285(ah))
REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
else if (AR_SREV_9280(ah))
REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
else
REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
}
}
/**********************/
/* Interrupt Handling */
/**********************/
bool ath9k_hw_intrpend(struct ath_hal *ah)
{
u32 host_isr;
if (AR_SREV_9100(ah))
return true;
host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
return true;
host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
if ((host_isr & AR_INTR_SYNC_DEFAULT)
&& (host_isr != AR_INTR_SPURIOUS))
return true;
return false;
}
bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked)
{
u32 isr = 0;
u32 mask2 = 0;
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
u32 sync_cause = 0;
bool fatal_int = false;
struct ath_hal_5416 *ahp = AH5416(ah);
if (!AR_SREV_9100(ah)) {
if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
== AR_RTC_STATUS_ON) {
isr = REG_READ(ah, AR_ISR);
}
}
sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
AR_INTR_SYNC_DEFAULT;
*masked = 0;
if (!isr && !sync_cause)
return false;
} else {
*masked = 0;
isr = REG_READ(ah, AR_ISR);
}
if (isr) {
if (isr & AR_ISR_BCNMISC) {
u32 isr2;
isr2 = REG_READ(ah, AR_ISR_S2);
if (isr2 & AR_ISR_S2_TIM)
mask2 |= ATH9K_INT_TIM;
if (isr2 & AR_ISR_S2_DTIM)
mask2 |= ATH9K_INT_DTIM;
if (isr2 & AR_ISR_S2_DTIMSYNC)
mask2 |= ATH9K_INT_DTIMSYNC;
if (isr2 & (AR_ISR_S2_CABEND))
mask2 |= ATH9K_INT_CABEND;
if (isr2 & AR_ISR_S2_GTT)
mask2 |= ATH9K_INT_GTT;
if (isr2 & AR_ISR_S2_CST)
mask2 |= ATH9K_INT_CST;
}
isr = REG_READ(ah, AR_ISR_RAC);
if (isr == 0xffffffff) {
*masked = 0;
return false;
}
*masked = isr & ATH9K_INT_COMMON;
if (ahp->ah_intrMitigation) {
if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
*masked |= ATH9K_INT_RX;
}
if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
*masked |= ATH9K_INT_RX;
if (isr &
(AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
AR_ISR_TXEOL)) {
u32 s0_s, s1_s;
*masked |= ATH9K_INT_TX;
s0_s = REG_READ(ah, AR_ISR_S0_S);
ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
s1_s = REG_READ(ah, AR_ISR_S1_S);
ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
}
if (isr & AR_ISR_RXORN) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"receive FIFO overrun interrupt\n");
}
if (!AR_SREV_9100(ah)) {
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
if (isr5 & AR_ISR_S5_TIM_TIMER)
*masked |= ATH9K_INT_TIM_TIMER;
}
}
*masked |= mask2;
}
if (AR_SREV_9100(ah))
return true;
if (sync_cause) {
fatal_int =
(sync_cause &
(AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
? true : false;
if (fatal_int) {
if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"received PCI FATAL interrupt\n");
}
if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
DPRINTF(ah->ah_sc, ATH_DBG_ANY,
"received PCI PERR interrupt\n");
}
}
if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
REG_WRITE(ah, AR_RC, 0);
*masked |= ATH9K_INT_FATAL;
}
if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
"AR_INTR_SYNC_LOCAL_TIMEOUT\n");
}
REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
}
return true;
}
enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah)
{
return AH5416(ah)->ah_maskReg;
}
enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 omask = ahp->ah_maskReg;
u32 mask, mask2;
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
if (omask & ATH9K_INT_GLOBAL) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
(void) REG_READ(ah, AR_IER);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
}
}
mask = ints & ATH9K_INT_COMMON;
mask2 = 0;
if (ints & ATH9K_INT_TX) {
if (ahp->ah_txOkInterruptMask)
mask |= AR_IMR_TXOK;
if (ahp->ah_txDescInterruptMask)
mask |= AR_IMR_TXDESC;
if (ahp->ah_txErrInterruptMask)
mask |= AR_IMR_TXERR;
if (ahp->ah_txEolInterruptMask)
mask |= AR_IMR_TXEOL;
}
if (ints & ATH9K_INT_RX) {
mask |= AR_IMR_RXERR;
if (ahp->ah_intrMitigation)
mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
else
mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
mask |= AR_IMR_GENTMR;
}
if (ints & (ATH9K_INT_BMISC)) {
mask |= AR_IMR_BCNMISC;
if (ints & ATH9K_INT_TIM)
mask2 |= AR_IMR_S2_TIM;
if (ints & ATH9K_INT_DTIM)
mask2 |= AR_IMR_S2_DTIM;
if (ints & ATH9K_INT_DTIMSYNC)
mask2 |= AR_IMR_S2_DTIMSYNC;
if (ints & ATH9K_INT_CABEND)
mask2 |= (AR_IMR_S2_CABEND);
}
if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
mask |= AR_IMR_BCNMISC;
if (ints & ATH9K_INT_GTT)
mask2 |= AR_IMR_S2_GTT;
if (ints & ATH9K_INT_CST)
mask2 |= AR_IMR_S2_CST;
}
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
REG_WRITE(ah, AR_IMR, mask);
mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND |
AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR |
AR_IMR_S2_GTT | AR_IMR_S2_CST);
REG_WRITE(ah, AR_IMR_S2, mask | mask2);
ahp->ah_maskReg = ints;
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
if (ints & ATH9K_INT_TIM_TIMER)
REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
else
REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
}
if (ints & ATH9K_INT_GLOBAL) {
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
AR_INTR_MAC_IRQ);
REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
AR_INTR_SYNC_DEFAULT);
REG_WRITE(ah, AR_INTR_SYNC_MASK,
AR_INTR_SYNC_DEFAULT);
}
DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
}
return omask;
}
/*******************/
/* Beacon Handling */
/*******************/
void ath9k_hw_beaconinit(struct ath_hal *ah, u32 next_beacon, u32 beacon_period)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int flags = 0;
ahp->ah_beaconInterval = beacon_period;
switch (ah->ah_opmode) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_MONITOR:
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
flags |= AR_TBTT_TIMER_EN;
break;
case NL80211_IFTYPE_ADHOC:
REG_SET_BIT(ah, AR_TXCFG,
AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
REG_WRITE(ah, AR_NEXT_NDP_TIMER,
TU_TO_USEC(next_beacon +
(ahp->ah_atimWindow ? ahp->
ah_atimWindow : 1)));
flags |= AR_NDP_TIMER_EN;
case NL80211_IFTYPE_AP:
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
TU_TO_USEC(next_beacon -
ah->ah_config.
dma_beacon_response_time));
REG_WRITE(ah, AR_NEXT_SWBA,
TU_TO_USEC(next_beacon -
ah->ah_config.
sw_beacon_response_time));
flags |=
AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
break;
default:
DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
"%s: unsupported opmode: %d\n",
__func__, ah->ah_opmode);
return;
break;
}
REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
beacon_period &= ~ATH9K_BEACON_ENA;
if (beacon_period & ATH9K_BEACON_RESET_TSF) {
beacon_period &= ~ATH9K_BEACON_RESET_TSF;
ath9k_hw_reset_tsf(ah);
}
REG_SET_BIT(ah, AR_TIMER_MODE, flags);
}
void ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah,
const struct ath9k_beacon_state *bs)
{
u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
REG_WRITE(ah, AR_BEACON_PERIOD,
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
REG_RMW_FIELD(ah, AR_RSSI_THR,
AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
if (bs->bs_sleepduration > beaconintval)
beaconintval = bs->bs_sleepduration;
dtimperiod = bs->bs_dtimperiod;
if (bs->bs_sleepduration > dtimperiod)
dtimperiod = bs->bs_sleepduration;
if (beaconintval == dtimperiod)
nextTbtt = bs->bs_nextdtim;
else
nextTbtt = bs->bs_nexttbtt;
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
REG_WRITE(ah, AR_NEXT_DTIM,
TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
REG_WRITE(ah, AR_SLEEP1,
SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
| AR_SLEEP1_ASSUME_DTIM);
if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
beacontimeout = (BEACON_TIMEOUT_VAL << 3);
else
beacontimeout = MIN_BEACON_TIMEOUT_VAL;
REG_WRITE(ah, AR_SLEEP2,
SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
REG_SET_BIT(ah, AR_TIMER_MODE,
AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
AR_DTIM_TIMER_EN);
}
/*******************/
/* HW Capabilities */
/*******************/
bool ath9k_hw_fill_cap_info(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
u16 capField = 0, eeval;
eeval = ath9k_hw_get_eeprom(ah, EEP_REG_0);
ah->ah_currentRD = eeval;
eeval = ath9k_hw_get_eeprom(ah, EEP_REG_1);
ah->ah_currentRDExt = eeval;
capField = ath9k_hw_get_eeprom(ah, EEP_OP_CAP);
if (ah->ah_opmode != NL80211_IFTYPE_AP &&
ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) {
if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65)
ah->ah_currentRD += 5;
else if (ah->ah_currentRD == 0x41)
ah->ah_currentRD = 0x43;
DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
"regdomain mapped to 0x%x\n", ah->ah_currentRD);
}
eeval = ath9k_hw_get_eeprom(ah, EEP_OP_MODE);
bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
if (eeval & AR5416_OPFLAGS_11A) {
set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
if (ah->ah_config.ht_enable) {
if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
set_bit(ATH9K_MODE_11NA_HT20,
pCap->wireless_modes);
if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
set_bit(ATH9K_MODE_11NA_HT40PLUS,
pCap->wireless_modes);
set_bit(ATH9K_MODE_11NA_HT40MINUS,
pCap->wireless_modes);
}
}
}
if (eeval & AR5416_OPFLAGS_11G) {
set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
if (ah->ah_config.ht_enable) {
if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
set_bit(ATH9K_MODE_11NG_HT20,
pCap->wireless_modes);
if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
set_bit(ATH9K_MODE_11NG_HT40PLUS,
pCap->wireless_modes);
set_bit(ATH9K_MODE_11NG_HT40MINUS,
pCap->wireless_modes);
}
}
}
pCap->tx_chainmask = ath9k_hw_get_eeprom(ah, EEP_TX_MASK);
if ((ah->ah_isPciExpress)
|| (eeval & AR5416_OPFLAGS_11A)) {
pCap->rx_chainmask =
ath9k_hw_get_eeprom(ah, EEP_RX_MASK);
} else {
pCap->rx_chainmask =
(ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7;
}
if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0)))
ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA;
pCap->low_2ghz_chan = 2312;
pCap->high_2ghz_chan = 2732;
pCap->low_5ghz_chan = 4920;
pCap->high_5ghz_chan = 6100;
pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
if (ah->ah_config.ht_enable)
pCap->hw_caps |= ATH9K_HW_CAP_HT;
else
pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
pCap->hw_caps |= ATH9K_HW_CAP_GTT;
pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
if (capField & AR_EEPROM_EEPCAP_MAXQCU)
pCap->total_queues =
MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
else
pCap->total_queues = ATH9K_NUM_TX_QUEUES;
if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
pCap->keycache_size =
1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
else
pCap->keycache_size = AR_KEYTABLE_SIZE;
pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
pCap->num_mr_retries = 4;
pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
if (AR_SREV_9285_10_OR_LATER(ah))
pCap->num_gpio_pins = AR9285_NUM_GPIO;
else if (AR_SREV_9280_10_OR_LATER(ah))
pCap->num_gpio_pins = AR928X_NUM_GPIO;
else
pCap->num_gpio_pins = AR_NUM_GPIO;
if (AR_SREV_9280_10_OR_LATER(ah)) {
pCap->hw_caps |= ATH9K_HW_CAP_WOW;
pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
} else {
pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
}
if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
pCap->hw_caps |= ATH9K_HW_CAP_CST;
pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
} else {
pCap->rts_aggr_limit = (8 * 1024);
}
pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
ah->ah_rfsilent = ath9k_hw_get_eeprom(ah, EEP_RF_SILENT);
if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) {
ah->ah_rfkill_gpio =
MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL);
ah->ah_rfkill_polarity =
MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY);
pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
}
#endif
if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) ||
(ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ||
(ah->ah_macVersion == AR_SREV_VERSION_9160) ||
(ah->ah_macVersion == AR_SREV_VERSION_9100) ||
(ah->ah_macVersion == AR_SREV_VERSION_9280))
pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
else
pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
else
pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) {
pCap->reg_cap =
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
AR_EEPROM_EEREGCAP_EN_KK_U2 |
AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
} else {
pCap->reg_cap =
AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
}
pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
pCap->num_antcfg_5ghz =
ath9k_hw_get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
pCap->num_antcfg_2ghz =
ath9k_hw_get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
ah->ah_btactive_gpio = 6;
ah->ah_wlanactive_gpio = 5;
}
return true;
}
bool ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type,
u32 capability, u32 *result)
{
struct ath_hal_5416 *ahp = AH5416(ah);
const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
switch (type) {
case ATH9K_CAP_CIPHER:
switch (capability) {
case ATH9K_CIPHER_AES_CCM:
case ATH9K_CIPHER_AES_OCB:
case ATH9K_CIPHER_TKIP:
case ATH9K_CIPHER_WEP:
case ATH9K_CIPHER_MIC:
case ATH9K_CIPHER_CLR:
return true;
default:
return false;
}
case ATH9K_CAP_TKIP_MIC:
switch (capability) {
case 0:
return true;
case 1:
return (ahp->ah_staId1Defaults &
AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
false;
}
case ATH9K_CAP_TKIP_SPLIT:
return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ?
false : true;
case ATH9K_CAP_WME_TKIPMIC:
return 0;
case ATH9K_CAP_PHYCOUNTERS:
return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO;
case ATH9K_CAP_DIVERSITY:
return (REG_READ(ah, AR_PHY_CCK_DETECT) &
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
true : false;
case ATH9K_CAP_PHYDIAG:
return true;
case ATH9K_CAP_MCAST_KEYSRCH:
switch (capability) {
case 0:
return true;
case 1:
if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
return false;
} else {
return (ahp->ah_staId1Defaults &
AR_STA_ID1_MCAST_KSRCH) ? true :
false;
}
}
return false;
case ATH9K_CAP_TSF_ADJUST:
return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ?
true : false;
case ATH9K_CAP_RFSILENT:
if (capability == 3)
return false;
case ATH9K_CAP_ANT_CFG_2GHZ:
*result = pCap->num_antcfg_2ghz;
return true;
case ATH9K_CAP_ANT_CFG_5GHZ:
*result = pCap->num_antcfg_5ghz;
return true;
case ATH9K_CAP_TXPOW:
switch (capability) {
case 0:
return 0;
case 1:
*result = ah->ah_powerLimit;
return 0;
case 2:
*result = ah->ah_maxPowerLevel;
return 0;
case 3:
*result = ah->ah_tpScale;
return 0;
}
return false;
default:
return false;
}
}
bool ath9k_hw_setcapability(struct ath_hal *ah, enum ath9k_capability_type type,
u32 capability, u32 setting, int *status)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u32 v;
switch (type) {
case ATH9K_CAP_TKIP_MIC:
if (setting)
ahp->ah_staId1Defaults |=
AR_STA_ID1_CRPT_MIC_ENABLE;
else
ahp->ah_staId1Defaults &=
~AR_STA_ID1_CRPT_MIC_ENABLE;
return true;
case ATH9K_CAP_DIVERSITY:
v = REG_READ(ah, AR_PHY_CCK_DETECT);
if (setting)
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
else
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
return true;
case ATH9K_CAP_MCAST_KEYSRCH:
if (setting)
ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
else
ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
return true;
case ATH9K_CAP_TSF_ADJUST:
if (setting)
ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
else
ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
return true;
default:
return false;
}
}
/****************************/
/* GPIO / RFKILL / Antennae */
/****************************/
static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah,
u32 gpio, u32 type)
{
int addr;
u32 gpio_shift, tmp;
if (gpio > 11)
addr = AR_GPIO_OUTPUT_MUX3;
else if (gpio > 5)
addr = AR_GPIO_OUTPUT_MUX2;
else
addr = AR_GPIO_OUTPUT_MUX1;
gpio_shift = (gpio % 6) * 5;
if (AR_SREV_9280_20_OR_LATER(ah)
|| (addr != AR_GPIO_OUTPUT_MUX1)) {
REG_RMW(ah, addr, (type << gpio_shift),
(0x1f << gpio_shift));
} else {
tmp = REG_READ(ah, addr);
tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
tmp &= ~(0x1f << gpio_shift);
tmp |= (type << gpio_shift);
REG_WRITE(ah, addr, tmp);
}
}
void ath9k_hw_cfg_gpio_input(struct ath_hal *ah, u32 gpio)
{
u32 gpio_shift;
ASSERT(gpio < ah->ah_caps.num_gpio_pins);
gpio_shift = gpio << 1;
REG_RMW(ah,
AR_GPIO_OE_OUT,
(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
}
u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio)
{
#define MS_REG_READ(x, y) \
(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
if (gpio >= ah->ah_caps.num_gpio_pins)
return 0xffffffff;
if (AR_SREV_9285_10_OR_LATER(ah))
return MS_REG_READ(AR9285, gpio) != 0;
else if (AR_SREV_9280_10_OR_LATER(ah))
return MS_REG_READ(AR928X, gpio) != 0;
else
return MS_REG_READ(AR, gpio) != 0;
}
void ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio,
u32 ah_signal_type)
{
u32 gpio_shift;
ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
gpio_shift = 2 * gpio;
REG_RMW(ah,
AR_GPIO_OE_OUT,
(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
}
void ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio, u32 val)
{
REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
AR_GPIO_BIT(gpio));
}
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
void ath9k_enable_rfkill(struct ath_hal *ah)
{
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
AR_GPIO_INPUT_MUX2_RFSILENT);
ath9k_hw_cfg_gpio_input(ah, ah->ah_rfkill_gpio);
REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
}
#endif
int ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg)
{
struct ath9k_channel *chan = ah->ah_curchan;
const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
u16 ant_config;
u32 halNumAntConfig;
halNumAntConfig = IS_CHAN_2GHZ(chan) ?
pCap->num_antcfg_2ghz : pCap->num_antcfg_5ghz;
if (cfg < halNumAntConfig) {
if (!ath9k_hw_get_eeprom_antenna_cfg(ah, chan,
cfg, &ant_config)) {
REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
return 0;
}
}
return -EINVAL;
}
u32 ath9k_hw_getdefantenna(struct ath_hal *ah)
{
return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
}
void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna)
{
REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
}
bool ath9k_hw_setantennaswitch(struct ath_hal *ah,
enum ath9k_ant_setting settings,
struct ath9k_channel *chan,
u8 *tx_chainmask,
u8 *rx_chainmask,
u8 *antenna_cfgd)
{
struct ath_hal_5416 *ahp = AH5416(ah);
static u8 tx_chainmask_cfg, rx_chainmask_cfg;
if (AR_SREV_9280(ah)) {
if (!tx_chainmask_cfg) {
tx_chainmask_cfg = *tx_chainmask;
rx_chainmask_cfg = *rx_chainmask;
}
switch (settings) {
case ATH9K_ANT_FIXED_A:
*tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
*rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
*antenna_cfgd = true;
break;
case ATH9K_ANT_FIXED_B:
if (ah->ah_caps.tx_chainmask >
ATH9K_ANTENNA1_CHAINMASK) {
*tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
}
*rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
*antenna_cfgd = true;
break;
case ATH9K_ANT_VARIABLE:
*tx_chainmask = tx_chainmask_cfg;
*rx_chainmask = rx_chainmask_cfg;
*antenna_cfgd = true;
break;
default:
break;
}
} else {
ahp->ah_diversityControl = settings;
}
return true;
}
/*********************/
/* General Operation */
/*********************/
u32 ath9k_hw_getrxfilter(struct ath_hal *ah)
{
u32 bits = REG_READ(ah, AR_RX_FILTER);
u32 phybits = REG_READ(ah, AR_PHY_ERR);
if (phybits & AR_PHY_ERR_RADAR)
bits |= ATH9K_RX_FILTER_PHYRADAR;
if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
bits |= ATH9K_RX_FILTER_PHYERR;
return bits;
}
void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits)
{
u32 phybits;
REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
phybits = 0;
if (bits & ATH9K_RX_FILTER_PHYRADAR)
phybits |= AR_PHY_ERR_RADAR;
if (bits & ATH9K_RX_FILTER_PHYERR)
phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
REG_WRITE(ah, AR_PHY_ERR, phybits);
if (phybits)
REG_WRITE(ah, AR_RXCFG,
REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
else
REG_WRITE(ah, AR_RXCFG,
REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
}
bool ath9k_hw_phy_disable(struct ath_hal *ah)
{
return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
}
bool ath9k_hw_disable(struct ath_hal *ah)
{
if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
return false;
return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
}
bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit)
{
struct ath9k_channel *chan = ah->ah_curchan;
struct ieee80211_channel *channel = chan->chan;
ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER);
if (ath9k_hw_set_txpower(ah, chan,
ath9k_regd_get_ctl(ah, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) ah->ah_powerLimit)) != 0)
return false;
return true;
}
void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(mac, ahp->ah_macaddr, ETH_ALEN);
}
bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(ahp->ah_macaddr, mac, ETH_ALEN);
return true;
}
void ath9k_hw_setopmode(struct ath_hal *ah)
{
ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
}
void ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0, u32 filter1)
{
REG_WRITE(ah, AR_MCAST_FIL0, filter0);
REG_WRITE(ah, AR_MCAST_FIL1, filter1);
}
void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(mask, ahp->ah_bssidmask, ETH_ALEN);
}
bool ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(ahp->ah_bssidmask, mask, ETH_ALEN);
REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
return true;
}
void ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid, u16 assocId)
{
struct ath_hal_5416 *ahp = AH5416(ah);
memcpy(ahp->ah_bssid, bssid, ETH_ALEN);
ahp->ah_assocId = assocId;
REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
((assocId & 0x3fff) << AR_BSS_ID1_AID_S));
}
u64 ath9k_hw_gettsf64(struct ath_hal *ah)
{
u64 tsf;
tsf = REG_READ(ah, AR_TSF_U32);
tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
return tsf;
}
void ath9k_hw_settsf64(struct ath_hal *ah, u64 tsf64)
{
REG_WRITE(ah, AR_TSF_L32, 0x00000000);
REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
}
void ath9k_hw_reset_tsf(struct ath_hal *ah)
{
int count;
count = 0;
while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
count++;
if (count > 10) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET,
"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
break;
}
udelay(10);
}
REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
}
bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (setting)
ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
else
ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
return true;
}
bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us)
{
struct ath_hal_5416 *ahp = AH5416(ah);
if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
ahp->ah_slottime = (u32) -1;
return false;
} else {
REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
ahp->ah_slottime = us;
return true;
}
}
void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode)
{
u32 macmode;
if (mode == ATH9K_HT_MACMODE_2040 &&
!ah->ah_config.cwm_ignore_extcca)
macmode = AR_2040_JOINED_RX_CLEAR;
else
macmode = 0;
REG_WRITE(ah, AR_2040_MODE, macmode);
}
/***************************/
/* Bluetooth Coexistence */
/***************************/
void ath9k_hw_btcoex_enable(struct ath_hal *ah)
{
/* connect bt_active to baseband */
REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
(AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
/* Set input mux for bt_active to gpio pin */
REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
AR_GPIO_INPUT_MUX1_BT_ACTIVE,
ah->ah_btactive_gpio);
/* Configure the desired gpio port for input */
ath9k_hw_cfg_gpio_input(ah, ah->ah_btactive_gpio);
/* Configure the desired GPIO port for TX_FRAME output */
ath9k_hw_cfg_output(ah, ah->ah_wlanactive_gpio,
AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
}