kernel-fxtec-pro1x/net/ieee80211/ieee80211_rx.c
David S. Miller 21f644f3ea [NET]: Undo code bloat in hot paths due to print_mac().
If print_mac() is used inside of a pr_debug() the compiler
can't see that the call is redundant so still performs it
even of pr_debug() ends up being a nop.

So don't use print_mac() in such cases in hot code paths,
use MAC_FMT et al. instead.

As noted by Joe Perches, pr_debug() could be modified to
handle this better, but that is a change to an interface
used by the entire kernel and thus needs to be validated
carefully.  This here is thus the less risky fix for
2.6.25

Signed-off-by: David S. Miller <davem@davemloft.net>
2008-04-08 16:50:44 -07:00

1831 lines
52 KiB
C

/*
* Original code based Host AP (software wireless LAN access point) driver
* for Intersil Prism2/2.5/3 - hostap.o module, common routines
*
* Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
* <j@w1.fi>
* Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
* Copyright (c) 2004-2005, Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. See README and COPYING for
* more details.
*/
#include <linux/compiler.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/in6.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/proc_fs.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/tcp.h>
#include <linux/types.h>
#include <linux/wireless.h>
#include <linux/etherdevice.h>
#include <asm/uaccess.h>
#include <linux/ctype.h>
#include <net/ieee80211.h>
static void ieee80211_monitor_rx(struct ieee80211_device *ieee,
struct sk_buff *skb,
struct ieee80211_rx_stats *rx_stats)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
u16 fc = le16_to_cpu(hdr->frame_ctl);
skb->dev = ieee->dev;
skb_reset_mac_header(skb);
skb_pull(skb, ieee80211_get_hdrlen(fc));
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_80211_RAW);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
/* Called only as a tasklet (software IRQ) */
static struct ieee80211_frag_entry *ieee80211_frag_cache_find(struct
ieee80211_device
*ieee,
unsigned int seq,
unsigned int frag,
u8 * src,
u8 * dst)
{
struct ieee80211_frag_entry *entry;
int i;
for (i = 0; i < IEEE80211_FRAG_CACHE_LEN; i++) {
entry = &ieee->frag_cache[i];
if (entry->skb != NULL &&
time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
IEEE80211_DEBUG_FRAG("expiring fragment cache entry "
"seq=%u last_frag=%u\n",
entry->seq, entry->last_frag);
dev_kfree_skb_any(entry->skb);
entry->skb = NULL;
}
if (entry->skb != NULL && entry->seq == seq &&
(entry->last_frag + 1 == frag || frag == -1) &&
!compare_ether_addr(entry->src_addr, src) &&
!compare_ether_addr(entry->dst_addr, dst))
return entry;
}
return NULL;
}
/* Called only as a tasklet (software IRQ) */
static struct sk_buff *ieee80211_frag_cache_get(struct ieee80211_device *ieee,
struct ieee80211_hdr_4addr *hdr)
{
struct sk_buff *skb = NULL;
u16 sc;
unsigned int frag, seq;
struct ieee80211_frag_entry *entry;
sc = le16_to_cpu(hdr->seq_ctl);
frag = WLAN_GET_SEQ_FRAG(sc);
seq = WLAN_GET_SEQ_SEQ(sc);
if (frag == 0) {
/* Reserve enough space to fit maximum frame length */
skb = dev_alloc_skb(ieee->dev->mtu +
sizeof(struct ieee80211_hdr_4addr) +
8 /* LLC */ +
2 /* alignment */ +
8 /* WEP */ + ETH_ALEN /* WDS */ );
if (skb == NULL)
return NULL;
entry = &ieee->frag_cache[ieee->frag_next_idx];
ieee->frag_next_idx++;
if (ieee->frag_next_idx >= IEEE80211_FRAG_CACHE_LEN)
ieee->frag_next_idx = 0;
if (entry->skb != NULL)
dev_kfree_skb_any(entry->skb);
entry->first_frag_time = jiffies;
entry->seq = seq;
entry->last_frag = frag;
entry->skb = skb;
memcpy(entry->src_addr, hdr->addr2, ETH_ALEN);
memcpy(entry->dst_addr, hdr->addr1, ETH_ALEN);
} else {
/* received a fragment of a frame for which the head fragment
* should have already been received */
entry = ieee80211_frag_cache_find(ieee, seq, frag, hdr->addr2,
hdr->addr1);
if (entry != NULL) {
entry->last_frag = frag;
skb = entry->skb;
}
}
return skb;
}
/* Called only as a tasklet (software IRQ) */
static int ieee80211_frag_cache_invalidate(struct ieee80211_device *ieee,
struct ieee80211_hdr_4addr *hdr)
{
u16 sc;
unsigned int seq;
struct ieee80211_frag_entry *entry;
sc = le16_to_cpu(hdr->seq_ctl);
seq = WLAN_GET_SEQ_SEQ(sc);
entry = ieee80211_frag_cache_find(ieee, seq, -1, hdr->addr2,
hdr->addr1);
if (entry == NULL) {
IEEE80211_DEBUG_FRAG("could not invalidate fragment cache "
"entry (seq=%u)\n", seq);
return -1;
}
entry->skb = NULL;
return 0;
}
#ifdef NOT_YET
/* ieee80211_rx_frame_mgtmt
*
* Responsible for handling management control frames
*
* Called by ieee80211_rx */
static int
ieee80211_rx_frame_mgmt(struct ieee80211_device *ieee, struct sk_buff *skb,
struct ieee80211_rx_stats *rx_stats, u16 type,
u16 stype)
{
if (ieee->iw_mode == IW_MODE_MASTER) {
printk(KERN_DEBUG "%s: Master mode not yet suppported.\n",
ieee->dev->name);
return 0;
/*
hostap_update_sta_ps(ieee, (struct hostap_ieee80211_hdr_4addr *)
skb->data);*/
}
if (ieee->hostapd && type == WLAN_FC_TYPE_MGMT) {
if (stype == WLAN_FC_STYPE_BEACON &&
ieee->iw_mode == IW_MODE_MASTER) {
struct sk_buff *skb2;
/* Process beacon frames also in kernel driver to
* update STA(AP) table statistics */
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2)
hostap_rx(skb2->dev, skb2, rx_stats);
}
/* send management frames to the user space daemon for
* processing */
ieee->apdevstats.rx_packets++;
ieee->apdevstats.rx_bytes += skb->len;
prism2_rx_80211(ieee->apdev, skb, rx_stats, PRISM2_RX_MGMT);
return 0;
}
if (ieee->iw_mode == IW_MODE_MASTER) {
if (type != WLAN_FC_TYPE_MGMT && type != WLAN_FC_TYPE_CTRL) {
printk(KERN_DEBUG "%s: unknown management frame "
"(type=0x%02x, stype=0x%02x) dropped\n",
skb->dev->name, type, stype);
return -1;
}
hostap_rx(skb->dev, skb, rx_stats);
return 0;
}
printk(KERN_DEBUG "%s: hostap_rx_frame_mgmt: management frame "
"received in non-Host AP mode\n", skb->dev->name);
return -1;
}
#endif
/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
static unsigned char rfc1042_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
static unsigned char bridge_tunnel_header[] =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
/* No encapsulation header if EtherType < 0x600 (=length) */
/* Called by ieee80211_rx_frame_decrypt */
static int ieee80211_is_eapol_frame(struct ieee80211_device *ieee,
struct sk_buff *skb)
{
struct net_device *dev = ieee->dev;
u16 fc, ethertype;
struct ieee80211_hdr_3addr *hdr;
u8 *pos;
if (skb->len < 24)
return 0;
hdr = (struct ieee80211_hdr_3addr *)skb->data;
fc = le16_to_cpu(hdr->frame_ctl);
/* check that the frame is unicast frame to us */
if ((fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) ==
IEEE80211_FCTL_TODS &&
!compare_ether_addr(hdr->addr1, dev->dev_addr) &&
!compare_ether_addr(hdr->addr3, dev->dev_addr)) {
/* ToDS frame with own addr BSSID and DA */
} else if ((fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) ==
IEEE80211_FCTL_FROMDS &&
!compare_ether_addr(hdr->addr1, dev->dev_addr)) {
/* FromDS frame with own addr as DA */
} else
return 0;
if (skb->len < 24 + 8)
return 0;
/* check for port access entity Ethernet type */
pos = skb->data + 24;
ethertype = (pos[6] << 8) | pos[7];
if (ethertype == ETH_P_PAE)
return 1;
return 0;
}
/* Called only as a tasklet (software IRQ), by ieee80211_rx */
static int
ieee80211_rx_frame_decrypt(struct ieee80211_device *ieee, struct sk_buff *skb,
struct ieee80211_crypt_data *crypt)
{
struct ieee80211_hdr_3addr *hdr;
int res, hdrlen;
if (crypt == NULL || crypt->ops->decrypt_mpdu == NULL)
return 0;
hdr = (struct ieee80211_hdr_3addr *)skb->data;
hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
atomic_inc(&crypt->refcnt);
res = crypt->ops->decrypt_mpdu(skb, hdrlen, crypt->priv);
atomic_dec(&crypt->refcnt);
if (res < 0) {
IEEE80211_DEBUG_DROP("decryption failed (SA=" MAC_FMT
") res=%d\n",
hdr->addr2[0], hdr->addr2[1],
hdr->addr2[2], hdr->addr2[3],
hdr->addr2[4], hdr->addr2[5],
res);
if (res == -2)
IEEE80211_DEBUG_DROP("Decryption failed ICV "
"mismatch (key %d)\n",
skb->data[hdrlen + 3] >> 6);
ieee->ieee_stats.rx_discards_undecryptable++;
return -1;
}
return res;
}
/* Called only as a tasklet (software IRQ), by ieee80211_rx */
static int
ieee80211_rx_frame_decrypt_msdu(struct ieee80211_device *ieee,
struct sk_buff *skb, int keyidx,
struct ieee80211_crypt_data *crypt)
{
struct ieee80211_hdr_3addr *hdr;
int res, hdrlen;
if (crypt == NULL || crypt->ops->decrypt_msdu == NULL)
return 0;
hdr = (struct ieee80211_hdr_3addr *)skb->data;
hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
atomic_inc(&crypt->refcnt);
res = crypt->ops->decrypt_msdu(skb, keyidx, hdrlen, crypt->priv);
atomic_dec(&crypt->refcnt);
if (res < 0) {
printk(KERN_DEBUG "%s: MSDU decryption/MIC verification failed"
" (SA=" MAC_FMT " keyidx=%d)\n",
ieee->dev->name,
hdr->addr2[0], hdr->addr2[1],
hdr->addr2[2], hdr->addr2[3],
hdr->addr2[4], hdr->addr2[5],
keyidx);
return -1;
}
return 0;
}
/* All received frames are sent to this function. @skb contains the frame in
* IEEE 802.11 format, i.e., in the format it was sent over air.
* This function is called only as a tasklet (software IRQ). */
int ieee80211_rx(struct ieee80211_device *ieee, struct sk_buff *skb,
struct ieee80211_rx_stats *rx_stats)
{
struct net_device *dev = ieee->dev;
struct ieee80211_hdr_4addr *hdr;
size_t hdrlen;
u16 fc, type, stype, sc;
struct net_device_stats *stats;
unsigned int frag;
u8 *payload;
u16 ethertype;
#ifdef NOT_YET
struct net_device *wds = NULL;
struct sk_buff *skb2 = NULL;
struct net_device *wds = NULL;
int frame_authorized = 0;
int from_assoc_ap = 0;
void *sta = NULL;
#endif
u8 dst[ETH_ALEN];
u8 src[ETH_ALEN];
struct ieee80211_crypt_data *crypt = NULL;
int keyidx = 0;
int can_be_decrypted = 0;
DECLARE_MAC_BUF(mac);
hdr = (struct ieee80211_hdr_4addr *)skb->data;
stats = &ieee->stats;
if (skb->len < 10) {
printk(KERN_INFO "%s: SKB length < 10\n", dev->name);
goto rx_dropped;
}
fc = le16_to_cpu(hdr->frame_ctl);
type = WLAN_FC_GET_TYPE(fc);
stype = WLAN_FC_GET_STYPE(fc);
sc = le16_to_cpu(hdr->seq_ctl);
frag = WLAN_GET_SEQ_FRAG(sc);
hdrlen = ieee80211_get_hdrlen(fc);
if (skb->len < hdrlen) {
printk(KERN_INFO "%s: invalid SKB length %d\n",
dev->name, skb->len);
goto rx_dropped;
}
/* Put this code here so that we avoid duplicating it in all
* Rx paths. - Jean II */
#ifdef CONFIG_WIRELESS_EXT
#ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */
/* If spy monitoring on */
if (ieee->spy_data.spy_number > 0) {
struct iw_quality wstats;
wstats.updated = 0;
if (rx_stats->mask & IEEE80211_STATMASK_RSSI) {
wstats.level = rx_stats->rssi;
wstats.updated |= IW_QUAL_LEVEL_UPDATED;
} else
wstats.updated |= IW_QUAL_LEVEL_INVALID;
if (rx_stats->mask & IEEE80211_STATMASK_NOISE) {
wstats.noise = rx_stats->noise;
wstats.updated |= IW_QUAL_NOISE_UPDATED;
} else
wstats.updated |= IW_QUAL_NOISE_INVALID;
if (rx_stats->mask & IEEE80211_STATMASK_SIGNAL) {
wstats.qual = rx_stats->signal;
wstats.updated |= IW_QUAL_QUAL_UPDATED;
} else
wstats.updated |= IW_QUAL_QUAL_INVALID;
/* Update spy records */
wireless_spy_update(ieee->dev, hdr->addr2, &wstats);
}
#endif /* IW_WIRELESS_SPY */
#endif /* CONFIG_WIRELESS_EXT */
#ifdef NOT_YET
hostap_update_rx_stats(local->ap, hdr, rx_stats);
#endif
if (ieee->iw_mode == IW_MODE_MONITOR) {
stats->rx_packets++;
stats->rx_bytes += skb->len;
ieee80211_monitor_rx(ieee, skb, rx_stats);
return 1;
}
can_be_decrypted = (is_multicast_ether_addr(hdr->addr1) ||
is_broadcast_ether_addr(hdr->addr2)) ?
ieee->host_mc_decrypt : ieee->host_decrypt;
if (can_be_decrypted) {
if (skb->len >= hdrlen + 3) {
/* Top two-bits of byte 3 are the key index */
keyidx = skb->data[hdrlen + 3] >> 6;
}
/* ieee->crypt[] is WEP_KEY (4) in length. Given that keyidx
* is only allowed 2-bits of storage, no value of keyidx can
* be provided via above code that would result in keyidx
* being out of range */
crypt = ieee->crypt[keyidx];
#ifdef NOT_YET
sta = NULL;
/* Use station specific key to override default keys if the
* receiver address is a unicast address ("individual RA"). If
* bcrx_sta_key parameter is set, station specific key is used
* even with broad/multicast targets (this is against IEEE
* 802.11, but makes it easier to use different keys with
* stations that do not support WEP key mapping). */
if (!(hdr->addr1[0] & 0x01) || local->bcrx_sta_key)
(void)hostap_handle_sta_crypto(local, hdr, &crypt,
&sta);
#endif
/* allow NULL decrypt to indicate an station specific override
* for default encryption */
if (crypt && (crypt->ops == NULL ||
crypt->ops->decrypt_mpdu == NULL))
crypt = NULL;
if (!crypt && (fc & IEEE80211_FCTL_PROTECTED)) {
/* This seems to be triggered by some (multicast?)
* frames from other than current BSS, so just drop the
* frames silently instead of filling system log with
* these reports. */
IEEE80211_DEBUG_DROP("Decryption failed (not set)"
" (SA=" MAC_FMT ")\n",
hdr->addr2[0], hdr->addr2[1],
hdr->addr2[2], hdr->addr2[3],
hdr->addr2[4], hdr->addr2[5]);
ieee->ieee_stats.rx_discards_undecryptable++;
goto rx_dropped;
}
}
#ifdef NOT_YET
if (type != WLAN_FC_TYPE_DATA) {
if (type == WLAN_FC_TYPE_MGMT && stype == WLAN_FC_STYPE_AUTH &&
fc & IEEE80211_FCTL_PROTECTED && ieee->host_decrypt &&
(keyidx = hostap_rx_frame_decrypt(ieee, skb, crypt)) < 0) {
printk(KERN_DEBUG "%s: failed to decrypt mgmt::auth "
"from " MAC_FMT "\n", dev->name,
hdr->addr2[0], hdr->addr2[1],
hdr->addr2[2], hdr->addr2[3],
hdr->addr2[4], hdr->addr2[5]);
/* TODO: could inform hostapd about this so that it
* could send auth failure report */
goto rx_dropped;
}
if (ieee80211_rx_frame_mgmt(ieee, skb, rx_stats, type, stype))
goto rx_dropped;
else
goto rx_exit;
}
#endif
/* drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.29) */
if (sc == ieee->prev_seq_ctl)
goto rx_dropped;
else
ieee->prev_seq_ctl = sc;
/* Data frame - extract src/dst addresses */
if (skb->len < IEEE80211_3ADDR_LEN)
goto rx_dropped;
switch (fc & (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) {
case IEEE80211_FCTL_FROMDS:
memcpy(dst, hdr->addr1, ETH_ALEN);
memcpy(src, hdr->addr3, ETH_ALEN);
break;
case IEEE80211_FCTL_TODS:
memcpy(dst, hdr->addr3, ETH_ALEN);
memcpy(src, hdr->addr2, ETH_ALEN);
break;
case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS:
if (skb->len < IEEE80211_4ADDR_LEN)
goto rx_dropped;
memcpy(dst, hdr->addr3, ETH_ALEN);
memcpy(src, hdr->addr4, ETH_ALEN);
break;
case 0:
memcpy(dst, hdr->addr1, ETH_ALEN);
memcpy(src, hdr->addr2, ETH_ALEN);
break;
}
#ifdef NOT_YET
if (hostap_rx_frame_wds(ieee, hdr, fc, &wds))
goto rx_dropped;
if (wds) {
skb->dev = dev = wds;
stats = hostap_get_stats(dev);
}
if (ieee->iw_mode == IW_MODE_MASTER && !wds &&
(fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) ==
IEEE80211_FCTL_FROMDS && ieee->stadev
&& !compare_ether_addr(hdr->addr2, ieee->assoc_ap_addr)) {
/* Frame from BSSID of the AP for which we are a client */
skb->dev = dev = ieee->stadev;
stats = hostap_get_stats(dev);
from_assoc_ap = 1;
}
#endif
dev->last_rx = jiffies;
#ifdef NOT_YET
if ((ieee->iw_mode == IW_MODE_MASTER ||
ieee->iw_mode == IW_MODE_REPEAT) && !from_assoc_ap) {
switch (hostap_handle_sta_rx(ieee, dev, skb, rx_stats,
wds != NULL)) {
case AP_RX_CONTINUE_NOT_AUTHORIZED:
frame_authorized = 0;
break;
case AP_RX_CONTINUE:
frame_authorized = 1;
break;
case AP_RX_DROP:
goto rx_dropped;
case AP_RX_EXIT:
goto rx_exit;
}
}
#endif
/* Nullfunc frames may have PS-bit set, so they must be passed to
* hostap_handle_sta_rx() before being dropped here. */
stype &= ~IEEE80211_STYPE_QOS_DATA;
if (stype != IEEE80211_STYPE_DATA &&
stype != IEEE80211_STYPE_DATA_CFACK &&
stype != IEEE80211_STYPE_DATA_CFPOLL &&
stype != IEEE80211_STYPE_DATA_CFACKPOLL) {
if (stype != IEEE80211_STYPE_NULLFUNC)
IEEE80211_DEBUG_DROP("RX: dropped data frame "
"with no data (type=0x%02x, "
"subtype=0x%02x, len=%d)\n",
type, stype, skb->len);
goto rx_dropped;
}
/* skb: hdr + (possibly fragmented, possibly encrypted) payload */
if ((fc & IEEE80211_FCTL_PROTECTED) && can_be_decrypted &&
(keyidx = ieee80211_rx_frame_decrypt(ieee, skb, crypt)) < 0)
goto rx_dropped;
hdr = (struct ieee80211_hdr_4addr *)skb->data;
/* skb: hdr + (possibly fragmented) plaintext payload */
// PR: FIXME: hostap has additional conditions in the "if" below:
// ieee->host_decrypt && (fc & IEEE80211_FCTL_PROTECTED) &&
if ((frag != 0) || (fc & IEEE80211_FCTL_MOREFRAGS)) {
int flen;
struct sk_buff *frag_skb = ieee80211_frag_cache_get(ieee, hdr);
IEEE80211_DEBUG_FRAG("Rx Fragment received (%u)\n", frag);
if (!frag_skb) {
IEEE80211_DEBUG(IEEE80211_DL_RX | IEEE80211_DL_FRAG,
"Rx cannot get skb from fragment "
"cache (morefrag=%d seq=%u frag=%u)\n",
(fc & IEEE80211_FCTL_MOREFRAGS) != 0,
WLAN_GET_SEQ_SEQ(sc), frag);
goto rx_dropped;
}
flen = skb->len;
if (frag != 0)
flen -= hdrlen;
if (frag_skb->tail + flen > frag_skb->end) {
printk(KERN_WARNING "%s: host decrypted and "
"reassembled frame did not fit skb\n",
dev->name);
ieee80211_frag_cache_invalidate(ieee, hdr);
goto rx_dropped;
}
if (frag == 0) {
/* copy first fragment (including full headers) into
* beginning of the fragment cache skb */
skb_copy_from_linear_data(skb, skb_put(frag_skb, flen), flen);
} else {
/* append frame payload to the end of the fragment
* cache skb */
skb_copy_from_linear_data_offset(skb, hdrlen,
skb_put(frag_skb, flen), flen);
}
dev_kfree_skb_any(skb);
skb = NULL;
if (fc & IEEE80211_FCTL_MOREFRAGS) {
/* more fragments expected - leave the skb in fragment
* cache for now; it will be delivered to upper layers
* after all fragments have been received */
goto rx_exit;
}
/* this was the last fragment and the frame will be
* delivered, so remove skb from fragment cache */
skb = frag_skb;
hdr = (struct ieee80211_hdr_4addr *)skb->data;
ieee80211_frag_cache_invalidate(ieee, hdr);
}
/* skb: hdr + (possible reassembled) full MSDU payload; possibly still
* encrypted/authenticated */
if ((fc & IEEE80211_FCTL_PROTECTED) && can_be_decrypted &&
ieee80211_rx_frame_decrypt_msdu(ieee, skb, keyidx, crypt))
goto rx_dropped;
hdr = (struct ieee80211_hdr_4addr *)skb->data;
if (crypt && !(fc & IEEE80211_FCTL_PROTECTED) && !ieee->open_wep) {
if ( /*ieee->ieee802_1x && */
ieee80211_is_eapol_frame(ieee, skb)) {
/* pass unencrypted EAPOL frames even if encryption is
* configured */
} else {
IEEE80211_DEBUG_DROP("encryption configured, but RX "
"frame not encrypted (SA="
MAC_FMT ")\n",
hdr->addr2[0], hdr->addr2[1],
hdr->addr2[2], hdr->addr2[3],
hdr->addr2[4], hdr->addr2[5]);
goto rx_dropped;
}
}
if (crypt && !(fc & IEEE80211_FCTL_PROTECTED) && !ieee->open_wep &&
!ieee80211_is_eapol_frame(ieee, skb)) {
IEEE80211_DEBUG_DROP("dropped unencrypted RX data "
"frame from " MAC_FMT
" (drop_unencrypted=1)\n",
hdr->addr2[0], hdr->addr2[1],
hdr->addr2[2], hdr->addr2[3],
hdr->addr2[4], hdr->addr2[5]);
goto rx_dropped;
}
/* If the frame was decrypted in hardware, we may need to strip off
* any security data (IV, ICV, etc) that was left behind */
if (!can_be_decrypted && (fc & IEEE80211_FCTL_PROTECTED) &&
ieee->host_strip_iv_icv) {
int trimlen = 0;
/* Top two-bits of byte 3 are the key index */
if (skb->len >= hdrlen + 3)
keyidx = skb->data[hdrlen + 3] >> 6;
/* To strip off any security data which appears before the
* payload, we simply increase hdrlen (as the header gets
* chopped off immediately below). For the security data which
* appears after the payload, we use skb_trim. */
switch (ieee->sec.encode_alg[keyidx]) {
case SEC_ALG_WEP:
/* 4 byte IV */
hdrlen += 4;
/* 4 byte ICV */
trimlen = 4;
break;
case SEC_ALG_TKIP:
/* 4 byte IV, 4 byte ExtIV */
hdrlen += 8;
/* 8 byte MIC, 4 byte ICV */
trimlen = 12;
break;
case SEC_ALG_CCMP:
/* 8 byte CCMP header */
hdrlen += 8;
/* 8 byte MIC */
trimlen = 8;
break;
}
if (skb->len < trimlen)
goto rx_dropped;
__skb_trim(skb, skb->len - trimlen);
if (skb->len < hdrlen)
goto rx_dropped;
}
/* skb: hdr + (possible reassembled) full plaintext payload */
payload = skb->data + hdrlen;
ethertype = (payload[6] << 8) | payload[7];
#ifdef NOT_YET
/* If IEEE 802.1X is used, check whether the port is authorized to send
* the received frame. */
if (ieee->ieee802_1x && ieee->iw_mode == IW_MODE_MASTER) {
if (ethertype == ETH_P_PAE) {
printk(KERN_DEBUG "%s: RX: IEEE 802.1X frame\n",
dev->name);
if (ieee->hostapd && ieee->apdev) {
/* Send IEEE 802.1X frames to the user
* space daemon for processing */
prism2_rx_80211(ieee->apdev, skb, rx_stats,
PRISM2_RX_MGMT);
ieee->apdevstats.rx_packets++;
ieee->apdevstats.rx_bytes += skb->len;
goto rx_exit;
}
} else if (!frame_authorized) {
printk(KERN_DEBUG "%s: dropped frame from "
"unauthorized port (IEEE 802.1X): "
"ethertype=0x%04x\n", dev->name, ethertype);
goto rx_dropped;
}
}
#endif
/* convert hdr + possible LLC headers into Ethernet header */
if (skb->len - hdrlen >= 8 &&
((memcmp(payload, rfc1042_header, SNAP_SIZE) == 0 &&
ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
memcmp(payload, bridge_tunnel_header, SNAP_SIZE) == 0)) {
/* remove RFC1042 or Bridge-Tunnel encapsulation and
* replace EtherType */
skb_pull(skb, hdrlen + SNAP_SIZE);
memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
} else {
__be16 len;
/* Leave Ethernet header part of hdr and full payload */
skb_pull(skb, hdrlen);
len = htons(skb->len);
memcpy(skb_push(skb, 2), &len, 2);
memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
}
#ifdef NOT_YET
if (wds && ((fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) ==
IEEE80211_FCTL_TODS) && skb->len >= ETH_HLEN + ETH_ALEN) {
/* Non-standard frame: get addr4 from its bogus location after
* the payload */
skb_copy_to_linear_data_offset(skb, ETH_ALEN,
skb->data + skb->len - ETH_ALEN,
ETH_ALEN);
skb_trim(skb, skb->len - ETH_ALEN);
}
#endif
stats->rx_packets++;
stats->rx_bytes += skb->len;
#ifdef NOT_YET
if (ieee->iw_mode == IW_MODE_MASTER && !wds && ieee->ap->bridge_packets) {
if (dst[0] & 0x01) {
/* copy multicast frame both to the higher layers and
* to the wireless media */
ieee->ap->bridged_multicast++;
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2 == NULL)
printk(KERN_DEBUG "%s: skb_clone failed for "
"multicast frame\n", dev->name);
} else if (hostap_is_sta_assoc(ieee->ap, dst)) {
/* send frame directly to the associated STA using
* wireless media and not passing to higher layers */
ieee->ap->bridged_unicast++;
skb2 = skb;
skb = NULL;
}
}
if (skb2 != NULL) {
/* send to wireless media */
skb2->dev = dev;
skb2->protocol = htons(ETH_P_802_3);
skb_reset_mac_header(skb2);
skb_reset_network_header(skb2);
/* skb2->network_header += ETH_HLEN; */
dev_queue_xmit(skb2);
}
#endif
if (skb) {
skb->protocol = eth_type_trans(skb, dev);
memset(skb->cb, 0, sizeof(skb->cb));
skb->ip_summed = CHECKSUM_NONE; /* 802.11 crc not sufficient */
if (netif_rx(skb) == NET_RX_DROP) {
/* netif_rx always succeeds, but it might drop
* the packet. If it drops the packet, we log that
* in our stats. */
IEEE80211_DEBUG_DROP
("RX: netif_rx dropped the packet\n");
stats->rx_dropped++;
}
}
rx_exit:
#ifdef NOT_YET
if (sta)
hostap_handle_sta_release(sta);
#endif
return 1;
rx_dropped:
stats->rx_dropped++;
/* Returning 0 indicates to caller that we have not handled the SKB--
* so it is still allocated and can be used again by underlying
* hardware as a DMA target */
return 0;
}
/* Filter out unrelated packets, call ieee80211_rx[_mgt]
* This function takes over the skb, it should not be used again after calling
* this function. */
void ieee80211_rx_any(struct ieee80211_device *ieee,
struct sk_buff *skb, struct ieee80211_rx_stats *stats)
{
struct ieee80211_hdr_4addr *hdr;
int is_packet_for_us;
u16 fc;
if (ieee->iw_mode == IW_MODE_MONITOR) {
if (!ieee80211_rx(ieee, skb, stats))
dev_kfree_skb_irq(skb);
return;
}
if (skb->len < sizeof(struct ieee80211_hdr))
goto drop_free;
hdr = (struct ieee80211_hdr_4addr *)skb->data;
fc = le16_to_cpu(hdr->frame_ctl);
if ((fc & IEEE80211_FCTL_VERS) != 0)
goto drop_free;
switch (fc & IEEE80211_FCTL_FTYPE) {
case IEEE80211_FTYPE_MGMT:
if (skb->len < sizeof(struct ieee80211_hdr_3addr))
goto drop_free;
ieee80211_rx_mgt(ieee, hdr, stats);
dev_kfree_skb_irq(skb);
return;
case IEEE80211_FTYPE_DATA:
break;
case IEEE80211_FTYPE_CTL:
return;
default:
return;
}
is_packet_for_us = 0;
switch (ieee->iw_mode) {
case IW_MODE_ADHOC:
/* our BSS and not from/to DS */
if (memcmp(hdr->addr3, ieee->bssid, ETH_ALEN) == 0)
if ((fc & (IEEE80211_FCTL_TODS+IEEE80211_FCTL_FROMDS)) == 0) {
/* promisc: get all */
if (ieee->dev->flags & IFF_PROMISC)
is_packet_for_us = 1;
/* to us */
else if (memcmp(hdr->addr1, ieee->dev->dev_addr, ETH_ALEN) == 0)
is_packet_for_us = 1;
/* mcast */
else if (is_multicast_ether_addr(hdr->addr1))
is_packet_for_us = 1;
}
break;
case IW_MODE_INFRA:
/* our BSS (== from our AP) and from DS */
if (memcmp(hdr->addr2, ieee->bssid, ETH_ALEN) == 0)
if ((fc & (IEEE80211_FCTL_TODS+IEEE80211_FCTL_FROMDS)) == IEEE80211_FCTL_FROMDS) {
/* promisc: get all */
if (ieee->dev->flags & IFF_PROMISC)
is_packet_for_us = 1;
/* to us */
else if (memcmp(hdr->addr1, ieee->dev->dev_addr, ETH_ALEN) == 0)
is_packet_for_us = 1;
/* mcast */
else if (is_multicast_ether_addr(hdr->addr1)) {
/* not our own packet bcasted from AP */
if (memcmp(hdr->addr3, ieee->dev->dev_addr, ETH_ALEN))
is_packet_for_us = 1;
}
}
break;
default:
/* ? */
break;
}
if (is_packet_for_us)
if (!ieee80211_rx(ieee, skb, stats))
dev_kfree_skb_irq(skb);
return;
drop_free:
dev_kfree_skb_irq(skb);
ieee->stats.rx_dropped++;
return;
}
#define MGMT_FRAME_FIXED_PART_LENGTH 0x24
static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
/*
* Make ther structure we read from the beacon packet has
* the right values
*/
static int ieee80211_verify_qos_info(struct ieee80211_qos_information_element
*info_element, int sub_type)
{
if (info_element->qui_subtype != sub_type)
return -1;
if (memcmp(info_element->qui, qos_oui, QOS_OUI_LEN))
return -1;
if (info_element->qui_type != QOS_OUI_TYPE)
return -1;
if (info_element->version != QOS_VERSION_1)
return -1;
return 0;
}
/*
* Parse a QoS parameter element
*/
static int ieee80211_read_qos_param_element(struct ieee80211_qos_parameter_info
*element_param, struct ieee80211_info_element
*info_element)
{
int ret = 0;
u16 size = sizeof(struct ieee80211_qos_parameter_info) - 2;
if ((info_element == NULL) || (element_param == NULL))
return -1;
if (info_element->id == QOS_ELEMENT_ID && info_element->len == size) {
memcpy(element_param->info_element.qui, info_element->data,
info_element->len);
element_param->info_element.elementID = info_element->id;
element_param->info_element.length = info_element->len;
} else
ret = -1;
if (ret == 0)
ret = ieee80211_verify_qos_info(&element_param->info_element,
QOS_OUI_PARAM_SUB_TYPE);
return ret;
}
/*
* Parse a QoS information element
*/
static int ieee80211_read_qos_info_element(struct
ieee80211_qos_information_element
*element_info, struct ieee80211_info_element
*info_element)
{
int ret = 0;
u16 size = sizeof(struct ieee80211_qos_information_element) - 2;
if (element_info == NULL)
return -1;
if (info_element == NULL)
return -1;
if ((info_element->id == QOS_ELEMENT_ID) && (info_element->len == size)) {
memcpy(element_info->qui, info_element->data,
info_element->len);
element_info->elementID = info_element->id;
element_info->length = info_element->len;
} else
ret = -1;
if (ret == 0)
ret = ieee80211_verify_qos_info(element_info,
QOS_OUI_INFO_SUB_TYPE);
return ret;
}
/*
* Write QoS parameters from the ac parameters.
*/
static int ieee80211_qos_convert_ac_to_parameters(struct
ieee80211_qos_parameter_info
*param_elm, struct
ieee80211_qos_parameters
*qos_param)
{
int rc = 0;
int i;
struct ieee80211_qos_ac_parameter *ac_params;
u32 txop;
u8 cw_min;
u8 cw_max;
for (i = 0; i < QOS_QUEUE_NUM; i++) {
ac_params = &(param_elm->ac_params_record[i]);
qos_param->aifs[i] = (ac_params->aci_aifsn) & 0x0F;
qos_param->aifs[i] -= (qos_param->aifs[i] < 2) ? 0 : 2;
cw_min = ac_params->ecw_min_max & 0x0F;
qos_param->cw_min[i] = cpu_to_le16((1 << cw_min) - 1);
cw_max = (ac_params->ecw_min_max & 0xF0) >> 4;
qos_param->cw_max[i] = cpu_to_le16((1 << cw_max) - 1);
qos_param->flag[i] =
(ac_params->aci_aifsn & 0x10) ? 0x01 : 0x00;
txop = le16_to_cpu(ac_params->tx_op_limit) * 32;
qos_param->tx_op_limit[i] = cpu_to_le16(txop);
}
return rc;
}
/*
* we have a generic data element which it may contain QoS information or
* parameters element. check the information element length to decide
* which type to read
*/
static int ieee80211_parse_qos_info_param_IE(struct ieee80211_info_element
*info_element,
struct ieee80211_network *network)
{
int rc = 0;
struct ieee80211_qos_parameters *qos_param = NULL;
struct ieee80211_qos_information_element qos_info_element;
rc = ieee80211_read_qos_info_element(&qos_info_element, info_element);
if (rc == 0) {
network->qos_data.param_count = qos_info_element.ac_info & 0x0F;
network->flags |= NETWORK_HAS_QOS_INFORMATION;
} else {
struct ieee80211_qos_parameter_info param_element;
rc = ieee80211_read_qos_param_element(&param_element,
info_element);
if (rc == 0) {
qos_param = &(network->qos_data.parameters);
ieee80211_qos_convert_ac_to_parameters(&param_element,
qos_param);
network->flags |= NETWORK_HAS_QOS_PARAMETERS;
network->qos_data.param_count =
param_element.info_element.ac_info & 0x0F;
}
}
if (rc == 0) {
IEEE80211_DEBUG_QOS("QoS is supported\n");
network->qos_data.supported = 1;
}
return rc;
}
#ifdef CONFIG_IEEE80211_DEBUG
#define MFIE_STRING(x) case MFIE_TYPE_ ##x: return #x
static const char *get_info_element_string(u16 id)
{
switch (id) {
MFIE_STRING(SSID);
MFIE_STRING(RATES);
MFIE_STRING(FH_SET);
MFIE_STRING(DS_SET);
MFIE_STRING(CF_SET);
MFIE_STRING(TIM);
MFIE_STRING(IBSS_SET);
MFIE_STRING(COUNTRY);
MFIE_STRING(HOP_PARAMS);
MFIE_STRING(HOP_TABLE);
MFIE_STRING(REQUEST);
MFIE_STRING(CHALLENGE);
MFIE_STRING(POWER_CONSTRAINT);
MFIE_STRING(POWER_CAPABILITY);
MFIE_STRING(TPC_REQUEST);
MFIE_STRING(TPC_REPORT);
MFIE_STRING(SUPP_CHANNELS);
MFIE_STRING(CSA);
MFIE_STRING(MEASURE_REQUEST);
MFIE_STRING(MEASURE_REPORT);
MFIE_STRING(QUIET);
MFIE_STRING(IBSS_DFS);
MFIE_STRING(ERP_INFO);
MFIE_STRING(RSN);
MFIE_STRING(RATES_EX);
MFIE_STRING(GENERIC);
MFIE_STRING(QOS_PARAMETER);
default:
return "UNKNOWN";
}
}
#endif
static int ieee80211_parse_info_param(struct ieee80211_info_element
*info_element, u16 length,
struct ieee80211_network *network)
{
u8 i;
#ifdef CONFIG_IEEE80211_DEBUG
char rates_str[64];
char *p;
#endif
while (length >= sizeof(*info_element)) {
if (sizeof(*info_element) + info_element->len > length) {
IEEE80211_DEBUG_MGMT("Info elem: parse failed: "
"info_element->len + 2 > left : "
"info_element->len+2=%zd left=%d, id=%d.\n",
info_element->len +
sizeof(*info_element),
length, info_element->id);
/* We stop processing but don't return an error here
* because some misbehaviour APs break this rule. ie.
* Orinoco AP1000. */
break;
}
switch (info_element->id) {
case MFIE_TYPE_SSID:
if (ieee80211_is_empty_essid(info_element->data,
info_element->len)) {
network->flags |= NETWORK_EMPTY_ESSID;
break;
}
network->ssid_len = min(info_element->len,
(u8) IW_ESSID_MAX_SIZE);
memcpy(network->ssid, info_element->data,
network->ssid_len);
if (network->ssid_len < IW_ESSID_MAX_SIZE)
memset(network->ssid + network->ssid_len, 0,
IW_ESSID_MAX_SIZE - network->ssid_len);
IEEE80211_DEBUG_MGMT("MFIE_TYPE_SSID: '%s' len=%d.\n",
network->ssid, network->ssid_len);
break;
case MFIE_TYPE_RATES:
#ifdef CONFIG_IEEE80211_DEBUG
p = rates_str;
#endif
network->rates_len = min(info_element->len,
MAX_RATES_LENGTH);
for (i = 0; i < network->rates_len; i++) {
network->rates[i] = info_element->data[i];
#ifdef CONFIG_IEEE80211_DEBUG
p += snprintf(p, sizeof(rates_str) -
(p - rates_str), "%02X ",
network->rates[i]);
#endif
if (ieee80211_is_ofdm_rate
(info_element->data[i])) {
network->flags |= NETWORK_HAS_OFDM;
if (info_element->data[i] &
IEEE80211_BASIC_RATE_MASK)
network->flags &=
~NETWORK_HAS_CCK;
}
}
IEEE80211_DEBUG_MGMT("MFIE_TYPE_RATES: '%s' (%d)\n",
rates_str, network->rates_len);
break;
case MFIE_TYPE_RATES_EX:
#ifdef CONFIG_IEEE80211_DEBUG
p = rates_str;
#endif
network->rates_ex_len = min(info_element->len,
MAX_RATES_EX_LENGTH);
for (i = 0; i < network->rates_ex_len; i++) {
network->rates_ex[i] = info_element->data[i];
#ifdef CONFIG_IEEE80211_DEBUG
p += snprintf(p, sizeof(rates_str) -
(p - rates_str), "%02X ",
network->rates[i]);
#endif
if (ieee80211_is_ofdm_rate
(info_element->data[i])) {
network->flags |= NETWORK_HAS_OFDM;
if (info_element->data[i] &
IEEE80211_BASIC_RATE_MASK)
network->flags &=
~NETWORK_HAS_CCK;
}
}
IEEE80211_DEBUG_MGMT("MFIE_TYPE_RATES_EX: '%s' (%d)\n",
rates_str, network->rates_ex_len);
break;
case MFIE_TYPE_DS_SET:
IEEE80211_DEBUG_MGMT("MFIE_TYPE_DS_SET: %d\n",
info_element->data[0]);
network->channel = info_element->data[0];
break;
case MFIE_TYPE_FH_SET:
IEEE80211_DEBUG_MGMT("MFIE_TYPE_FH_SET: ignored\n");
break;
case MFIE_TYPE_CF_SET:
IEEE80211_DEBUG_MGMT("MFIE_TYPE_CF_SET: ignored\n");
break;
case MFIE_TYPE_TIM:
network->tim.tim_count = info_element->data[0];
network->tim.tim_period = info_element->data[1];
IEEE80211_DEBUG_MGMT("MFIE_TYPE_TIM: partially ignored\n");
break;
case MFIE_TYPE_ERP_INFO:
network->erp_value = info_element->data[0];
network->flags |= NETWORK_HAS_ERP_VALUE;
IEEE80211_DEBUG_MGMT("MFIE_TYPE_ERP_SET: %d\n",
network->erp_value);
break;
case MFIE_TYPE_IBSS_SET:
network->atim_window = info_element->data[0];
IEEE80211_DEBUG_MGMT("MFIE_TYPE_IBSS_SET: %d\n",
network->atim_window);
break;
case MFIE_TYPE_CHALLENGE:
IEEE80211_DEBUG_MGMT("MFIE_TYPE_CHALLENGE: ignored\n");
break;
case MFIE_TYPE_GENERIC:
IEEE80211_DEBUG_MGMT("MFIE_TYPE_GENERIC: %d bytes\n",
info_element->len);
if (!ieee80211_parse_qos_info_param_IE(info_element,
network))
break;
if (info_element->len >= 4 &&
info_element->data[0] == 0x00 &&
info_element->data[1] == 0x50 &&
info_element->data[2] == 0xf2 &&
info_element->data[3] == 0x01) {
network->wpa_ie_len = min(info_element->len + 2,
MAX_WPA_IE_LEN);
memcpy(network->wpa_ie, info_element,
network->wpa_ie_len);
}
break;
case MFIE_TYPE_RSN:
IEEE80211_DEBUG_MGMT("MFIE_TYPE_RSN: %d bytes\n",
info_element->len);
network->rsn_ie_len = min(info_element->len + 2,
MAX_WPA_IE_LEN);
memcpy(network->rsn_ie, info_element,
network->rsn_ie_len);
break;
case MFIE_TYPE_QOS_PARAMETER:
printk(KERN_ERR
"QoS Error need to parse QOS_PARAMETER IE\n");
break;
/* 802.11h */
case MFIE_TYPE_POWER_CONSTRAINT:
network->power_constraint = info_element->data[0];
network->flags |= NETWORK_HAS_POWER_CONSTRAINT;
break;
case MFIE_TYPE_CSA:
network->power_constraint = info_element->data[0];
network->flags |= NETWORK_HAS_CSA;
break;
case MFIE_TYPE_QUIET:
network->quiet.count = info_element->data[0];
network->quiet.period = info_element->data[1];
network->quiet.duration = info_element->data[2];
network->quiet.offset = info_element->data[3];
network->flags |= NETWORK_HAS_QUIET;
break;
case MFIE_TYPE_IBSS_DFS:
if (network->ibss_dfs)
break;
network->ibss_dfs = kmemdup(info_element->data,
info_element->len,
GFP_ATOMIC);
if (!network->ibss_dfs)
return 1;
network->flags |= NETWORK_HAS_IBSS_DFS;
break;
case MFIE_TYPE_TPC_REPORT:
network->tpc_report.transmit_power =
info_element->data[0];
network->tpc_report.link_margin = info_element->data[1];
network->flags |= NETWORK_HAS_TPC_REPORT;
break;
default:
IEEE80211_DEBUG_MGMT
("Unsupported info element: %s (%d)\n",
get_info_element_string(info_element->id),
info_element->id);
break;
}
length -= sizeof(*info_element) + info_element->len;
info_element =
(struct ieee80211_info_element *)&info_element->
data[info_element->len];
}
return 0;
}
static int ieee80211_handle_assoc_resp(struct ieee80211_device *ieee, struct ieee80211_assoc_response
*frame, struct ieee80211_rx_stats *stats)
{
struct ieee80211_network network_resp = {
.ibss_dfs = NULL,
};
struct ieee80211_network *network = &network_resp;
struct net_device *dev = ieee->dev;
network->flags = 0;
network->qos_data.active = 0;
network->qos_data.supported = 0;
network->qos_data.param_count = 0;
network->qos_data.old_param_count = 0;
//network->atim_window = le16_to_cpu(frame->aid) & (0x3FFF);
network->atim_window = le16_to_cpu(frame->aid);
network->listen_interval = le16_to_cpu(frame->status);
memcpy(network->bssid, frame->header.addr3, ETH_ALEN);
network->capability = le16_to_cpu(frame->capability);
network->last_scanned = jiffies;
network->rates_len = network->rates_ex_len = 0;
network->last_associate = 0;
network->ssid_len = 0;
network->erp_value =
(network->capability & WLAN_CAPABILITY_IBSS) ? 0x3 : 0x0;
if (stats->freq == IEEE80211_52GHZ_BAND) {
/* for A band (No DS info) */
network->channel = stats->received_channel;
} else
network->flags |= NETWORK_HAS_CCK;
network->wpa_ie_len = 0;
network->rsn_ie_len = 0;
if (ieee80211_parse_info_param
(frame->info_element, stats->len - sizeof(*frame), network))
return 1;
network->mode = 0;
if (stats->freq == IEEE80211_52GHZ_BAND)
network->mode = IEEE_A;
else {
if (network->flags & NETWORK_HAS_OFDM)
network->mode |= IEEE_G;
if (network->flags & NETWORK_HAS_CCK)
network->mode |= IEEE_B;
}
if (ieee80211_is_empty_essid(network->ssid, network->ssid_len))
network->flags |= NETWORK_EMPTY_ESSID;
memcpy(&network->stats, stats, sizeof(network->stats));
if (ieee->handle_assoc_response != NULL)
ieee->handle_assoc_response(dev, frame, network);
return 0;
}
/***************************************************/
static int ieee80211_network_init(struct ieee80211_device *ieee, struct ieee80211_probe_response
*beacon,
struct ieee80211_network *network,
struct ieee80211_rx_stats *stats)
{
DECLARE_MAC_BUF(mac);
network->qos_data.active = 0;
network->qos_data.supported = 0;
network->qos_data.param_count = 0;
network->qos_data.old_param_count = 0;
/* Pull out fixed field data */
memcpy(network->bssid, beacon->header.addr3, ETH_ALEN);
network->capability = le16_to_cpu(beacon->capability);
network->last_scanned = jiffies;
network->time_stamp[0] = le32_to_cpu(beacon->time_stamp[0]);
network->time_stamp[1] = le32_to_cpu(beacon->time_stamp[1]);
network->beacon_interval = le16_to_cpu(beacon->beacon_interval);
/* Where to pull this? beacon->listen_interval; */
network->listen_interval = 0x0A;
network->rates_len = network->rates_ex_len = 0;
network->last_associate = 0;
network->ssid_len = 0;
network->flags = 0;
network->atim_window = 0;
network->erp_value = (network->capability & WLAN_CAPABILITY_IBSS) ?
0x3 : 0x0;
if (stats->freq == IEEE80211_52GHZ_BAND) {
/* for A band (No DS info) */
network->channel = stats->received_channel;
} else
network->flags |= NETWORK_HAS_CCK;
network->wpa_ie_len = 0;
network->rsn_ie_len = 0;
if (ieee80211_parse_info_param
(beacon->info_element, stats->len - sizeof(*beacon), network))
return 1;
network->mode = 0;
if (stats->freq == IEEE80211_52GHZ_BAND)
network->mode = IEEE_A;
else {
if (network->flags & NETWORK_HAS_OFDM)
network->mode |= IEEE_G;
if (network->flags & NETWORK_HAS_CCK)
network->mode |= IEEE_B;
}
if (network->mode == 0) {
IEEE80211_DEBUG_SCAN("Filtered out '%s (%s)' "
"network.\n",
escape_essid(network->ssid,
network->ssid_len),
print_mac(mac, network->bssid));
return 1;
}
if (ieee80211_is_empty_essid(network->ssid, network->ssid_len))
network->flags |= NETWORK_EMPTY_ESSID;
memcpy(&network->stats, stats, sizeof(network->stats));
return 0;
}
static inline int is_same_network(struct ieee80211_network *src,
struct ieee80211_network *dst)
{
/* A network is only a duplicate if the channel, BSSID, and ESSID
* all match. We treat all <hidden> with the same BSSID and channel
* as one network */
return ((src->ssid_len == dst->ssid_len) &&
(src->channel == dst->channel) &&
!compare_ether_addr(src->bssid, dst->bssid) &&
!memcmp(src->ssid, dst->ssid, src->ssid_len));
}
static void update_network(struct ieee80211_network *dst,
struct ieee80211_network *src)
{
int qos_active;
u8 old_param;
DECLARE_MAC_BUF(mac);
ieee80211_network_reset(dst);
dst->ibss_dfs = src->ibss_dfs;
/* We only update the statistics if they were created by receiving
* the network information on the actual channel the network is on.
*
* This keeps beacons received on neighbor channels from bringing
* down the signal level of an AP. */
if (dst->channel == src->stats.received_channel)
memcpy(&dst->stats, &src->stats,
sizeof(struct ieee80211_rx_stats));
else
IEEE80211_DEBUG_SCAN("Network %s info received "
"off channel (%d vs. %d)\n", print_mac(mac, src->bssid),
dst->channel, src->stats.received_channel);
dst->capability = src->capability;
memcpy(dst->rates, src->rates, src->rates_len);
dst->rates_len = src->rates_len;
memcpy(dst->rates_ex, src->rates_ex, src->rates_ex_len);
dst->rates_ex_len = src->rates_ex_len;
dst->mode = src->mode;
dst->flags = src->flags;
dst->time_stamp[0] = src->time_stamp[0];
dst->time_stamp[1] = src->time_stamp[1];
dst->beacon_interval = src->beacon_interval;
dst->listen_interval = src->listen_interval;
dst->atim_window = src->atim_window;
dst->erp_value = src->erp_value;
dst->tim = src->tim;
memcpy(dst->wpa_ie, src->wpa_ie, src->wpa_ie_len);
dst->wpa_ie_len = src->wpa_ie_len;
memcpy(dst->rsn_ie, src->rsn_ie, src->rsn_ie_len);
dst->rsn_ie_len = src->rsn_ie_len;
dst->last_scanned = jiffies;
qos_active = src->qos_data.active;
old_param = dst->qos_data.old_param_count;
if (dst->flags & NETWORK_HAS_QOS_MASK)
memcpy(&dst->qos_data, &src->qos_data,
sizeof(struct ieee80211_qos_data));
else {
dst->qos_data.supported = src->qos_data.supported;
dst->qos_data.param_count = src->qos_data.param_count;
}
if (dst->qos_data.supported == 1) {
if (dst->ssid_len)
IEEE80211_DEBUG_QOS
("QoS the network %s is QoS supported\n",
dst->ssid);
else
IEEE80211_DEBUG_QOS
("QoS the network is QoS supported\n");
}
dst->qos_data.active = qos_active;
dst->qos_data.old_param_count = old_param;
/* dst->last_associate is not overwritten */
}
static inline int is_beacon(__le16 fc)
{
return (WLAN_FC_GET_STYPE(le16_to_cpu(fc)) == IEEE80211_STYPE_BEACON);
}
static void ieee80211_process_probe_response(struct ieee80211_device
*ieee, struct
ieee80211_probe_response
*beacon, struct ieee80211_rx_stats
*stats)
{
struct net_device *dev = ieee->dev;
struct ieee80211_network network = {
.ibss_dfs = NULL,
};
struct ieee80211_network *target;
struct ieee80211_network *oldest = NULL;
#ifdef CONFIG_IEEE80211_DEBUG
struct ieee80211_info_element *info_element = beacon->info_element;
#endif
unsigned long flags;
DECLARE_MAC_BUF(mac);
IEEE80211_DEBUG_SCAN("'%s' (%s"
"): %c%c%c%c %c%c%c%c-%c%c%c%c %c%c%c%c\n",
escape_essid(info_element->data, info_element->len),
print_mac(mac, beacon->header.addr3),
(beacon->capability & cpu_to_le16(1 << 0xf)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0xe)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0xd)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0xc)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0xb)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0xa)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x9)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x8)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x7)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x6)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x5)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x4)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x3)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x2)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x1)) ? '1' : '0',
(beacon->capability & cpu_to_le16(1 << 0x0)) ? '1' : '0');
if (ieee80211_network_init(ieee, beacon, &network, stats)) {
IEEE80211_DEBUG_SCAN("Dropped '%s' (%s) via %s.\n",
escape_essid(info_element->data,
info_element->len),
print_mac(mac, beacon->header.addr3),
is_beacon(beacon->header.frame_ctl) ?
"BEACON" : "PROBE RESPONSE");
return;
}
/* The network parsed correctly -- so now we scan our known networks
* to see if we can find it in our list.
*
* NOTE: This search is definitely not optimized. Once its doing
* the "right thing" we'll optimize it for efficiency if
* necessary */
/* Search for this entry in the list and update it if it is
* already there. */
spin_lock_irqsave(&ieee->lock, flags);
list_for_each_entry(target, &ieee->network_list, list) {
if (is_same_network(target, &network))
break;
if ((oldest == NULL) ||
(target->last_scanned < oldest->last_scanned))
oldest = target;
}
/* If we didn't find a match, then get a new network slot to initialize
* with this beacon's information */
if (&target->list == &ieee->network_list) {
if (list_empty(&ieee->network_free_list)) {
/* If there are no more slots, expire the oldest */
list_del(&oldest->list);
target = oldest;
IEEE80211_DEBUG_SCAN("Expired '%s' (%s) from "
"network list.\n",
escape_essid(target->ssid,
target->ssid_len),
print_mac(mac, target->bssid));
ieee80211_network_reset(target);
} else {
/* Otherwise just pull from the free list */
target = list_entry(ieee->network_free_list.next,
struct ieee80211_network, list);
list_del(ieee->network_free_list.next);
}
#ifdef CONFIG_IEEE80211_DEBUG
IEEE80211_DEBUG_SCAN("Adding '%s' (%s) via %s.\n",
escape_essid(network.ssid,
network.ssid_len),
print_mac(mac, network.bssid),
is_beacon(beacon->header.frame_ctl) ?
"BEACON" : "PROBE RESPONSE");
#endif
memcpy(target, &network, sizeof(*target));
network.ibss_dfs = NULL;
list_add_tail(&target->list, &ieee->network_list);
} else {
IEEE80211_DEBUG_SCAN("Updating '%s' (%s) via %s.\n",
escape_essid(target->ssid,
target->ssid_len),
print_mac(mac, target->bssid),
is_beacon(beacon->header.frame_ctl) ?
"BEACON" : "PROBE RESPONSE");
update_network(target, &network);
network.ibss_dfs = NULL;
}
spin_unlock_irqrestore(&ieee->lock, flags);
if (is_beacon(beacon->header.frame_ctl)) {
if (ieee->handle_beacon != NULL)
ieee->handle_beacon(dev, beacon, target);
} else {
if (ieee->handle_probe_response != NULL)
ieee->handle_probe_response(dev, beacon, target);
}
}
void ieee80211_rx_mgt(struct ieee80211_device *ieee,
struct ieee80211_hdr_4addr *header,
struct ieee80211_rx_stats *stats)
{
switch (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl))) {
case IEEE80211_STYPE_ASSOC_RESP:
IEEE80211_DEBUG_MGMT("received ASSOCIATION RESPONSE (%d)\n",
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
ieee80211_handle_assoc_resp(ieee,
(struct ieee80211_assoc_response *)
header, stats);
break;
case IEEE80211_STYPE_REASSOC_RESP:
IEEE80211_DEBUG_MGMT("received REASSOCIATION RESPONSE (%d)\n",
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
break;
case IEEE80211_STYPE_PROBE_REQ:
IEEE80211_DEBUG_MGMT("received auth (%d)\n",
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
if (ieee->handle_probe_request != NULL)
ieee->handle_probe_request(ieee->dev,
(struct
ieee80211_probe_request *)
header, stats);
break;
case IEEE80211_STYPE_PROBE_RESP:
IEEE80211_DEBUG_MGMT("received PROBE RESPONSE (%d)\n",
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
IEEE80211_DEBUG_SCAN("Probe response\n");
ieee80211_process_probe_response(ieee,
(struct
ieee80211_probe_response *)
header, stats);
break;
case IEEE80211_STYPE_BEACON:
IEEE80211_DEBUG_MGMT("received BEACON (%d)\n",
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
IEEE80211_DEBUG_SCAN("Beacon\n");
ieee80211_process_probe_response(ieee,
(struct
ieee80211_probe_response *)
header, stats);
break;
case IEEE80211_STYPE_AUTH:
IEEE80211_DEBUG_MGMT("received auth (%d)\n",
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
if (ieee->handle_auth != NULL)
ieee->handle_auth(ieee->dev,
(struct ieee80211_auth *)header);
break;
case IEEE80211_STYPE_DISASSOC:
if (ieee->handle_disassoc != NULL)
ieee->handle_disassoc(ieee->dev,
(struct ieee80211_disassoc *)
header);
break;
case IEEE80211_STYPE_ACTION:
IEEE80211_DEBUG_MGMT("ACTION\n");
if (ieee->handle_action)
ieee->handle_action(ieee->dev,
(struct ieee80211_action *)
header, stats);
break;
case IEEE80211_STYPE_REASSOC_REQ:
IEEE80211_DEBUG_MGMT("received reassoc (%d)\n",
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
IEEE80211_DEBUG_MGMT("%s: IEEE80211_REASSOC_REQ received\n",
ieee->dev->name);
if (ieee->handle_reassoc_request != NULL)
ieee->handle_reassoc_request(ieee->dev,
(struct ieee80211_reassoc_request *)
header);
break;
case IEEE80211_STYPE_ASSOC_REQ:
IEEE80211_DEBUG_MGMT("received assoc (%d)\n",
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
IEEE80211_DEBUG_MGMT("%s: IEEE80211_ASSOC_REQ received\n",
ieee->dev->name);
if (ieee->handle_assoc_request != NULL)
ieee->handle_assoc_request(ieee->dev);
break;
case IEEE80211_STYPE_DEAUTH:
IEEE80211_DEBUG_MGMT("DEAUTH\n");
if (ieee->handle_deauth != NULL)
ieee->handle_deauth(ieee->dev,
(struct ieee80211_deauth *)
header);
break;
default:
IEEE80211_DEBUG_MGMT("received UNKNOWN (%d)\n",
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
IEEE80211_DEBUG_MGMT("%s: Unknown management packet: %d\n",
ieee->dev->name,
WLAN_FC_GET_STYPE(le16_to_cpu
(header->frame_ctl)));
break;
}
}
EXPORT_SYMBOL_GPL(ieee80211_rx_any);
EXPORT_SYMBOL(ieee80211_rx_mgt);
EXPORT_SYMBOL(ieee80211_rx);