kernel-fxtec-pro1x/arch/ppc64/kernel/vdso.c
Nick Piggin b5810039a5 [PATCH] core remove PageReserved
Remove PageReserved() calls from core code by tightening VM_RESERVED
handling in mm/ to cover PageReserved functionality.

PageReserved special casing is removed from get_page and put_page.

All setting and clearing of PageReserved is retained, and it is now flagged
in the page_alloc checks to help ensure we don't introduce any refcount
based freeing of Reserved pages.

MAP_PRIVATE, PROT_WRITE of VM_RESERVED regions is tentatively being
deprecated.  We never completely handled it correctly anyway, and is be
reintroduced in future if required (Hugh has a proof of concept).

Once PageReserved() calls are removed from kernel/power/swsusp.c, and all
arch/ and driver code, the Set and Clear calls, and the PG_reserved bit can
be trivially removed.

Last real user of PageReserved is swsusp, which uses PageReserved to
determine whether a struct page points to valid memory or not.  This still
needs to be addressed (a generic page_is_ram() should work).

A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and
thus mapcounted and count towards shared rss).  These writes to the struct
page could cause excessive cacheline bouncing on big systems.  There are a
number of ways this could be addressed if it is an issue.

Signed-off-by: Nick Piggin <npiggin@suse.de>

Refcount bug fix for filemap_xip.c

Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:40:39 -07:00

624 lines
16 KiB
C

/*
* linux/arch/ppc64/kernel/vdso.c
*
* Copyright (C) 2004 Benjamin Herrenschmidt, IBM Corp.
* <benh@kernel.crashing.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/security.h>
#include <linux/bootmem.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/machdep.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/vdso.h>
#undef DEBUG
#ifdef DEBUG
#define DBG(fmt...) printk(fmt)
#else
#define DBG(fmt...)
#endif
/*
* The vDSOs themselves are here
*/
extern char vdso64_start, vdso64_end;
extern char vdso32_start, vdso32_end;
static void *vdso64_kbase = &vdso64_start;
static void *vdso32_kbase = &vdso32_start;
unsigned int vdso64_pages;
unsigned int vdso32_pages;
/* Signal trampolines user addresses */
unsigned long vdso64_rt_sigtramp;
unsigned long vdso32_sigtramp;
unsigned long vdso32_rt_sigtramp;
/* Format of the patch table */
struct vdso_patch_def
{
u32 pvr_mask, pvr_value;
const char *gen_name;
const char *fix_name;
};
/* Table of functions to patch based on the CPU type/revision
*
* TODO: Improve by adding whole lists for each entry
*/
static struct vdso_patch_def vdso_patches[] = {
{
0xffff0000, 0x003a0000, /* POWER5 */
"__kernel_sync_dicache", "__kernel_sync_dicache_p5"
},
{
0xffff0000, 0x003b0000, /* POWER5 */
"__kernel_sync_dicache", "__kernel_sync_dicache_p5"
},
};
/*
* Some infos carried around for each of them during parsing at
* boot time.
*/
struct lib32_elfinfo
{
Elf32_Ehdr *hdr; /* ptr to ELF */
Elf32_Sym *dynsym; /* ptr to .dynsym section */
unsigned long dynsymsize; /* size of .dynsym section */
char *dynstr; /* ptr to .dynstr section */
unsigned long text; /* offset of .text section in .so */
};
struct lib64_elfinfo
{
Elf64_Ehdr *hdr;
Elf64_Sym *dynsym;
unsigned long dynsymsize;
char *dynstr;
unsigned long text;
};
#ifdef __DEBUG
static void dump_one_vdso_page(struct page *pg, struct page *upg)
{
printk("kpg: %p (c:%d,f:%08lx)", __va(page_to_pfn(pg) << PAGE_SHIFT),
page_count(pg),
pg->flags);
if (upg/* && pg != upg*/) {
printk(" upg: %p (c:%d,f:%08lx)", __va(page_to_pfn(upg) << PAGE_SHIFT),
page_count(upg),
upg->flags);
}
printk("\n");
}
static void dump_vdso_pages(struct vm_area_struct * vma)
{
int i;
if (!vma || test_thread_flag(TIF_32BIT)) {
printk("vDSO32 @ %016lx:\n", (unsigned long)vdso32_kbase);
for (i=0; i<vdso32_pages; i++) {
struct page *pg = virt_to_page(vdso32_kbase + i*PAGE_SIZE);
struct page *upg = (vma && vma->vm_mm) ?
follow_page(vma->vm_mm, vma->vm_start + i*PAGE_SIZE, 0)
: NULL;
dump_one_vdso_page(pg, upg);
}
}
if (!vma || !test_thread_flag(TIF_32BIT)) {
printk("vDSO64 @ %016lx:\n", (unsigned long)vdso64_kbase);
for (i=0; i<vdso64_pages; i++) {
struct page *pg = virt_to_page(vdso64_kbase + i*PAGE_SIZE);
struct page *upg = (vma && vma->vm_mm) ?
follow_page(vma->vm_mm, vma->vm_start + i*PAGE_SIZE, 0)
: NULL;
dump_one_vdso_page(pg, upg);
}
}
}
#endif /* DEBUG */
/*
* Keep a dummy vma_close for now, it will prevent VMA merging.
*/
static void vdso_vma_close(struct vm_area_struct * vma)
{
}
/*
* Our nopage() function, maps in the actual vDSO kernel pages, they will
* be mapped read-only by do_no_page(), and eventually COW'ed, either
* right away for an initial write access, or by do_wp_page().
*/
static struct page * vdso_vma_nopage(struct vm_area_struct * vma,
unsigned long address, int *type)
{
unsigned long offset = address - vma->vm_start;
struct page *pg;
void *vbase = test_thread_flag(TIF_32BIT) ? vdso32_kbase : vdso64_kbase;
DBG("vdso_vma_nopage(current: %s, address: %016lx, off: %lx)\n",
current->comm, address, offset);
if (address < vma->vm_start || address > vma->vm_end)
return NOPAGE_SIGBUS;
/*
* Last page is systemcfg.
*/
if ((vma->vm_end - address) <= PAGE_SIZE)
pg = virt_to_page(systemcfg);
else
pg = virt_to_page(vbase + offset);
get_page(pg);
DBG(" ->page count: %d\n", page_count(pg));
return pg;
}
static struct vm_operations_struct vdso_vmops = {
.close = vdso_vma_close,
.nopage = vdso_vma_nopage,
};
/*
* This is called from binfmt_elf, we create the special vma for the
* vDSO and insert it into the mm struct tree
*/
int arch_setup_additional_pages(struct linux_binprm *bprm, int executable_stack)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long vdso_pages;
unsigned long vdso_base;
if (test_thread_flag(TIF_32BIT)) {
vdso_pages = vdso32_pages;
vdso_base = VDSO32_MBASE;
} else {
vdso_pages = vdso64_pages;
vdso_base = VDSO64_MBASE;
}
current->thread.vdso_base = 0;
/* vDSO has a problem and was disabled, just don't "enable" it for the
* process
*/
if (vdso_pages == 0)
return 0;
vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (vma == NULL)
return -ENOMEM;
memset(vma, 0, sizeof(*vma));
/*
* pick a base address for the vDSO in process space. We try to put it
* at vdso_base which is the "natural" base for it, but we might fail
* and end up putting it elsewhere.
*/
vdso_base = get_unmapped_area(NULL, vdso_base,
vdso_pages << PAGE_SHIFT, 0, 0);
if (vdso_base & ~PAGE_MASK) {
kmem_cache_free(vm_area_cachep, vma);
return (int)vdso_base;
}
current->thread.vdso_base = vdso_base;
vma->vm_mm = mm;
vma->vm_start = current->thread.vdso_base;
/*
* the VMA size is one page more than the vDSO since systemcfg
* is mapped in the last one
*/
vma->vm_end = vma->vm_start + ((vdso_pages + 1) << PAGE_SHIFT);
/*
* our vma flags don't have VM_WRITE so by default, the process isn't allowed
* to write those pages.
* gdb can break that with ptrace interface, and thus trigger COW on those
* pages but it's then your responsibility to never do that on the "data" page
* of the vDSO or you'll stop getting kernel updates and your nice userland
* gettimeofday will be totally dead. It's fine to use that for setting
* breakpoints in the vDSO code pages though
*/
vma->vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC | VM_RESERVED;
vma->vm_flags |= mm->def_flags;
vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
vma->vm_ops = &vdso_vmops;
down_write(&mm->mmap_sem);
if (insert_vm_struct(mm, vma)) {
up_write(&mm->mmap_sem);
kmem_cache_free(vm_area_cachep, vma);
return -ENOMEM;
}
mm->total_vm += (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
up_write(&mm->mmap_sem);
return 0;
}
static void * __init find_section32(Elf32_Ehdr *ehdr, const char *secname,
unsigned long *size)
{
Elf32_Shdr *sechdrs;
unsigned int i;
char *secnames;
/* Grab section headers and strings so we can tell who is who */
sechdrs = (void *)ehdr + ehdr->e_shoff;
secnames = (void *)ehdr + sechdrs[ehdr->e_shstrndx].sh_offset;
/* Find the section they want */
for (i = 1; i < ehdr->e_shnum; i++) {
if (strcmp(secnames+sechdrs[i].sh_name, secname) == 0) {
if (size)
*size = sechdrs[i].sh_size;
return (void *)ehdr + sechdrs[i].sh_offset;
}
}
*size = 0;
return NULL;
}
static void * __init find_section64(Elf64_Ehdr *ehdr, const char *secname,
unsigned long *size)
{
Elf64_Shdr *sechdrs;
unsigned int i;
char *secnames;
/* Grab section headers and strings so we can tell who is who */
sechdrs = (void *)ehdr + ehdr->e_shoff;
secnames = (void *)ehdr + sechdrs[ehdr->e_shstrndx].sh_offset;
/* Find the section they want */
for (i = 1; i < ehdr->e_shnum; i++) {
if (strcmp(secnames+sechdrs[i].sh_name, secname) == 0) {
if (size)
*size = sechdrs[i].sh_size;
return (void *)ehdr + sechdrs[i].sh_offset;
}
}
if (size)
*size = 0;
return NULL;
}
static Elf32_Sym * __init find_symbol32(struct lib32_elfinfo *lib, const char *symname)
{
unsigned int i;
char name[32], *c;
for (i = 0; i < (lib->dynsymsize / sizeof(Elf32_Sym)); i++) {
if (lib->dynsym[i].st_name == 0)
continue;
strlcpy(name, lib->dynstr + lib->dynsym[i].st_name, 32);
c = strchr(name, '@');
if (c)
*c = 0;
if (strcmp(symname, name) == 0)
return &lib->dynsym[i];
}
return NULL;
}
static Elf64_Sym * __init find_symbol64(struct lib64_elfinfo *lib, const char *symname)
{
unsigned int i;
char name[32], *c;
for (i = 0; i < (lib->dynsymsize / sizeof(Elf64_Sym)); i++) {
if (lib->dynsym[i].st_name == 0)
continue;
strlcpy(name, lib->dynstr + lib->dynsym[i].st_name, 32);
c = strchr(name, '@');
if (c)
*c = 0;
if (strcmp(symname, name) == 0)
return &lib->dynsym[i];
}
return NULL;
}
/* Note that we assume the section is .text and the symbol is relative to
* the library base
*/
static unsigned long __init find_function32(struct lib32_elfinfo *lib, const char *symname)
{
Elf32_Sym *sym = find_symbol32(lib, symname);
if (sym == NULL) {
printk(KERN_WARNING "vDSO32: function %s not found !\n", symname);
return 0;
}
return sym->st_value - VDSO32_LBASE;
}
/* Note that we assume the section is .text and the symbol is relative to
* the library base
*/
static unsigned long __init find_function64(struct lib64_elfinfo *lib, const char *symname)
{
Elf64_Sym *sym = find_symbol64(lib, symname);
if (sym == NULL) {
printk(KERN_WARNING "vDSO64: function %s not found !\n", symname);
return 0;
}
#ifdef VDS64_HAS_DESCRIPTORS
return *((u64 *)(vdso64_kbase + sym->st_value - VDSO64_LBASE)) - VDSO64_LBASE;
#else
return sym->st_value - VDSO64_LBASE;
#endif
}
static __init int vdso_do_find_sections(struct lib32_elfinfo *v32,
struct lib64_elfinfo *v64)
{
void *sect;
/*
* Locate symbol tables & text section
*/
v32->dynsym = find_section32(v32->hdr, ".dynsym", &v32->dynsymsize);
v32->dynstr = find_section32(v32->hdr, ".dynstr", NULL);
if (v32->dynsym == NULL || v32->dynstr == NULL) {
printk(KERN_ERR "vDSO32: a required symbol section was not found\n");
return -1;
}
sect = find_section32(v32->hdr, ".text", NULL);
if (sect == NULL) {
printk(KERN_ERR "vDSO32: the .text section was not found\n");
return -1;
}
v32->text = sect - vdso32_kbase;
v64->dynsym = find_section64(v64->hdr, ".dynsym", &v64->dynsymsize);
v64->dynstr = find_section64(v64->hdr, ".dynstr", NULL);
if (v64->dynsym == NULL || v64->dynstr == NULL) {
printk(KERN_ERR "vDSO64: a required symbol section was not found\n");
return -1;
}
sect = find_section64(v64->hdr, ".text", NULL);
if (sect == NULL) {
printk(KERN_ERR "vDSO64: the .text section was not found\n");
return -1;
}
v64->text = sect - vdso64_kbase;
return 0;
}
static __init void vdso_setup_trampolines(struct lib32_elfinfo *v32,
struct lib64_elfinfo *v64)
{
/*
* Find signal trampolines
*/
vdso64_rt_sigtramp = find_function64(v64, "__kernel_sigtramp_rt64");
vdso32_sigtramp = find_function32(v32, "__kernel_sigtramp32");
vdso32_rt_sigtramp = find_function32(v32, "__kernel_sigtramp_rt32");
}
static __init int vdso_fixup_datapage(struct lib32_elfinfo *v32,
struct lib64_elfinfo *v64)
{
Elf32_Sym *sym32;
Elf64_Sym *sym64;
sym32 = find_symbol32(v32, "__kernel_datapage_offset");
if (sym32 == NULL) {
printk(KERN_ERR "vDSO32: Can't find symbol __kernel_datapage_offset !\n");
return -1;
}
*((int *)(vdso32_kbase + (sym32->st_value - VDSO32_LBASE))) =
(vdso32_pages << PAGE_SHIFT) - (sym32->st_value - VDSO32_LBASE);
sym64 = find_symbol64(v64, "__kernel_datapage_offset");
if (sym64 == NULL) {
printk(KERN_ERR "vDSO64: Can't find symbol __kernel_datapage_offset !\n");
return -1;
}
*((int *)(vdso64_kbase + sym64->st_value - VDSO64_LBASE)) =
(vdso64_pages << PAGE_SHIFT) - (sym64->st_value - VDSO64_LBASE);
return 0;
}
static int vdso_do_func_patch32(struct lib32_elfinfo *v32,
struct lib64_elfinfo *v64,
const char *orig, const char *fix)
{
Elf32_Sym *sym32_gen, *sym32_fix;
sym32_gen = find_symbol32(v32, orig);
if (sym32_gen == NULL) {
printk(KERN_ERR "vDSO32: Can't find symbol %s !\n", orig);
return -1;
}
sym32_fix = find_symbol32(v32, fix);
if (sym32_fix == NULL) {
printk(KERN_ERR "vDSO32: Can't find symbol %s !\n", fix);
return -1;
}
sym32_gen->st_value = sym32_fix->st_value;
sym32_gen->st_size = sym32_fix->st_size;
sym32_gen->st_info = sym32_fix->st_info;
sym32_gen->st_other = sym32_fix->st_other;
sym32_gen->st_shndx = sym32_fix->st_shndx;
return 0;
}
static int vdso_do_func_patch64(struct lib32_elfinfo *v32,
struct lib64_elfinfo *v64,
const char *orig, const char *fix)
{
Elf64_Sym *sym64_gen, *sym64_fix;
sym64_gen = find_symbol64(v64, orig);
if (sym64_gen == NULL) {
printk(KERN_ERR "vDSO64: Can't find symbol %s !\n", orig);
return -1;
}
sym64_fix = find_symbol64(v64, fix);
if (sym64_fix == NULL) {
printk(KERN_ERR "vDSO64: Can't find symbol %s !\n", fix);
return -1;
}
sym64_gen->st_value = sym64_fix->st_value;
sym64_gen->st_size = sym64_fix->st_size;
sym64_gen->st_info = sym64_fix->st_info;
sym64_gen->st_other = sym64_fix->st_other;
sym64_gen->st_shndx = sym64_fix->st_shndx;
return 0;
}
static __init int vdso_fixup_alt_funcs(struct lib32_elfinfo *v32,
struct lib64_elfinfo *v64)
{
u32 pvr;
int i;
pvr = mfspr(SPRN_PVR);
for (i = 0; i < ARRAY_SIZE(vdso_patches); i++) {
struct vdso_patch_def *patch = &vdso_patches[i];
int match = (pvr & patch->pvr_mask) == patch->pvr_value;
DBG("patch %d (mask: %x, pvr: %x) : %s\n",
i, patch->pvr_mask, patch->pvr_value, match ? "match" : "skip");
if (!match)
continue;
DBG("replacing %s with %s...\n", patch->gen_name, patch->fix_name);
/*
* Patch the 32 bits and 64 bits symbols. Note that we do not patch
* the "." symbol on 64 bits. It would be easy to do, but doesn't
* seem to be necessary, patching the OPD symbol is enough.
*/
vdso_do_func_patch32(v32, v64, patch->gen_name, patch->fix_name);
vdso_do_func_patch64(v32, v64, patch->gen_name, patch->fix_name);
}
return 0;
}
static __init int vdso_setup(void)
{
struct lib32_elfinfo v32;
struct lib64_elfinfo v64;
v32.hdr = vdso32_kbase;
v64.hdr = vdso64_kbase;
if (vdso_do_find_sections(&v32, &v64))
return -1;
if (vdso_fixup_datapage(&v32, &v64))
return -1;
if (vdso_fixup_alt_funcs(&v32, &v64))
return -1;
vdso_setup_trampolines(&v32, &v64);
return 0;
}
void __init vdso_init(void)
{
int i;
vdso64_pages = (&vdso64_end - &vdso64_start) >> PAGE_SHIFT;
vdso32_pages = (&vdso32_end - &vdso32_start) >> PAGE_SHIFT;
DBG("vdso64_kbase: %p, 0x%x pages, vdso32_kbase: %p, 0x%x pages\n",
vdso64_kbase, vdso64_pages, vdso32_kbase, vdso32_pages);
/*
* Initialize the vDSO images in memory, that is do necessary
* fixups of vDSO symbols, locate trampolines, etc...
*/
if (vdso_setup()) {
printk(KERN_ERR "vDSO setup failure, not enabled !\n");
/* XXX should free pages here ? */
vdso64_pages = vdso32_pages = 0;
return;
}
/* Make sure pages are in the correct state */
for (i = 0; i < vdso64_pages; i++) {
struct page *pg = virt_to_page(vdso64_kbase + i*PAGE_SIZE);
ClearPageReserved(pg);
get_page(pg);
}
for (i = 0; i < vdso32_pages; i++) {
struct page *pg = virt_to_page(vdso32_kbase + i*PAGE_SIZE);
ClearPageReserved(pg);
get_page(pg);
}
get_page(virt_to_page(systemcfg));
}
int in_gate_area_no_task(unsigned long addr)
{
return 0;
}
int in_gate_area(struct task_struct *task, unsigned long addr)
{
return 0;
}
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
return NULL;
}