kernel-fxtec-pro1x/drivers/watchdog/aspeed_wdt.c
Andrew Jeffery d4238aa458 watchdog: aspeed: Move init to arch_initcall
Probing at device_initcall time lead to perverse cases where the
watchdog was probed after, say, I2C devices, which then leaves a
potentially running watchdog at the mercy of I2C device behaviour and
bus conditions.

Load the watchdog driver early to ensure that the kernel is patting it
well before initialising peripherals.

Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2017-12-28 20:44:50 +01:00

333 lines
8.9 KiB
C

/*
* Copyright 2016 IBM Corporation
*
* Joel Stanley <joel@jms.id.au>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/watchdog.h>
struct aspeed_wdt {
struct watchdog_device wdd;
void __iomem *base;
u32 ctrl;
};
struct aspeed_wdt_config {
u32 ext_pulse_width_mask;
};
static const struct aspeed_wdt_config ast2400_config = {
.ext_pulse_width_mask = 0xff,
};
static const struct aspeed_wdt_config ast2500_config = {
.ext_pulse_width_mask = 0xfffff,
};
static const struct of_device_id aspeed_wdt_of_table[] = {
{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
{ },
};
MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
#define WDT_STATUS 0x00
#define WDT_RELOAD_VALUE 0x04
#define WDT_RESTART 0x08
#define WDT_CTRL 0x0C
#define WDT_CTRL_RESET_MODE_SOC (0x00 << 5)
#define WDT_CTRL_RESET_MODE_FULL_CHIP (0x01 << 5)
#define WDT_CTRL_RESET_MODE_ARM_CPU (0x10 << 5)
#define WDT_CTRL_1MHZ_CLK BIT(4)
#define WDT_CTRL_WDT_EXT BIT(3)
#define WDT_CTRL_WDT_INTR BIT(2)
#define WDT_CTRL_RESET_SYSTEM BIT(1)
#define WDT_CTRL_ENABLE BIT(0)
/*
* WDT_RESET_WIDTH controls the characteristics of the external pulse (if
* enabled), specifically:
*
* * Pulse duration
* * Drive mode: push-pull vs open-drain
* * Polarity: Active high or active low
*
* Pulse duration configuration is available on both the AST2400 and AST2500,
* though the field changes between SoCs:
*
* AST2400: Bits 7:0
* AST2500: Bits 19:0
*
* This difference is captured in struct aspeed_wdt_config.
*
* The AST2500 exposes the drive mode and polarity options, but not in a
* regular fashion. For read purposes, bit 31 represents active high or low,
* and bit 30 represents push-pull or open-drain. With respect to write, magic
* values need to be written to the top byte to change the state of the drive
* mode and polarity bits. Any other value written to the top byte has no
* effect on the state of the drive mode or polarity bits. However, the pulse
* width value must be preserved (as desired) if written.
*/
#define WDT_RESET_WIDTH 0x18
#define WDT_RESET_WIDTH_ACTIVE_HIGH BIT(31)
#define WDT_ACTIVE_HIGH_MAGIC (0xA5 << 24)
#define WDT_ACTIVE_LOW_MAGIC (0x5A << 24)
#define WDT_RESET_WIDTH_PUSH_PULL BIT(30)
#define WDT_PUSH_PULL_MAGIC (0xA8 << 24)
#define WDT_OPEN_DRAIN_MAGIC (0x8A << 24)
#define WDT_RESTART_MAGIC 0x4755
/* 32 bits at 1MHz, in milliseconds */
#define WDT_MAX_TIMEOUT_MS 4294967
#define WDT_DEFAULT_TIMEOUT 30
#define WDT_RATE_1MHZ 1000000
static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
{
return container_of(wdd, struct aspeed_wdt, wdd);
}
static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
{
wdt->ctrl |= WDT_CTRL_ENABLE;
writel(0, wdt->base + WDT_CTRL);
writel(count, wdt->base + WDT_RELOAD_VALUE);
writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
writel(wdt->ctrl, wdt->base + WDT_CTRL);
}
static int aspeed_wdt_start(struct watchdog_device *wdd)
{
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
return 0;
}
static int aspeed_wdt_stop(struct watchdog_device *wdd)
{
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
wdt->ctrl &= ~WDT_CTRL_ENABLE;
writel(wdt->ctrl, wdt->base + WDT_CTRL);
return 0;
}
static int aspeed_wdt_ping(struct watchdog_device *wdd)
{
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
return 0;
}
static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
unsigned int timeout)
{
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
u32 actual;
wdd->timeout = timeout;
actual = min(timeout, wdd->max_hw_heartbeat_ms * 1000);
writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
return 0;
}
static int aspeed_wdt_restart(struct watchdog_device *wdd,
unsigned long action, void *data)
{
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
mdelay(1000);
return 0;
}
static const struct watchdog_ops aspeed_wdt_ops = {
.start = aspeed_wdt_start,
.stop = aspeed_wdt_stop,
.ping = aspeed_wdt_ping,
.set_timeout = aspeed_wdt_set_timeout,
.restart = aspeed_wdt_restart,
.owner = THIS_MODULE,
};
static const struct watchdog_info aspeed_wdt_info = {
.options = WDIOF_KEEPALIVEPING
| WDIOF_MAGICCLOSE
| WDIOF_SETTIMEOUT,
.identity = KBUILD_MODNAME,
};
static int aspeed_wdt_probe(struct platform_device *pdev)
{
const struct aspeed_wdt_config *config;
const struct of_device_id *ofdid;
struct aspeed_wdt *wdt;
struct resource *res;
struct device_node *np;
const char *reset_type;
u32 duration;
int ret;
wdt = devm_kzalloc(&pdev->dev, sizeof(*wdt), GFP_KERNEL);
if (!wdt)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
wdt->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(wdt->base))
return PTR_ERR(wdt->base);
/*
* The ast2400 wdt can run at PCLK, or 1MHz. The ast2500 only
* runs at 1MHz. We chose to always run at 1MHz, as there's no
* good reason to have a faster watchdog counter.
*/
wdt->wdd.info = &aspeed_wdt_info;
wdt->wdd.ops = &aspeed_wdt_ops;
wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
wdt->wdd.parent = &pdev->dev;
wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
watchdog_init_timeout(&wdt->wdd, 0, &pdev->dev);
np = pdev->dev.of_node;
ofdid = of_match_node(aspeed_wdt_of_table, np);
if (!ofdid)
return -EINVAL;
config = ofdid->data;
wdt->ctrl = WDT_CTRL_1MHZ_CLK;
/*
* Control reset on a per-device basis to ensure the
* host is not affected by a BMC reboot
*/
ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
if (ret) {
wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
} else {
if (!strcmp(reset_type, "cpu"))
wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU;
else if (!strcmp(reset_type, "soc"))
wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC;
else if (!strcmp(reset_type, "system"))
wdt->ctrl |= WDT_CTRL_RESET_SYSTEM;
else if (strcmp(reset_type, "none"))
return -EINVAL;
}
if (of_property_read_bool(np, "aspeed,external-signal"))
wdt->ctrl |= WDT_CTRL_WDT_EXT;
if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE) {
/*
* The watchdog is running, but invoke aspeed_wdt_start() to
* write wdt->ctrl to WDT_CTRL to ensure the watchdog's
* configuration conforms to the driver's expectations.
* Primarily, ensure we're using the 1MHz clock source.
*/
aspeed_wdt_start(&wdt->wdd);
set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
}
if (of_device_is_compatible(np, "aspeed,ast2500-wdt")) {
u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
reg &= config->ext_pulse_width_mask;
if (of_property_read_bool(np, "aspeed,ext-push-pull"))
reg |= WDT_PUSH_PULL_MAGIC;
else
reg |= WDT_OPEN_DRAIN_MAGIC;
writel(reg, wdt->base + WDT_RESET_WIDTH);
reg &= config->ext_pulse_width_mask;
if (of_property_read_bool(np, "aspeed,ext-active-high"))
reg |= WDT_ACTIVE_HIGH_MAGIC;
else
reg |= WDT_ACTIVE_LOW_MAGIC;
writel(reg, wdt->base + WDT_RESET_WIDTH);
}
if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
u32 max_duration = config->ext_pulse_width_mask + 1;
if (duration == 0 || duration > max_duration) {
dev_err(&pdev->dev, "Invalid pulse duration: %uus\n",
duration);
duration = max(1U, min(max_duration, duration));
dev_info(&pdev->dev, "Pulse duration set to %uus\n",
duration);
}
/*
* The watchdog is always configured with a 1MHz source, so
* there is no need to scale the microsecond value. However we
* need to offset it - from the datasheet:
*
* "This register decides the asserting duration of wdt_ext and
* wdt_rstarm signal. The default value is 0xFF. It means the
* default asserting duration of wdt_ext and wdt_rstarm is
* 256us."
*
* This implies a value of 0 gives a 1us pulse.
*/
writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
}
ret = devm_watchdog_register_device(&pdev->dev, &wdt->wdd);
if (ret) {
dev_err(&pdev->dev, "failed to register\n");
return ret;
}
return 0;
}
static struct platform_driver aspeed_watchdog_driver = {
.probe = aspeed_wdt_probe,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = of_match_ptr(aspeed_wdt_of_table),
},
};
static int __init aspeed_wdt_init(void)
{
return platform_driver_register(&aspeed_watchdog_driver);
}
arch_initcall(aspeed_wdt_init);
static void __exit aspeed_wdt_exit(void)
{
platform_driver_unregister(&aspeed_watchdog_driver);
}
module_exit(aspeed_wdt_exit);
MODULE_DESCRIPTION("Aspeed Watchdog Driver");
MODULE_LICENSE("GPL");