kernel-fxtec-pro1x/drivers/cpufreq/brcmstb-avs-cpufreq.c
Wei Yongjun 113f9017e5 cpufreq: brcmstb-avs-cpufreq: remove unnecessary platform_set_drvdata()
The driver core clears the driver data to NULL after device_release
or on probe failure. Thus, it is not needed to manually clear the
device driver data to NULL.

Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-02-09 01:22:46 +01:00

1066 lines
28 KiB
C

/*
* CPU frequency scaling for Broadcom SoCs with AVS firmware that
* supports DVS or DVFS
*
* Copyright (c) 2016 Broadcom
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* "AVS" is the name of a firmware developed at Broadcom. It derives
* its name from the technique called "Adaptive Voltage Scaling".
* Adaptive voltage scaling was the original purpose of this firmware.
* The AVS firmware still supports "AVS mode", where all it does is
* adaptive voltage scaling. However, on some newer Broadcom SoCs, the
* AVS Firmware, despite its unchanged name, also supports DFS mode and
* DVFS mode.
*
* In the context of this document and the related driver, "AVS" by
* itself always means the Broadcom firmware and never refers to the
* technique called "Adaptive Voltage Scaling".
*
* The Broadcom STB AVS CPUfreq driver provides voltage and frequency
* scaling on Broadcom SoCs using AVS firmware with support for DFS and
* DVFS. The AVS firmware is running on its own co-processor. The
* driver supports both uniprocessor (UP) and symmetric multiprocessor
* (SMP) systems which share clock and voltage across all CPUs.
*
* Actual voltage and frequency scaling is done solely by the AVS
* firmware. This driver does not change frequency or voltage itself.
* It provides a standard CPUfreq interface to the rest of the kernel
* and to userland. It interfaces with the AVS firmware to effect the
* requested changes and to report back the current system status in a
* way that is expected by existing tools.
*/
#include <linux/cpufreq.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/semaphore.h>
#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#endif
/* Max number of arguments AVS calls take */
#define AVS_MAX_CMD_ARGS 4
/*
* This macro is used to generate AVS parameter register offsets. For
* x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
* access outside of the parameter range. (Offset 0 is the first parameter.)
*/
#define AVS_PARAM_MULT(x) ((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
/* AVS Mailbox Register offsets */
#define AVS_MBOX_COMMAND 0x00
#define AVS_MBOX_STATUS 0x04
#define AVS_MBOX_VOLTAGE0 0x08
#define AVS_MBOX_TEMP0 0x0c
#define AVS_MBOX_PV0 0x10
#define AVS_MBOX_MV0 0x14
#define AVS_MBOX_PARAM(x) (0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
#define AVS_MBOX_REVISION 0x28
#define AVS_MBOX_PSTATE 0x2c
#define AVS_MBOX_HEARTBEAT 0x30
#define AVS_MBOX_MAGIC 0x34
#define AVS_MBOX_SIGMA_HVT 0x38
#define AVS_MBOX_SIGMA_SVT 0x3c
#define AVS_MBOX_VOLTAGE1 0x40
#define AVS_MBOX_TEMP1 0x44
#define AVS_MBOX_PV1 0x48
#define AVS_MBOX_MV1 0x4c
#define AVS_MBOX_FREQUENCY 0x50
/* AVS Commands */
#define AVS_CMD_AVAILABLE 0x00
#define AVS_CMD_DISABLE 0x10
#define AVS_CMD_ENABLE 0x11
#define AVS_CMD_S2_ENTER 0x12
#define AVS_CMD_S2_EXIT 0x13
#define AVS_CMD_BBM_ENTER 0x14
#define AVS_CMD_BBM_EXIT 0x15
#define AVS_CMD_S3_ENTER 0x16
#define AVS_CMD_S3_EXIT 0x17
#define AVS_CMD_BALANCE 0x18
/* PMAP and P-STATE commands */
#define AVS_CMD_GET_PMAP 0x30
#define AVS_CMD_SET_PMAP 0x31
#define AVS_CMD_GET_PSTATE 0x40
#define AVS_CMD_SET_PSTATE 0x41
/* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
#define AVS_MODE_AVS 0x0
#define AVS_MODE_DFS 0x1
#define AVS_MODE_DVS 0x2
#define AVS_MODE_DVFS 0x3
/*
* PMAP parameter p1
* unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
*/
#define NDIV_INT_SHIFT 0
#define NDIV_INT_MASK 0x3ff
#define PDIV_SHIFT 10
#define PDIV_MASK 0xf
#define MDIV_P0_SHIFT 16
#define MDIV_P0_MASK 0xff
/*
* PMAP parameter p2
* mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
*/
#define MDIV_P1_SHIFT 0
#define MDIV_P1_MASK 0xff
#define MDIV_P2_SHIFT 8
#define MDIV_P2_MASK 0xff
#define MDIV_P3_SHIFT 16
#define MDIV_P3_MASK 0xff
#define MDIV_P4_SHIFT 24
#define MDIV_P4_MASK 0xff
/* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
#define AVS_PSTATE_P0 0x0
#define AVS_PSTATE_P1 0x1
#define AVS_PSTATE_P2 0x2
#define AVS_PSTATE_P3 0x3
#define AVS_PSTATE_P4 0x4
#define AVS_PSTATE_MAX AVS_PSTATE_P4
/* CPU L2 Interrupt Controller Registers */
#define AVS_CPU_L2_SET0 0x04
#define AVS_CPU_L2_INT_MASK BIT(31)
/* AVS Command Status Values */
#define AVS_STATUS_CLEAR 0x00
/* Command/notification accepted */
#define AVS_STATUS_SUCCESS 0xf0
/* Command/notification rejected */
#define AVS_STATUS_FAILURE 0xff
/* Invalid command/notification (unknown) */
#define AVS_STATUS_INVALID 0xf1
/* Non-AVS modes are not supported */
#define AVS_STATUS_NO_SUPP 0xf2
/* Cannot set P-State until P-Map supplied */
#define AVS_STATUS_NO_MAP 0xf3
/* Cannot change P-Map after initial P-Map set */
#define AVS_STATUS_MAP_SET 0xf4
/* Max AVS status; higher numbers are used for debugging */
#define AVS_STATUS_MAX 0xff
/* Other AVS related constants */
#define AVS_LOOP_LIMIT 10000
#define AVS_TIMEOUT 300 /* in ms; expected completion is < 10ms */
#define AVS_FIRMWARE_MAGIC 0xa11600d1
#define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs"
#define BRCM_AVS_CPUFREQ_NAME BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
#define BRCM_AVS_CPU_DATA "brcm,avs-cpu-data-mem"
#define BRCM_AVS_CPU_INTR "brcm,avs-cpu-l2-intr"
#define BRCM_AVS_HOST_INTR "sw_intr"
struct pmap {
unsigned int mode;
unsigned int p1;
unsigned int p2;
unsigned int state;
};
struct private_data {
void __iomem *base;
void __iomem *avs_intr_base;
struct device *dev;
#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
struct dentry *debugfs;
#endif
struct completion done;
struct semaphore sem;
struct pmap pmap;
};
#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
enum debugfs_format {
DEBUGFS_NORMAL,
DEBUGFS_FLOAT,
DEBUGFS_REV,
};
struct debugfs_data {
struct debugfs_entry *entry;
struct private_data *priv;
};
struct debugfs_entry {
char *name;
u32 offset;
fmode_t mode;
enum debugfs_format format;
};
#define DEBUGFS_ENTRY(name, mode, format) { \
#name, AVS_MBOX_##name, mode, format \
}
/*
* These are used for debugfs only. Otherwise we use AVS_MBOX_PARAM() directly.
*/
#define AVS_MBOX_PARAM1 AVS_MBOX_PARAM(0)
#define AVS_MBOX_PARAM2 AVS_MBOX_PARAM(1)
#define AVS_MBOX_PARAM3 AVS_MBOX_PARAM(2)
#define AVS_MBOX_PARAM4 AVS_MBOX_PARAM(3)
/*
* This table stores the name, access permissions and offset for each hardware
* register and is used to generate debugfs entries.
*/
static struct debugfs_entry debugfs_entries[] = {
DEBUGFS_ENTRY(COMMAND, S_IWUSR, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(STATUS, S_IWUSR, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(VOLTAGE0, 0, DEBUGFS_FLOAT),
DEBUGFS_ENTRY(TEMP0, 0, DEBUGFS_FLOAT),
DEBUGFS_ENTRY(PV0, 0, DEBUGFS_FLOAT),
DEBUGFS_ENTRY(MV0, 0, DEBUGFS_FLOAT),
DEBUGFS_ENTRY(PARAM1, S_IWUSR, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(PARAM2, S_IWUSR, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(PARAM3, S_IWUSR, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(PARAM4, S_IWUSR, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(REVISION, 0, DEBUGFS_REV),
DEBUGFS_ENTRY(PSTATE, 0, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(HEARTBEAT, 0, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(MAGIC, S_IWUSR, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(SIGMA_HVT, 0, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(SIGMA_SVT, 0, DEBUGFS_NORMAL),
DEBUGFS_ENTRY(VOLTAGE1, 0, DEBUGFS_FLOAT),
DEBUGFS_ENTRY(TEMP1, 0, DEBUGFS_FLOAT),
DEBUGFS_ENTRY(PV1, 0, DEBUGFS_FLOAT),
DEBUGFS_ENTRY(MV1, 0, DEBUGFS_FLOAT),
DEBUGFS_ENTRY(FREQUENCY, 0, DEBUGFS_NORMAL),
};
static int brcm_avs_target_index(struct cpufreq_policy *, unsigned int);
static char *__strtolower(char *s)
{
char *p;
for (p = s; *p; p++)
*p = tolower(*p);
return s;
}
#endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
static void __iomem *__map_region(const char *name)
{
struct device_node *np;
void __iomem *ptr;
np = of_find_compatible_node(NULL, NULL, name);
if (!np)
return NULL;
ptr = of_iomap(np, 0);
of_node_put(np);
return ptr;
}
static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send,
u32 args[])
{
unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT);
void __iomem *base = priv->base;
unsigned int i;
int ret;
u32 val;
ret = down_interruptible(&priv->sem);
if (ret)
return ret;
/*
* Make sure no other command is currently running: cmd is 0 if AVS
* co-processor is idle. Due to the guard above, we should almost never
* have to wait here.
*/
for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
val = readl(base + AVS_MBOX_COMMAND);
/* Give the caller a chance to retry if AVS is busy. */
if (i == AVS_LOOP_LIMIT) {
ret = -EAGAIN;
goto out;
}
/* Clear status before we begin. */
writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
/* We need to send arguments for this command. */
if (args && is_send) {
for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
writel(args[i], base + AVS_MBOX_PARAM(i));
}
/* Protect from spurious interrupts. */
reinit_completion(&priv->done);
/* Now issue the command & tell firmware to wake up to process it. */
writel(cmd, base + AVS_MBOX_COMMAND);
writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
/* Wait for AVS co-processor to finish processing the command. */
time_left = wait_for_completion_timeout(&priv->done, time_left);
/*
* If the AVS status is not in the expected range, it means AVS didn't
* complete our command in time, and we return an error. Also, if there
* is no "time left", we timed out waiting for the interrupt.
*/
val = readl(base + AVS_MBOX_STATUS);
if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
cmd);
dev_err(priv->dev, " Time left: %u ms, AVS status: %#x\n",
jiffies_to_msecs(time_left), val);
ret = -ETIMEDOUT;
goto out;
}
/* This command returned arguments, so we read them back. */
if (args && !is_send) {
for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
args[i] = readl(base + AVS_MBOX_PARAM(i));
}
/* Clear status to tell AVS co-processor we are done. */
writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
/* Convert firmware errors to errno's as much as possible. */
switch (val) {
case AVS_STATUS_INVALID:
ret = -EINVAL;
break;
case AVS_STATUS_NO_SUPP:
ret = -ENOTSUPP;
break;
case AVS_STATUS_NO_MAP:
ret = -ENOENT;
break;
case AVS_STATUS_MAP_SET:
ret = -EEXIST;
break;
case AVS_STATUS_FAILURE:
ret = -EIO;
break;
}
out:
up(&priv->sem);
return ret;
}
static irqreturn_t irq_handler(int irq, void *data)
{
struct private_data *priv = data;
/* AVS command completed execution. Wake up __issue_avs_command(). */
complete(&priv->done);
return IRQ_HANDLED;
}
static char *brcm_avs_mode_to_string(unsigned int mode)
{
switch (mode) {
case AVS_MODE_AVS:
return "AVS";
case AVS_MODE_DFS:
return "DFS";
case AVS_MODE_DVS:
return "DVS";
case AVS_MODE_DVFS:
return "DVFS";
}
return NULL;
}
static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
unsigned int *ndiv)
{
*mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
*pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
*ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
}
static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
unsigned int *mdiv_p2, unsigned int *mdiv_p3,
unsigned int *mdiv_p4)
{
*mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
*mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
*mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
*mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
}
static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
{
u32 args[AVS_MAX_CMD_ARGS];
int ret;
ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args);
if (ret || !pmap)
return ret;
pmap->mode = args[0];
pmap->p1 = args[1];
pmap->p2 = args[2];
pmap->state = args[3];
return 0;
}
static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
{
u32 args[AVS_MAX_CMD_ARGS];
args[0] = pmap->mode;
args[1] = pmap->p1;
args[2] = pmap->p2;
args[3] = pmap->state;
return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args);
}
static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
{
u32 args[AVS_MAX_CMD_ARGS];
int ret;
ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args);
if (ret)
return ret;
*pstate = args[0];
return 0;
}
static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
{
u32 args[AVS_MAX_CMD_ARGS];
args[0] = pstate;
return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args);
}
static unsigned long brcm_avs_get_voltage(void __iomem *base)
{
return readl(base + AVS_MBOX_VOLTAGE1);
}
static unsigned long brcm_avs_get_frequency(void __iomem *base)
{
return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */
}
/*
* We determine which frequencies are supported by cycling through all P-states
* and reading back what frequency we are running at for each P-state.
*/
static struct cpufreq_frequency_table *
brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
{
struct cpufreq_frequency_table *table;
unsigned int pstate;
int i, ret;
/* Remember P-state for later */
ret = brcm_avs_get_pstate(priv, &pstate);
if (ret)
return ERR_PTR(ret);
table = devm_kzalloc(dev, (AVS_PSTATE_MAX + 1) * sizeof(*table),
GFP_KERNEL);
if (!table)
return ERR_PTR(-ENOMEM);
for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
ret = brcm_avs_set_pstate(priv, i);
if (ret)
return ERR_PTR(ret);
table[i].frequency = brcm_avs_get_frequency(priv->base);
table[i].driver_data = i;
}
table[i].frequency = CPUFREQ_TABLE_END;
/* Restore P-state */
ret = brcm_avs_set_pstate(priv, pstate);
if (ret)
return ERR_PTR(ret);
return table;
}
#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
#define MANT(x) (unsigned int)(abs((x)) / 1000)
#define FRAC(x) (unsigned int)(abs((x)) - abs((x)) / 1000 * 1000)
static int brcm_avs_debug_show(struct seq_file *s, void *data)
{
struct debugfs_data *dbgfs = s->private;
void __iomem *base;
u32 val, offset;
if (!dbgfs) {
seq_puts(s, "No device pointer\n");
return 0;
}
base = dbgfs->priv->base;
offset = dbgfs->entry->offset;
val = readl(base + offset);
switch (dbgfs->entry->format) {
case DEBUGFS_NORMAL:
seq_printf(s, "%u\n", val);
break;
case DEBUGFS_FLOAT:
seq_printf(s, "%d.%03d\n", MANT(val), FRAC(val));
break;
case DEBUGFS_REV:
seq_printf(s, "%c.%c.%c.%c\n", (val >> 24 & 0xff),
(val >> 16 & 0xff), (val >> 8 & 0xff),
val & 0xff);
break;
}
seq_printf(s, "0x%08x\n", val);
return 0;
}
#undef MANT
#undef FRAC
static ssize_t brcm_avs_seq_write(struct file *file, const char __user *buf,
size_t size, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct debugfs_data *dbgfs = s->private;
struct private_data *priv = dbgfs->priv;
void __iomem *base, *avs_intr_base;
bool use_issue_command = false;
unsigned long val, offset;
char str[128];
int ret;
char *str_ptr = str;
if (size >= sizeof(str))
return -E2BIG;
memset(str, 0, sizeof(str));
ret = copy_from_user(str, buf, size);
if (ret)
return ret;
base = priv->base;
avs_intr_base = priv->avs_intr_base;
offset = dbgfs->entry->offset;
/*
* Special case writing to "command" entry only: if the string starts
* with a 'c', we use the driver's __issue_avs_command() function.
* Otherwise, we perform a raw write. This should allow testing of raw
* access as well as using the higher level function. (Raw access
* doesn't clear the firmware return status after issuing the command.)
*/
if (str_ptr[0] == 'c' && offset == AVS_MBOX_COMMAND) {
use_issue_command = true;
str_ptr++;
}
if (kstrtoul(str_ptr, 0, &val) != 0)
return -EINVAL;
/*
* Setting the P-state is a special case. We need to update the CPU
* frequency we report.
*/
if (val == AVS_CMD_SET_PSTATE) {
struct cpufreq_policy *policy;
unsigned int pstate;
policy = cpufreq_cpu_get(smp_processor_id());
/* Read back the P-state we are about to set */
pstate = readl(base + AVS_MBOX_PARAM(0));
if (use_issue_command) {
ret = brcm_avs_target_index(policy, pstate);
return ret ? ret : size;
}
policy->cur = policy->freq_table[pstate].frequency;
}
if (use_issue_command) {
ret = __issue_avs_command(priv, val, false, NULL);
} else {
/* Locking here is not perfect, but is only for debug. */
ret = down_interruptible(&priv->sem);
if (ret)
return ret;
writel(val, base + offset);
/* We have to wake up the firmware to process a command. */
if (offset == AVS_MBOX_COMMAND)
writel(AVS_CPU_L2_INT_MASK,
avs_intr_base + AVS_CPU_L2_SET0);
up(&priv->sem);
}
return ret ? ret : size;
}
static struct debugfs_entry *__find_debugfs_entry(const char *name)
{
int i;
for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++)
if (strcasecmp(debugfs_entries[i].name, name) == 0)
return &debugfs_entries[i];
return NULL;
}
static int brcm_avs_debug_open(struct inode *inode, struct file *file)
{
struct debugfs_data *data;
fmode_t fmode;
int ret;
/*
* seq_open(), which is called by single_open(), clears "write" access.
* We need write access to some files, so we preserve our access mode
* and restore it.
*/
fmode = file->f_mode;
/*
* Check access permissions even for root. We don't want to be writing
* to read-only registers. Access for regular users has already been
* checked by the VFS layer.
*/
if ((fmode & FMODE_WRITER) && !(inode->i_mode & S_IWUSR))
return -EACCES;
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
/*
* We use the same file system operations for all our debug files. To
* produce specific output, we look up the file name upon opening a
* debugfs entry and map it to a memory offset. This offset is then used
* in the generic "show" function to read a specific register.
*/
data->entry = __find_debugfs_entry(file->f_path.dentry->d_iname);
data->priv = inode->i_private;
ret = single_open(file, brcm_avs_debug_show, data);
if (ret)
kfree(data);
file->f_mode = fmode;
return ret;
}
static int brcm_avs_debug_release(struct inode *inode, struct file *file)
{
struct seq_file *seq_priv = file->private_data;
struct debugfs_data *data = seq_priv->private;
kfree(data);
return single_release(inode, file);
}
static const struct file_operations brcm_avs_debug_ops = {
.open = brcm_avs_debug_open,
.read = seq_read,
.write = brcm_avs_seq_write,
.llseek = seq_lseek,
.release = brcm_avs_debug_release,
};
static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev)
{
struct private_data *priv = platform_get_drvdata(pdev);
struct dentry *dir;
int i;
if (!priv)
return;
dir = debugfs_create_dir(BRCM_AVS_CPUFREQ_NAME, NULL);
if (IS_ERR_OR_NULL(dir))
return;
priv->debugfs = dir;
for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++) {
/*
* The DEBUGFS_ENTRY macro generates uppercase strings. We
* convert them to lowercase before creating the debugfs
* entries.
*/
char *entry = __strtolower(debugfs_entries[i].name);
fmode_t mode = debugfs_entries[i].mode;
if (!debugfs_create_file(entry, S_IFREG | S_IRUGO | mode,
dir, priv, &brcm_avs_debug_ops)) {
priv->debugfs = NULL;
debugfs_remove_recursive(dir);
break;
}
}
}
static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev)
{
struct private_data *priv = platform_get_drvdata(pdev);
if (priv && priv->debugfs) {
debugfs_remove_recursive(priv->debugfs);
priv->debugfs = NULL;
}
}
#else
static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev) {}
static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev) {}
#endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
/*
* To ensure the right firmware is running we need to
* - check the MAGIC matches what we expect
* - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
* We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
*/
static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
{
u32 magic;
int rc;
rc = brcm_avs_get_pmap(priv, NULL);
magic = readl(priv->base + AVS_MBOX_MAGIC);
return (magic == AVS_FIRMWARE_MAGIC) && (rc != -ENOTSUPP) &&
(rc != -EINVAL);
}
static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
struct private_data *priv = policy->driver_data;
return brcm_avs_get_frequency(priv->base);
}
static int brcm_avs_target_index(struct cpufreq_policy *policy,
unsigned int index)
{
return brcm_avs_set_pstate(policy->driver_data,
policy->freq_table[index].driver_data);
}
static int brcm_avs_suspend(struct cpufreq_policy *policy)
{
struct private_data *priv = policy->driver_data;
int ret;
ret = brcm_avs_get_pmap(priv, &priv->pmap);
if (ret)
return ret;
/*
* We can't use the P-state returned by brcm_avs_get_pmap(), since
* that's the initial P-state from when the P-map was downloaded to the
* AVS co-processor, not necessarily the P-state we are running at now.
* So, we get the current P-state explicitly.
*/
return brcm_avs_get_pstate(priv, &priv->pmap.state);
}
static int brcm_avs_resume(struct cpufreq_policy *policy)
{
struct private_data *priv = policy->driver_data;
int ret;
ret = brcm_avs_set_pmap(priv, &priv->pmap);
if (ret == -EEXIST) {
struct platform_device *pdev = cpufreq_get_driver_data();
struct device *dev = &pdev->dev;
dev_warn(dev, "PMAP was already set\n");
ret = 0;
}
return ret;
}
/*
* All initialization code that we only want to execute once goes here. Setup
* code that can be re-tried on every core (if it failed before) can go into
* brcm_avs_cpufreq_init().
*/
static int brcm_avs_prepare_init(struct platform_device *pdev)
{
struct private_data *priv;
struct device *dev;
int host_irq, ret;
dev = &pdev->dev;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
sema_init(&priv->sem, 1);
init_completion(&priv->done);
platform_set_drvdata(pdev, priv);
priv->base = __map_region(BRCM_AVS_CPU_DATA);
if (!priv->base) {
dev_err(dev, "Couldn't find property %s in device tree.\n",
BRCM_AVS_CPU_DATA);
return -ENOENT;
}
priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
if (!priv->avs_intr_base) {
dev_err(dev, "Couldn't find property %s in device tree.\n",
BRCM_AVS_CPU_INTR);
ret = -ENOENT;
goto unmap_base;
}
host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
if (host_irq < 0) {
dev_err(dev, "Couldn't find interrupt %s -- %d\n",
BRCM_AVS_HOST_INTR, host_irq);
ret = host_irq;
goto unmap_intr_base;
}
ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING,
BRCM_AVS_HOST_INTR, priv);
if (ret) {
dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
BRCM_AVS_HOST_INTR, host_irq, ret);
goto unmap_intr_base;
}
if (brcm_avs_is_firmware_loaded(priv))
return 0;
dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
ret = -ENODEV;
unmap_intr_base:
iounmap(priv->avs_intr_base);
unmap_base:
iounmap(priv->base);
return ret;
}
static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *freq_table;
struct platform_device *pdev;
struct private_data *priv;
struct device *dev;
int ret;
pdev = cpufreq_get_driver_data();
priv = platform_get_drvdata(pdev);
policy->driver_data = priv;
dev = &pdev->dev;
freq_table = brcm_avs_get_freq_table(dev, priv);
if (IS_ERR(freq_table)) {
ret = PTR_ERR(freq_table);
dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
return ret;
}
ret = cpufreq_table_validate_and_show(policy, freq_table);
if (ret) {
dev_err(dev, "invalid frequency table: %d\n", ret);
return ret;
}
/* All cores share the same clock and thus the same policy. */
cpumask_setall(policy->cpus);
ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL);
if (!ret) {
unsigned int pstate;
ret = brcm_avs_get_pstate(priv, &pstate);
if (!ret) {
policy->cur = freq_table[pstate].frequency;
dev_info(dev, "registered\n");
return 0;
}
}
dev_err(dev, "couldn't initialize driver (%d)\n", ret);
return ret;
}
static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
{
struct private_data *priv = policy->driver_data;
unsigned int pstate;
if (brcm_avs_get_pstate(priv, &pstate))
return sprintf(buf, "<unknown>\n");
return sprintf(buf, "%u\n", pstate);
}
static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
{
struct private_data *priv = policy->driver_data;
struct pmap pmap;
if (brcm_avs_get_pmap(priv, &pmap))
return sprintf(buf, "<unknown>\n");
return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
pmap.mode);
}
static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
{
unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
struct private_data *priv = policy->driver_data;
unsigned int ndiv, pdiv;
struct pmap pmap;
if (brcm_avs_get_pmap(priv, &pmap))
return sprintf(buf, "<unknown>\n");
brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
}
static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
{
struct private_data *priv = policy->driver_data;
return sprintf(buf, "0x%08lx\n", brcm_avs_get_voltage(priv->base));
}
static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
{
struct private_data *priv = policy->driver_data;
return sprintf(buf, "0x%08lx\n", brcm_avs_get_frequency(priv->base));
}
cpufreq_freq_attr_ro(brcm_avs_pstate);
cpufreq_freq_attr_ro(brcm_avs_mode);
cpufreq_freq_attr_ro(brcm_avs_pmap);
cpufreq_freq_attr_ro(brcm_avs_voltage);
cpufreq_freq_attr_ro(brcm_avs_frequency);
static struct freq_attr *brcm_avs_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
&brcm_avs_pstate,
&brcm_avs_mode,
&brcm_avs_pmap,
&brcm_avs_voltage,
&brcm_avs_frequency,
NULL
};
static struct cpufreq_driver brcm_avs_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = brcm_avs_target_index,
.get = brcm_avs_cpufreq_get,
.suspend = brcm_avs_suspend,
.resume = brcm_avs_resume,
.init = brcm_avs_cpufreq_init,
.attr = brcm_avs_cpufreq_attr,
.name = BRCM_AVS_CPUFREQ_PREFIX,
};
static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
{
int ret;
ret = brcm_avs_prepare_init(pdev);
if (ret)
return ret;
brcm_avs_driver.driver_data = pdev;
ret = cpufreq_register_driver(&brcm_avs_driver);
if (!ret)
brcm_avs_cpufreq_debug_init(pdev);
return ret;
}
static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
{
struct private_data *priv;
int ret;
ret = cpufreq_unregister_driver(&brcm_avs_driver);
if (ret)
return ret;
brcm_avs_cpufreq_debug_exit(pdev);
priv = platform_get_drvdata(pdev);
iounmap(priv->base);
iounmap(priv->avs_intr_base);
return 0;
}
static const struct of_device_id brcm_avs_cpufreq_match[] = {
{ .compatible = BRCM_AVS_CPU_DATA },
{ }
};
MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
static struct platform_driver brcm_avs_cpufreq_platdrv = {
.driver = {
.name = BRCM_AVS_CPUFREQ_NAME,
.of_match_table = brcm_avs_cpufreq_match,
},
.probe = brcm_avs_cpufreq_probe,
.remove = brcm_avs_cpufreq_remove,
};
module_platform_driver(brcm_avs_cpufreq_platdrv);
MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
MODULE_LICENSE("GPL");