ea68c00e26
In OMAP35X TRM Rev 2010-05 Figure 7-18 "DPLL With EMI Reduction Feature", it is shown that the internal frequency is calculated by CLK_IN/(N+1). However, the value passed to _dpll_test_fint() is already "N+1" since Linux is using the values to divide by. In the technical reference manual, "N" is referring to the divider's register value (0-127). During power management testing, it was observed that programming the wrong jitter correction value can cause the system to become unstable and eventually crash. Signed-off-by: John Ogness <john.ogness@linutronix.de> [paul@pwsan.com: added second paragraph to commit message] Signed-off-by: Paul Walmsley <paul@pwsan.com>
385 lines
11 KiB
C
385 lines
11 KiB
C
/*
|
|
* OMAP2/3/4 DPLL clock functions
|
|
*
|
|
* Copyright (C) 2005-2008 Texas Instruments, Inc.
|
|
* Copyright (C) 2004-2010 Nokia Corporation
|
|
*
|
|
* Contacts:
|
|
* Richard Woodruff <r-woodruff2@ti.com>
|
|
* Paul Walmsley
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#undef DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <asm/div64.h>
|
|
|
|
#include <plat/clock.h>
|
|
|
|
#include "clock.h"
|
|
#include "cm-regbits-24xx.h"
|
|
#include "cm-regbits-34xx.h"
|
|
|
|
/* DPLL rate rounding: minimum DPLL multiplier, divider values */
|
|
#define DPLL_MIN_MULTIPLIER 2
|
|
#define DPLL_MIN_DIVIDER 1
|
|
|
|
/* Possible error results from _dpll_test_mult */
|
|
#define DPLL_MULT_UNDERFLOW -1
|
|
|
|
/*
|
|
* Scale factor to mitigate roundoff errors in DPLL rate rounding.
|
|
* The higher the scale factor, the greater the risk of arithmetic overflow,
|
|
* but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR
|
|
* must be a power of DPLL_SCALE_BASE.
|
|
*/
|
|
#define DPLL_SCALE_FACTOR 64
|
|
#define DPLL_SCALE_BASE 2
|
|
#define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \
|
|
(DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
|
|
|
|
/* DPLL valid Fint frequency band limits - from 34xx TRM Section 4.7.6.2 */
|
|
#define DPLL_FINT_BAND1_MIN 750000
|
|
#define DPLL_FINT_BAND1_MAX 2100000
|
|
#define DPLL_FINT_BAND2_MIN 7500000
|
|
#define DPLL_FINT_BAND2_MAX 21000000
|
|
|
|
/* _dpll_test_fint() return codes */
|
|
#define DPLL_FINT_UNDERFLOW -1
|
|
#define DPLL_FINT_INVALID -2
|
|
|
|
/* Private functions */
|
|
|
|
/*
|
|
* _dpll_test_fint - test whether an Fint value is valid for the DPLL
|
|
* @clk: DPLL struct clk to test
|
|
* @n: divider value (N) to test
|
|
*
|
|
* Tests whether a particular divider @n will result in a valid DPLL
|
|
* internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
|
|
* Correction". Returns 0 if OK, -1 if the enclosing loop can terminate
|
|
* (assuming that it is counting N upwards), or -2 if the enclosing loop
|
|
* should skip to the next iteration (again assuming N is increasing).
|
|
*/
|
|
static int _dpll_test_fint(struct clk *clk, u8 n)
|
|
{
|
|
struct dpll_data *dd;
|
|
long fint;
|
|
int ret = 0;
|
|
|
|
dd = clk->dpll_data;
|
|
|
|
/* DPLL divider must result in a valid jitter correction val */
|
|
fint = clk->parent->rate / n;
|
|
if (fint < DPLL_FINT_BAND1_MIN) {
|
|
|
|
pr_debug("rejecting n=%d due to Fint failure, "
|
|
"lowering max_divider\n", n);
|
|
dd->max_divider = n;
|
|
ret = DPLL_FINT_UNDERFLOW;
|
|
|
|
} else if (fint > DPLL_FINT_BAND1_MAX &&
|
|
fint < DPLL_FINT_BAND2_MIN) {
|
|
|
|
pr_debug("rejecting n=%d due to Fint failure\n", n);
|
|
ret = DPLL_FINT_INVALID;
|
|
|
|
} else if (fint > DPLL_FINT_BAND2_MAX) {
|
|
|
|
pr_debug("rejecting n=%d due to Fint failure, "
|
|
"boosting min_divider\n", n);
|
|
dd->min_divider = n;
|
|
ret = DPLL_FINT_INVALID;
|
|
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
|
|
unsigned int m, unsigned int n)
|
|
{
|
|
unsigned long long num;
|
|
|
|
num = (unsigned long long)parent_rate * m;
|
|
do_div(num, n);
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* _dpll_test_mult - test a DPLL multiplier value
|
|
* @m: pointer to the DPLL m (multiplier) value under test
|
|
* @n: current DPLL n (divider) value under test
|
|
* @new_rate: pointer to storage for the resulting rounded rate
|
|
* @target_rate: the desired DPLL rate
|
|
* @parent_rate: the DPLL's parent clock rate
|
|
*
|
|
* This code tests a DPLL multiplier value, ensuring that the
|
|
* resulting rate will not be higher than the target_rate, and that
|
|
* the multiplier value itself is valid for the DPLL. Initially, the
|
|
* integer pointed to by the m argument should be prescaled by
|
|
* multiplying by DPLL_SCALE_FACTOR. The code will replace this with
|
|
* a non-scaled m upon return. This non-scaled m will result in a
|
|
* new_rate as close as possible to target_rate (but not greater than
|
|
* target_rate) given the current (parent_rate, n, prescaled m)
|
|
* triple. Returns DPLL_MULT_UNDERFLOW in the event that the
|
|
* non-scaled m attempted to underflow, which can allow the calling
|
|
* function to bail out early; or 0 upon success.
|
|
*/
|
|
static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
|
|
unsigned long target_rate,
|
|
unsigned long parent_rate)
|
|
{
|
|
int r = 0, carry = 0;
|
|
|
|
/* Unscale m and round if necessary */
|
|
if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
|
|
carry = 1;
|
|
*m = (*m / DPLL_SCALE_FACTOR) + carry;
|
|
|
|
/*
|
|
* The new rate must be <= the target rate to avoid programming
|
|
* a rate that is impossible for the hardware to handle
|
|
*/
|
|
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
|
|
if (*new_rate > target_rate) {
|
|
(*m)--;
|
|
*new_rate = 0;
|
|
}
|
|
|
|
/* Guard against m underflow */
|
|
if (*m < DPLL_MIN_MULTIPLIER) {
|
|
*m = DPLL_MIN_MULTIPLIER;
|
|
*new_rate = 0;
|
|
r = DPLL_MULT_UNDERFLOW;
|
|
}
|
|
|
|
if (*new_rate == 0)
|
|
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Public functions */
|
|
|
|
void omap2_init_dpll_parent(struct clk *clk)
|
|
{
|
|
u32 v;
|
|
struct dpll_data *dd;
|
|
|
|
dd = clk->dpll_data;
|
|
if (!dd)
|
|
return;
|
|
|
|
/* Return bypass rate if DPLL is bypassed */
|
|
v = __raw_readl(dd->control_reg);
|
|
v &= dd->enable_mask;
|
|
v >>= __ffs(dd->enable_mask);
|
|
|
|
/* Reparent in case the dpll is in bypass */
|
|
if (cpu_is_omap24xx()) {
|
|
if (v == OMAP2XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP2XXX_EN_DPLL_FRBYPASS)
|
|
clk_reparent(clk, dd->clk_bypass);
|
|
} else if (cpu_is_omap34xx()) {
|
|
if (v == OMAP3XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP3XXX_EN_DPLL_FRBYPASS)
|
|
clk_reparent(clk, dd->clk_bypass);
|
|
} else if (cpu_is_omap44xx()) {
|
|
if (v == OMAP4XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP4XXX_EN_DPLL_FRBYPASS ||
|
|
v == OMAP4XXX_EN_DPLL_MNBYPASS)
|
|
clk_reparent(clk, dd->clk_bypass);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
|
|
* @clk: struct clk * of a DPLL
|
|
*
|
|
* DPLLs can be locked or bypassed - basically, enabled or disabled.
|
|
* When locked, the DPLL output depends on the M and N values. When
|
|
* bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
|
|
* or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
|
|
* 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
|
|
* (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
|
|
* Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
|
|
* locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
|
|
* if the clock @clk is not a DPLL.
|
|
*/
|
|
u32 omap2_get_dpll_rate(struct clk *clk)
|
|
{
|
|
long long dpll_clk;
|
|
u32 dpll_mult, dpll_div, v;
|
|
struct dpll_data *dd;
|
|
|
|
dd = clk->dpll_data;
|
|
if (!dd)
|
|
return 0;
|
|
|
|
/* Return bypass rate if DPLL is bypassed */
|
|
v = __raw_readl(dd->control_reg);
|
|
v &= dd->enable_mask;
|
|
v >>= __ffs(dd->enable_mask);
|
|
|
|
if (cpu_is_omap24xx()) {
|
|
if (v == OMAP2XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP2XXX_EN_DPLL_FRBYPASS)
|
|
return dd->clk_bypass->rate;
|
|
} else if (cpu_is_omap34xx()) {
|
|
if (v == OMAP3XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP3XXX_EN_DPLL_FRBYPASS)
|
|
return dd->clk_bypass->rate;
|
|
} else if (cpu_is_omap44xx()) {
|
|
if (v == OMAP4XXX_EN_DPLL_LPBYPASS ||
|
|
v == OMAP4XXX_EN_DPLL_FRBYPASS ||
|
|
v == OMAP4XXX_EN_DPLL_MNBYPASS)
|
|
return dd->clk_bypass->rate;
|
|
}
|
|
|
|
v = __raw_readl(dd->mult_div1_reg);
|
|
dpll_mult = v & dd->mult_mask;
|
|
dpll_mult >>= __ffs(dd->mult_mask);
|
|
dpll_div = v & dd->div1_mask;
|
|
dpll_div >>= __ffs(dd->div1_mask);
|
|
|
|
dpll_clk = (long long)dd->clk_ref->rate * dpll_mult;
|
|
do_div(dpll_clk, dpll_div + 1);
|
|
|
|
return dpll_clk;
|
|
}
|
|
|
|
/* DPLL rate rounding code */
|
|
|
|
/**
|
|
* omap2_dpll_set_rate_tolerance: set the error tolerance during rate rounding
|
|
* @clk: struct clk * of the DPLL
|
|
* @tolerance: maximum rate error tolerance
|
|
*
|
|
* Set the maximum DPLL rate error tolerance for the rate rounding
|
|
* algorithm. The rate tolerance is an attempt to balance DPLL power
|
|
* saving (the least divider value "n") vs. rate fidelity (the least
|
|
* difference between the desired DPLL target rate and the rounded
|
|
* rate out of the algorithm). So, increasing the tolerance is likely
|
|
* to decrease DPLL power consumption and increase DPLL rate error.
|
|
* Returns -EINVAL if provided a null clock ptr or a clk that is not a
|
|
* DPLL; or 0 upon success.
|
|
*/
|
|
int omap2_dpll_set_rate_tolerance(struct clk *clk, unsigned int tolerance)
|
|
{
|
|
if (!clk || !clk->dpll_data)
|
|
return -EINVAL;
|
|
|
|
clk->dpll_data->rate_tolerance = tolerance;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap2_dpll_round_rate - round a target rate for an OMAP DPLL
|
|
* @clk: struct clk * for a DPLL
|
|
* @target_rate: desired DPLL clock rate
|
|
*
|
|
* Given a DPLL, a desired target rate, and a rate tolerance, round
|
|
* the target rate to a possible, programmable rate for this DPLL.
|
|
* Rate tolerance is assumed to be set by the caller before this
|
|
* function is called. Attempts to select the minimum possible n
|
|
* within the tolerance to reduce power consumption. Stores the
|
|
* computed (m, n) in the DPLL's dpll_data structure so set_rate()
|
|
* will not need to call this (expensive) function again. Returns ~0
|
|
* if the target rate cannot be rounded, either because the rate is
|
|
* too low or because the rate tolerance is set too tightly; or the
|
|
* rounded rate upon success.
|
|
*/
|
|
long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate)
|
|
{
|
|
int m, n, r, e, scaled_max_m;
|
|
unsigned long scaled_rt_rp, new_rate;
|
|
int min_e = -1, min_e_m = -1, min_e_n = -1;
|
|
struct dpll_data *dd;
|
|
|
|
if (!clk || !clk->dpll_data)
|
|
return ~0;
|
|
|
|
dd = clk->dpll_data;
|
|
|
|
pr_debug("clock: starting DPLL round_rate for clock %s, target rate "
|
|
"%ld\n", clk->name, target_rate);
|
|
|
|
scaled_rt_rp = target_rate / (dd->clk_ref->rate / DPLL_SCALE_FACTOR);
|
|
scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
|
|
|
|
dd->last_rounded_rate = 0;
|
|
|
|
for (n = dd->min_divider; n <= dd->max_divider; n++) {
|
|
|
|
/* Is the (input clk, divider) pair valid for the DPLL? */
|
|
r = _dpll_test_fint(clk, n);
|
|
if (r == DPLL_FINT_UNDERFLOW)
|
|
break;
|
|
else if (r == DPLL_FINT_INVALID)
|
|
continue;
|
|
|
|
/* Compute the scaled DPLL multiplier, based on the divider */
|
|
m = scaled_rt_rp * n;
|
|
|
|
/*
|
|
* Since we're counting n up, a m overflow means we
|
|
* can bail out completely (since as n increases in
|
|
* the next iteration, there's no way that m can
|
|
* increase beyond the current m)
|
|
*/
|
|
if (m > scaled_max_m)
|
|
break;
|
|
|
|
r = _dpll_test_mult(&m, n, &new_rate, target_rate,
|
|
dd->clk_ref->rate);
|
|
|
|
/* m can't be set low enough for this n - try with a larger n */
|
|
if (r == DPLL_MULT_UNDERFLOW)
|
|
continue;
|
|
|
|
e = target_rate - new_rate;
|
|
pr_debug("clock: n = %d: m = %d: rate error is %d "
|
|
"(new_rate = %ld)\n", n, m, e, new_rate);
|
|
|
|
if (min_e == -1 ||
|
|
min_e >= (int)(abs(e) - dd->rate_tolerance)) {
|
|
min_e = e;
|
|
min_e_m = m;
|
|
min_e_n = n;
|
|
|
|
pr_debug("clock: found new least error %d\n", min_e);
|
|
|
|
/* We found good settings -- bail out now */
|
|
if (min_e <= dd->rate_tolerance)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (min_e < 0) {
|
|
pr_debug("clock: error: target rate or tolerance too low\n");
|
|
return ~0;
|
|
}
|
|
|
|
dd->last_rounded_m = min_e_m;
|
|
dd->last_rounded_n = min_e_n;
|
|
dd->last_rounded_rate = _dpll_compute_new_rate(dd->clk_ref->rate,
|
|
min_e_m, min_e_n);
|
|
|
|
pr_debug("clock: final least error: e = %d, m = %d, n = %d\n",
|
|
min_e, min_e_m, min_e_n);
|
|
pr_debug("clock: final rate: %ld (target rate: %ld)\n",
|
|
dd->last_rounded_rate, target_rate);
|
|
|
|
return dd->last_rounded_rate;
|
|
}
|
|
|