kernel-fxtec-pro1x/arch/x86/boot/memory.c
H. Peter Anvin 39b68976ac x86, setup: When probing memory with e801, use ax/bx as a pair
When we use BIOS function e801 to probe memory, we should use ax/bx
(or cx/dx) as a pair, not mix and match.  This was a typo during the
translation from assembly code, and breaks at least one set of
machines in the field (which return cx = dx = 0).

Reported-and-tested-by: Chris Samuel <chris@csamuel.org>
Fix-proposed-by: Thomas Meyer <thomas@m3y3r.de>
Link: http://lkml.kernel.org/r/1303566747.12067.10.camel@localhost.localdomain
2011-04-25 14:52:37 -07:00

136 lines
3.3 KiB
C

/* -*- linux-c -*- ------------------------------------------------------- *
*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright 2007 rPath, Inc. - All Rights Reserved
* Copyright 2009 Intel Corporation; author H. Peter Anvin
*
* This file is part of the Linux kernel, and is made available under
* the terms of the GNU General Public License version 2.
*
* ----------------------------------------------------------------------- */
/*
* Memory detection code
*/
#include "boot.h"
#define SMAP 0x534d4150 /* ASCII "SMAP" */
static int detect_memory_e820(void)
{
int count = 0;
struct biosregs ireg, oreg;
struct e820entry *desc = boot_params.e820_map;
static struct e820entry buf; /* static so it is zeroed */
initregs(&ireg);
ireg.ax = 0xe820;
ireg.cx = sizeof buf;
ireg.edx = SMAP;
ireg.di = (size_t)&buf;
/*
* Note: at least one BIOS is known which assumes that the
* buffer pointed to by one e820 call is the same one as
* the previous call, and only changes modified fields. Therefore,
* we use a temporary buffer and copy the results entry by entry.
*
* This routine deliberately does not try to account for
* ACPI 3+ extended attributes. This is because there are
* BIOSes in the field which report zero for the valid bit for
* all ranges, and we don't currently make any use of the
* other attribute bits. Revisit this if we see the extended
* attribute bits deployed in a meaningful way in the future.
*/
do {
intcall(0x15, &ireg, &oreg);
ireg.ebx = oreg.ebx; /* for next iteration... */
/* BIOSes which terminate the chain with CF = 1 as opposed
to %ebx = 0 don't always report the SMAP signature on
the final, failing, probe. */
if (oreg.eflags & X86_EFLAGS_CF)
break;
/* Some BIOSes stop returning SMAP in the middle of
the search loop. We don't know exactly how the BIOS
screwed up the map at that point, we might have a
partial map, the full map, or complete garbage, so
just return failure. */
if (oreg.eax != SMAP) {
count = 0;
break;
}
*desc++ = buf;
count++;
} while (ireg.ebx && count < ARRAY_SIZE(boot_params.e820_map));
return boot_params.e820_entries = count;
}
static int detect_memory_e801(void)
{
struct biosregs ireg, oreg;
initregs(&ireg);
ireg.ax = 0xe801;
intcall(0x15, &ireg, &oreg);
if (oreg.eflags & X86_EFLAGS_CF)
return -1;
/* Do we really need to do this? */
if (oreg.cx || oreg.dx) {
oreg.ax = oreg.cx;
oreg.bx = oreg.dx;
}
if (oreg.ax > 15*1024) {
return -1; /* Bogus! */
} else if (oreg.ax == 15*1024) {
boot_params.alt_mem_k = (oreg.bx << 6) + oreg.ax;
} else {
/*
* This ignores memory above 16MB if we have a memory
* hole there. If someone actually finds a machine
* with a memory hole at 16MB and no support for
* 0E820h they should probably generate a fake e820
* map.
*/
boot_params.alt_mem_k = oreg.ax;
}
return 0;
}
static int detect_memory_88(void)
{
struct biosregs ireg, oreg;
initregs(&ireg);
ireg.ah = 0x88;
intcall(0x15, &ireg, &oreg);
boot_params.screen_info.ext_mem_k = oreg.ax;
return -(oreg.eflags & X86_EFLAGS_CF); /* 0 or -1 */
}
int detect_memory(void)
{
int err = -1;
if (detect_memory_e820() > 0)
err = 0;
if (!detect_memory_e801())
err = 0;
if (!detect_memory_88())
err = 0;
return err;
}