kernel-fxtec-pro1x/drivers/s390/scsi/zfcp_sysfs.c
Martin Peschke 18f87a67e6 zfcp: auto port scan resiliency
This patch improves the Fibre Channel port scan behaviour of the zfcp lldd.
Without it the zfcp device driver may churn up the storage area network by
excessive scanning and scan bursts, particularly in big virtual server
environments, potentially resulting in interference of virtual servers and
reduced availability of storage connectivity.

The two main issues as to the zfcp device drivers automatic port scan in
virtual server environments are frequency and simultaneity.
On the one hand, there is no point in allowing lots of ports scans
in a row. It makes sense, though, to make sure that a scan is conducted
eventually if there has been any indication for potential SAN changes.
On the other hand, lots of virtual servers receiving the same indication
for a SAN change had better not attempt to conduct a scan instantly,
that is, at the same time.

Hence this patch has a two-fold approach for better port scanning:
the introduction of a rate limit to amend frequency issues, and the
introduction of a short random backoff to amend simultaneity issues.
Both approaches boil down to deferred port scans, with delays
comprising parts for both approaches.

The new port scan behaviour is summarised best by:

                                               NEW:    NEW:
                          no_auto_port_rescan  random  rate    flush
                                               backoff limit   =wait

adapter resume/thaw       yes                  yes     no      yes*
adapter online (user)     no                   yes     no      yes*
port rescan (user)        no                   no      no      yes
adapter recovery (user)   yes                  yes     yes     no
adapter recovery (other)  yes                  yes     yes     no
incoming ELS              yes                  yes     yes     no
incoming ELS lost         yes                  yes     yes     no

Implementation is straight-forward by converting an existing worker to
a delayed worker. But care is needed whenever that worker is going to be
flushed (in order to make sure work has been completed), since a flush
operation cancels the timer set up for deferred execution (see * above).

There is a small race window whenever a port scan work starts
running up to the point in time of storing the time stamp for that port
scan. The impact is negligible. Closing that gap isn't trivial, though, and
would the destroy the beauty of a simple work-to-delayed-work conversion.

Signed-off-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-11-20 09:11:30 +01:00

625 lines
19 KiB
C

/*
* zfcp device driver
*
* sysfs attributes.
*
* Copyright IBM Corp. 2008, 2010
*/
#define KMSG_COMPONENT "zfcp"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/slab.h>
#include "zfcp_ext.h"
#define ZFCP_DEV_ATTR(_feat, _name, _mode, _show, _store) \
struct device_attribute dev_attr_##_feat##_##_name = __ATTR(_name, _mode,\
_show, _store)
#define ZFCP_DEFINE_ATTR(_feat_def, _feat, _name, _format, _value) \
static ssize_t zfcp_sysfs_##_feat##_##_name##_show(struct device *dev, \
struct device_attribute *at,\
char *buf) \
{ \
struct _feat_def *_feat = container_of(dev, struct _feat_def, dev); \
\
return sprintf(buf, _format, _value); \
} \
static ZFCP_DEV_ATTR(_feat, _name, S_IRUGO, \
zfcp_sysfs_##_feat##_##_name##_show, NULL);
#define ZFCP_DEFINE_ATTR_CONST(_feat, _name, _format, _value) \
static ssize_t zfcp_sysfs_##_feat##_##_name##_show(struct device *dev, \
struct device_attribute *at,\
char *buf) \
{ \
return sprintf(buf, _format, _value); \
} \
static ZFCP_DEV_ATTR(_feat, _name, S_IRUGO, \
zfcp_sysfs_##_feat##_##_name##_show, NULL);
#define ZFCP_DEFINE_A_ATTR(_name, _format, _value) \
static ssize_t zfcp_sysfs_adapter_##_name##_show(struct device *dev, \
struct device_attribute *at,\
char *buf) \
{ \
struct ccw_device *cdev = to_ccwdev(dev); \
struct zfcp_adapter *adapter = zfcp_ccw_adapter_by_cdev(cdev); \
int i; \
\
if (!adapter) \
return -ENODEV; \
\
i = sprintf(buf, _format, _value); \
zfcp_ccw_adapter_put(adapter); \
return i; \
} \
static ZFCP_DEV_ATTR(adapter, _name, S_IRUGO, \
zfcp_sysfs_adapter_##_name##_show, NULL);
ZFCP_DEFINE_A_ATTR(status, "0x%08x\n", atomic_read(&adapter->status));
ZFCP_DEFINE_A_ATTR(peer_wwnn, "0x%016llx\n",
(unsigned long long) adapter->peer_wwnn);
ZFCP_DEFINE_A_ATTR(peer_wwpn, "0x%016llx\n",
(unsigned long long) adapter->peer_wwpn);
ZFCP_DEFINE_A_ATTR(peer_d_id, "0x%06x\n", adapter->peer_d_id);
ZFCP_DEFINE_A_ATTR(card_version, "0x%04x\n", adapter->hydra_version);
ZFCP_DEFINE_A_ATTR(lic_version, "0x%08x\n", adapter->fsf_lic_version);
ZFCP_DEFINE_A_ATTR(hardware_version, "0x%08x\n", adapter->hardware_version);
ZFCP_DEFINE_A_ATTR(in_recovery, "%d\n", (atomic_read(&adapter->status) &
ZFCP_STATUS_COMMON_ERP_INUSE) != 0);
ZFCP_DEFINE_ATTR(zfcp_port, port, status, "0x%08x\n",
atomic_read(&port->status));
ZFCP_DEFINE_ATTR(zfcp_port, port, in_recovery, "%d\n",
(atomic_read(&port->status) &
ZFCP_STATUS_COMMON_ERP_INUSE) != 0);
ZFCP_DEFINE_ATTR_CONST(port, access_denied, "%d\n", 0);
ZFCP_DEFINE_ATTR(zfcp_unit, unit, status, "0x%08x\n",
zfcp_unit_sdev_status(unit));
ZFCP_DEFINE_ATTR(zfcp_unit, unit, in_recovery, "%d\n",
(zfcp_unit_sdev_status(unit) &
ZFCP_STATUS_COMMON_ERP_INUSE) != 0);
ZFCP_DEFINE_ATTR(zfcp_unit, unit, access_denied, "%d\n",
(zfcp_unit_sdev_status(unit) &
ZFCP_STATUS_COMMON_ACCESS_DENIED) != 0);
ZFCP_DEFINE_ATTR_CONST(unit, access_shared, "%d\n", 0);
ZFCP_DEFINE_ATTR_CONST(unit, access_readonly, "%d\n", 0);
static ssize_t zfcp_sysfs_port_failed_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct zfcp_port *port = container_of(dev, struct zfcp_port, dev);
if (atomic_read(&port->status) & ZFCP_STATUS_COMMON_ERP_FAILED)
return sprintf(buf, "1\n");
return sprintf(buf, "0\n");
}
static ssize_t zfcp_sysfs_port_failed_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct zfcp_port *port = container_of(dev, struct zfcp_port, dev);
unsigned long val;
if (kstrtoul(buf, 0, &val) || val != 0)
return -EINVAL;
zfcp_erp_set_port_status(port, ZFCP_STATUS_COMMON_RUNNING);
zfcp_erp_port_reopen(port, ZFCP_STATUS_COMMON_ERP_FAILED, "sypfai2");
zfcp_erp_wait(port->adapter);
return count;
}
static ZFCP_DEV_ATTR(port, failed, S_IWUSR | S_IRUGO,
zfcp_sysfs_port_failed_show,
zfcp_sysfs_port_failed_store);
static ssize_t zfcp_sysfs_unit_failed_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct zfcp_unit *unit = container_of(dev, struct zfcp_unit, dev);
struct scsi_device *sdev;
unsigned int status, failed = 1;
sdev = zfcp_unit_sdev(unit);
if (sdev) {
status = atomic_read(&sdev_to_zfcp(sdev)->status);
failed = status & ZFCP_STATUS_COMMON_ERP_FAILED ? 1 : 0;
scsi_device_put(sdev);
}
return sprintf(buf, "%d\n", failed);
}
static ssize_t zfcp_sysfs_unit_failed_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct zfcp_unit *unit = container_of(dev, struct zfcp_unit, dev);
unsigned long val;
struct scsi_device *sdev;
if (kstrtoul(buf, 0, &val) || val != 0)
return -EINVAL;
sdev = zfcp_unit_sdev(unit);
if (sdev) {
zfcp_erp_set_lun_status(sdev, ZFCP_STATUS_COMMON_RUNNING);
zfcp_erp_lun_reopen(sdev, ZFCP_STATUS_COMMON_ERP_FAILED,
"syufai2");
zfcp_erp_wait(unit->port->adapter);
} else
zfcp_unit_scsi_scan(unit);
return count;
}
static ZFCP_DEV_ATTR(unit, failed, S_IWUSR | S_IRUGO,
zfcp_sysfs_unit_failed_show,
zfcp_sysfs_unit_failed_store);
static ssize_t zfcp_sysfs_adapter_failed_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ccw_device *cdev = to_ccwdev(dev);
struct zfcp_adapter *adapter = zfcp_ccw_adapter_by_cdev(cdev);
int i;
if (!adapter)
return -ENODEV;
if (atomic_read(&adapter->status) & ZFCP_STATUS_COMMON_ERP_FAILED)
i = sprintf(buf, "1\n");
else
i = sprintf(buf, "0\n");
zfcp_ccw_adapter_put(adapter);
return i;
}
static ssize_t zfcp_sysfs_adapter_failed_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ccw_device *cdev = to_ccwdev(dev);
struct zfcp_adapter *adapter = zfcp_ccw_adapter_by_cdev(cdev);
unsigned long val;
int retval = 0;
if (!adapter)
return -ENODEV;
if (kstrtoul(buf, 0, &val) || val != 0) {
retval = -EINVAL;
goto out;
}
zfcp_erp_set_adapter_status(adapter, ZFCP_STATUS_COMMON_RUNNING);
zfcp_erp_adapter_reopen(adapter, ZFCP_STATUS_COMMON_ERP_FAILED,
"syafai2");
zfcp_erp_wait(adapter);
out:
zfcp_ccw_adapter_put(adapter);
return retval ? retval : (ssize_t) count;
}
static ZFCP_DEV_ATTR(adapter, failed, S_IWUSR | S_IRUGO,
zfcp_sysfs_adapter_failed_show,
zfcp_sysfs_adapter_failed_store);
static ssize_t zfcp_sysfs_port_rescan_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ccw_device *cdev = to_ccwdev(dev);
struct zfcp_adapter *adapter = zfcp_ccw_adapter_by_cdev(cdev);
if (!adapter)
return -ENODEV;
/*
* Users wish is our command: immediately schedule and flush a
* worker to conduct a synchronous port scan, that is, neither
* a random delay nor a rate limit is applied here.
*/
queue_delayed_work(adapter->work_queue, &adapter->scan_work, 0);
flush_delayed_work(&adapter->scan_work);
zfcp_ccw_adapter_put(adapter);
return (ssize_t) count;
}
static ZFCP_DEV_ATTR(adapter, port_rescan, S_IWUSR, NULL,
zfcp_sysfs_port_rescan_store);
DEFINE_MUTEX(zfcp_sysfs_port_units_mutex);
static ssize_t zfcp_sysfs_port_remove_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ccw_device *cdev = to_ccwdev(dev);
struct zfcp_adapter *adapter = zfcp_ccw_adapter_by_cdev(cdev);
struct zfcp_port *port;
u64 wwpn;
int retval = -EINVAL;
if (!adapter)
return -ENODEV;
if (kstrtoull(buf, 0, (unsigned long long *) &wwpn))
goto out;
port = zfcp_get_port_by_wwpn(adapter, wwpn);
if (!port)
goto out;
else
retval = 0;
mutex_lock(&zfcp_sysfs_port_units_mutex);
if (atomic_read(&port->units) > 0) {
retval = -EBUSY;
mutex_unlock(&zfcp_sysfs_port_units_mutex);
goto out;
}
/* port is about to be removed, so no more unit_add */
atomic_set(&port->units, -1);
mutex_unlock(&zfcp_sysfs_port_units_mutex);
write_lock_irq(&adapter->port_list_lock);
list_del(&port->list);
write_unlock_irq(&adapter->port_list_lock);
put_device(&port->dev);
zfcp_erp_port_shutdown(port, 0, "syprs_1");
device_unregister(&port->dev);
out:
zfcp_ccw_adapter_put(adapter);
return retval ? retval : (ssize_t) count;
}
static ZFCP_DEV_ATTR(adapter, port_remove, S_IWUSR, NULL,
zfcp_sysfs_port_remove_store);
static struct attribute *zfcp_adapter_attrs[] = {
&dev_attr_adapter_failed.attr,
&dev_attr_adapter_in_recovery.attr,
&dev_attr_adapter_port_remove.attr,
&dev_attr_adapter_port_rescan.attr,
&dev_attr_adapter_peer_wwnn.attr,
&dev_attr_adapter_peer_wwpn.attr,
&dev_attr_adapter_peer_d_id.attr,
&dev_attr_adapter_card_version.attr,
&dev_attr_adapter_lic_version.attr,
&dev_attr_adapter_status.attr,
&dev_attr_adapter_hardware_version.attr,
NULL
};
struct attribute_group zfcp_sysfs_adapter_attrs = {
.attrs = zfcp_adapter_attrs,
};
static ssize_t zfcp_sysfs_unit_add_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct zfcp_port *port = container_of(dev, struct zfcp_port, dev);
u64 fcp_lun;
int retval;
if (kstrtoull(buf, 0, (unsigned long long *) &fcp_lun))
return -EINVAL;
retval = zfcp_unit_add(port, fcp_lun);
if (retval)
return retval;
return count;
}
static DEVICE_ATTR(unit_add, S_IWUSR, NULL, zfcp_sysfs_unit_add_store);
static ssize_t zfcp_sysfs_unit_remove_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct zfcp_port *port = container_of(dev, struct zfcp_port, dev);
u64 fcp_lun;
if (kstrtoull(buf, 0, (unsigned long long *) &fcp_lun))
return -EINVAL;
if (zfcp_unit_remove(port, fcp_lun))
return -EINVAL;
return count;
}
static DEVICE_ATTR(unit_remove, S_IWUSR, NULL, zfcp_sysfs_unit_remove_store);
static struct attribute *zfcp_port_attrs[] = {
&dev_attr_unit_add.attr,
&dev_attr_unit_remove.attr,
&dev_attr_port_failed.attr,
&dev_attr_port_in_recovery.attr,
&dev_attr_port_status.attr,
&dev_attr_port_access_denied.attr,
NULL
};
static struct attribute_group zfcp_port_attr_group = {
.attrs = zfcp_port_attrs,
};
const struct attribute_group *zfcp_port_attr_groups[] = {
&zfcp_port_attr_group,
NULL,
};
static struct attribute *zfcp_unit_attrs[] = {
&dev_attr_unit_failed.attr,
&dev_attr_unit_in_recovery.attr,
&dev_attr_unit_status.attr,
&dev_attr_unit_access_denied.attr,
&dev_attr_unit_access_shared.attr,
&dev_attr_unit_access_readonly.attr,
NULL
};
static struct attribute_group zfcp_unit_attr_group = {
.attrs = zfcp_unit_attrs,
};
const struct attribute_group *zfcp_unit_attr_groups[] = {
&zfcp_unit_attr_group,
NULL,
};
#define ZFCP_DEFINE_LATENCY_ATTR(_name) \
static ssize_t \
zfcp_sysfs_unit_##_name##_latency_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) { \
struct scsi_device *sdev = to_scsi_device(dev); \
struct zfcp_scsi_dev *zfcp_sdev = sdev_to_zfcp(sdev); \
struct zfcp_latencies *lat = &zfcp_sdev->latencies; \
struct zfcp_adapter *adapter = zfcp_sdev->port->adapter; \
unsigned long long fsum, fmin, fmax, csum, cmin, cmax, cc; \
\
spin_lock_bh(&lat->lock); \
fsum = lat->_name.fabric.sum * adapter->timer_ticks; \
fmin = lat->_name.fabric.min * adapter->timer_ticks; \
fmax = lat->_name.fabric.max * adapter->timer_ticks; \
csum = lat->_name.channel.sum * adapter->timer_ticks; \
cmin = lat->_name.channel.min * adapter->timer_ticks; \
cmax = lat->_name.channel.max * adapter->timer_ticks; \
cc = lat->_name.counter; \
spin_unlock_bh(&lat->lock); \
\
do_div(fsum, 1000); \
do_div(fmin, 1000); \
do_div(fmax, 1000); \
do_div(csum, 1000); \
do_div(cmin, 1000); \
do_div(cmax, 1000); \
\
return sprintf(buf, "%llu %llu %llu %llu %llu %llu %llu\n", \
fmin, fmax, fsum, cmin, cmax, csum, cc); \
} \
static ssize_t \
zfcp_sysfs_unit_##_name##_latency_store(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct scsi_device *sdev = to_scsi_device(dev); \
struct zfcp_scsi_dev *zfcp_sdev = sdev_to_zfcp(sdev); \
struct zfcp_latencies *lat = &zfcp_sdev->latencies; \
unsigned long flags; \
\
spin_lock_irqsave(&lat->lock, flags); \
lat->_name.fabric.sum = 0; \
lat->_name.fabric.min = 0xFFFFFFFF; \
lat->_name.fabric.max = 0; \
lat->_name.channel.sum = 0; \
lat->_name.channel.min = 0xFFFFFFFF; \
lat->_name.channel.max = 0; \
lat->_name.counter = 0; \
spin_unlock_irqrestore(&lat->lock, flags); \
\
return (ssize_t) count; \
} \
static DEVICE_ATTR(_name##_latency, S_IWUSR | S_IRUGO, \
zfcp_sysfs_unit_##_name##_latency_show, \
zfcp_sysfs_unit_##_name##_latency_store);
ZFCP_DEFINE_LATENCY_ATTR(read);
ZFCP_DEFINE_LATENCY_ATTR(write);
ZFCP_DEFINE_LATENCY_ATTR(cmd);
#define ZFCP_DEFINE_SCSI_ATTR(_name, _format, _value) \
static ssize_t zfcp_sysfs_scsi_##_name##_show(struct device *dev, \
struct device_attribute *attr,\
char *buf) \
{ \
struct scsi_device *sdev = to_scsi_device(dev); \
struct zfcp_scsi_dev *zfcp_sdev = sdev_to_zfcp(sdev); \
\
return sprintf(buf, _format, _value); \
} \
static DEVICE_ATTR(_name, S_IRUGO, zfcp_sysfs_scsi_##_name##_show, NULL);
ZFCP_DEFINE_SCSI_ATTR(hba_id, "%s\n",
dev_name(&zfcp_sdev->port->adapter->ccw_device->dev));
ZFCP_DEFINE_SCSI_ATTR(wwpn, "0x%016llx\n",
(unsigned long long) zfcp_sdev->port->wwpn);
static ssize_t zfcp_sysfs_scsi_fcp_lun_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
return sprintf(buf, "0x%016llx\n", zfcp_scsi_dev_lun(sdev));
}
static DEVICE_ATTR(fcp_lun, S_IRUGO, zfcp_sysfs_scsi_fcp_lun_show, NULL);
ZFCP_DEFINE_SCSI_ATTR(zfcp_access_denied, "%d\n",
(atomic_read(&zfcp_sdev->status) &
ZFCP_STATUS_COMMON_ACCESS_DENIED) != 0);
static ssize_t zfcp_sysfs_scsi_zfcp_failed_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
unsigned int status = atomic_read(&sdev_to_zfcp(sdev)->status);
unsigned int failed = status & ZFCP_STATUS_COMMON_ERP_FAILED ? 1 : 0;
return sprintf(buf, "%d\n", failed);
}
static ssize_t zfcp_sysfs_scsi_zfcp_failed_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_device *sdev = to_scsi_device(dev);
unsigned long val;
if (kstrtoul(buf, 0, &val) || val != 0)
return -EINVAL;
zfcp_erp_set_lun_status(sdev, ZFCP_STATUS_COMMON_RUNNING);
zfcp_erp_lun_reopen(sdev, ZFCP_STATUS_COMMON_ERP_FAILED,
"syufai3");
zfcp_erp_wait(sdev_to_zfcp(sdev)->port->adapter);
return count;
}
static DEVICE_ATTR(zfcp_failed, S_IWUSR | S_IRUGO,
zfcp_sysfs_scsi_zfcp_failed_show,
zfcp_sysfs_scsi_zfcp_failed_store);
ZFCP_DEFINE_SCSI_ATTR(zfcp_in_recovery, "%d\n",
(atomic_read(&zfcp_sdev->status) &
ZFCP_STATUS_COMMON_ERP_INUSE) != 0);
ZFCP_DEFINE_SCSI_ATTR(zfcp_status, "0x%08x\n",
atomic_read(&zfcp_sdev->status));
struct device_attribute *zfcp_sysfs_sdev_attrs[] = {
&dev_attr_fcp_lun,
&dev_attr_wwpn,
&dev_attr_hba_id,
&dev_attr_read_latency,
&dev_attr_write_latency,
&dev_attr_cmd_latency,
&dev_attr_zfcp_access_denied,
&dev_attr_zfcp_failed,
&dev_attr_zfcp_in_recovery,
&dev_attr_zfcp_status,
NULL
};
static ssize_t zfcp_sysfs_adapter_util_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *scsi_host = dev_to_shost(dev);
struct fsf_qtcb_bottom_port *qtcb_port;
struct zfcp_adapter *adapter;
int retval;
adapter = (struct zfcp_adapter *) scsi_host->hostdata[0];
if (!(adapter->adapter_features & FSF_FEATURE_MEASUREMENT_DATA))
return -EOPNOTSUPP;
qtcb_port = kzalloc(sizeof(struct fsf_qtcb_bottom_port), GFP_KERNEL);
if (!qtcb_port)
return -ENOMEM;
retval = zfcp_fsf_exchange_port_data_sync(adapter->qdio, qtcb_port);
if (!retval)
retval = sprintf(buf, "%u %u %u\n", qtcb_port->cp_util,
qtcb_port->cb_util, qtcb_port->a_util);
kfree(qtcb_port);
return retval;
}
static DEVICE_ATTR(utilization, S_IRUGO, zfcp_sysfs_adapter_util_show, NULL);
static int zfcp_sysfs_adapter_ex_config(struct device *dev,
struct fsf_statistics_info *stat_inf)
{
struct Scsi_Host *scsi_host = dev_to_shost(dev);
struct fsf_qtcb_bottom_config *qtcb_config;
struct zfcp_adapter *adapter;
int retval;
adapter = (struct zfcp_adapter *) scsi_host->hostdata[0];
if (!(adapter->adapter_features & FSF_FEATURE_MEASUREMENT_DATA))
return -EOPNOTSUPP;
qtcb_config = kzalloc(sizeof(struct fsf_qtcb_bottom_config),
GFP_KERNEL);
if (!qtcb_config)
return -ENOMEM;
retval = zfcp_fsf_exchange_config_data_sync(adapter->qdio, qtcb_config);
if (!retval)
*stat_inf = qtcb_config->stat_info;
kfree(qtcb_config);
return retval;
}
#define ZFCP_SHOST_ATTR(_name, _format, _arg...) \
static ssize_t zfcp_sysfs_adapter_##_name##_show(struct device *dev, \
struct device_attribute *attr,\
char *buf) \
{ \
struct fsf_statistics_info stat_info; \
int retval; \
\
retval = zfcp_sysfs_adapter_ex_config(dev, &stat_info); \
if (retval) \
return retval; \
\
return sprintf(buf, _format, ## _arg); \
} \
static DEVICE_ATTR(_name, S_IRUGO, zfcp_sysfs_adapter_##_name##_show, NULL);
ZFCP_SHOST_ATTR(requests, "%llu %llu %llu\n",
(unsigned long long) stat_info.input_req,
(unsigned long long) stat_info.output_req,
(unsigned long long) stat_info.control_req);
ZFCP_SHOST_ATTR(megabytes, "%llu %llu\n",
(unsigned long long) stat_info.input_mb,
(unsigned long long) stat_info.output_mb);
ZFCP_SHOST_ATTR(seconds_active, "%llu\n",
(unsigned long long) stat_info.seconds_act);
static ssize_t zfcp_sysfs_adapter_q_full_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *scsi_host = class_to_shost(dev);
struct zfcp_qdio *qdio =
((struct zfcp_adapter *) scsi_host->hostdata[0])->qdio;
u64 util;
spin_lock_bh(&qdio->stat_lock);
util = qdio->req_q_util;
spin_unlock_bh(&qdio->stat_lock);
return sprintf(buf, "%d %llu\n", atomic_read(&qdio->req_q_full),
(unsigned long long)util);
}
static DEVICE_ATTR(queue_full, S_IRUGO, zfcp_sysfs_adapter_q_full_show, NULL);
struct device_attribute *zfcp_sysfs_shost_attrs[] = {
&dev_attr_utilization,
&dev_attr_requests,
&dev_attr_megabytes,
&dev_attr_seconds_active,
&dev_attr_queue_full,
NULL
};