kernel-fxtec-pro1x/drivers/md/raid1.c
Linus Torvalds 1081230b74 Merge branch 'for-4.3/core' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
 "This first core part of the block IO changes contains:

   - Cleanup of the bio IO error signaling from Christoph.  We used to
     rely on the uptodate bit and passing around of an error, now we
     store the error in the bio itself.

   - Improvement of the above from myself, by shrinking the bio size
     down again to fit in two cachelines on x86-64.

   - Revert of the max_hw_sectors cap removal from a revision again,
     from Jeff Moyer.  This caused performance regressions in various
     tests.  Reinstate the limit, bump it to a more reasonable size
     instead.

   - Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me.
     Most devices have huge trim limits, which can cause nasty latencies
     when deleting files.  Enable the admin to configure the size down.
     We will look into having a more sane default instead of UINT_MAX
     sectors.

   - Improvement of the SGP gaps logic from Keith Busch.

   - Enable the block core to handle arbitrarily sized bios, which
     enables a nice simplification of bio_add_page() (which is an IO hot
     path).  From Kent.

   - Improvements to the partition io stats accounting, making it
     faster.  From Ming Lei.

   - Also from Ming Lei, a basic fixup for overflow of the sysfs pending
     file in blk-mq, as well as a fix for a blk-mq timeout race
     condition.

   - Ming Lin has been carrying Kents above mentioned patches forward
     for a while, and testing them.  Ming also did a few fixes around
     that.

   - Sasha Levin found and fixed a use-after-free problem introduced by
     the bio->bi_error changes from Christoph.

   - Small blk cgroup cleanup from Viresh Kumar"

* 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits)
  blk: Fix bio_io_vec index when checking bvec gaps
  block: Replace SG_GAPS with new queue limits mask
  block: bump BLK_DEF_MAX_SECTORS to 2560
  Revert "block: remove artifical max_hw_sectors cap"
  blk-mq: fix race between timeout and freeing request
  blk-mq: fix buffer overflow when reading sysfs file of 'pending'
  Documentation: update notes in biovecs about arbitrarily sized bios
  block: remove bio_get_nr_vecs()
  fs: use helper bio_add_page() instead of open coding on bi_io_vec
  block: kill merge_bvec_fn() completely
  md/raid5: get rid of bio_fits_rdev()
  md/raid5: split bio for chunk_aligned_read
  block: remove split code in blkdev_issue_{discard,write_same}
  btrfs: remove bio splitting and merge_bvec_fn() calls
  bcache: remove driver private bio splitting code
  block: simplify bio_add_page()
  block: make generic_make_request handle arbitrarily sized bios
  blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL)
  block: don't access bio->bi_error after bio_put()
  block: shrink struct bio down to 2 cache lines again
  ...
2015-09-02 13:10:25 -07:00

3143 lines
85 KiB
C

/*
* raid1.c : Multiple Devices driver for Linux
*
* Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
*
* Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
*
* RAID-1 management functions.
*
* Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
*
* Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
* Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
*
* Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
* bitmapped intelligence in resync:
*
* - bitmap marked during normal i/o
* - bitmap used to skip nondirty blocks during sync
*
* Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
* - persistent bitmap code
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example /usr/src/linux/COPYING); if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/blkdev.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/ratelimit.h>
#include "md.h"
#include "raid1.h"
#include "bitmap.h"
/*
* Number of guaranteed r1bios in case of extreme VM load:
*/
#define NR_RAID1_BIOS 256
/* when we get a read error on a read-only array, we redirect to another
* device without failing the first device, or trying to over-write to
* correct the read error. To keep track of bad blocks on a per-bio
* level, we store IO_BLOCKED in the appropriate 'bios' pointer
*/
#define IO_BLOCKED ((struct bio *)1)
/* When we successfully write to a known bad-block, we need to remove the
* bad-block marking which must be done from process context. So we record
* the success by setting devs[n].bio to IO_MADE_GOOD
*/
#define IO_MADE_GOOD ((struct bio *)2)
#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
/* When there are this many requests queue to be written by
* the raid1 thread, we become 'congested' to provide back-pressure
* for writeback.
*/
static int max_queued_requests = 1024;
static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
sector_t bi_sector);
static void lower_barrier(struct r1conf *conf);
static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
{
struct pool_info *pi = data;
int size = offsetof(struct r1bio, bios[pi->raid_disks]);
/* allocate a r1bio with room for raid_disks entries in the bios array */
return kzalloc(size, gfp_flags);
}
static void r1bio_pool_free(void *r1_bio, void *data)
{
kfree(r1_bio);
}
#define RESYNC_BLOCK_SIZE (64*1024)
#define RESYNC_DEPTH 32
#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
{
struct pool_info *pi = data;
struct r1bio *r1_bio;
struct bio *bio;
int need_pages;
int i, j;
r1_bio = r1bio_pool_alloc(gfp_flags, pi);
if (!r1_bio)
return NULL;
/*
* Allocate bios : 1 for reading, n-1 for writing
*/
for (j = pi->raid_disks ; j-- ; ) {
bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
if (!bio)
goto out_free_bio;
r1_bio->bios[j] = bio;
}
/*
* Allocate RESYNC_PAGES data pages and attach them to
* the first bio.
* If this is a user-requested check/repair, allocate
* RESYNC_PAGES for each bio.
*/
if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
need_pages = pi->raid_disks;
else
need_pages = 1;
for (j = 0; j < need_pages; j++) {
bio = r1_bio->bios[j];
bio->bi_vcnt = RESYNC_PAGES;
if (bio_alloc_pages(bio, gfp_flags))
goto out_free_pages;
}
/* If not user-requests, copy the page pointers to all bios */
if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
for (i=0; i<RESYNC_PAGES ; i++)
for (j=1; j<pi->raid_disks; j++)
r1_bio->bios[j]->bi_io_vec[i].bv_page =
r1_bio->bios[0]->bi_io_vec[i].bv_page;
}
r1_bio->master_bio = NULL;
return r1_bio;
out_free_pages:
while (--j >= 0) {
struct bio_vec *bv;
bio_for_each_segment_all(bv, r1_bio->bios[j], i)
__free_page(bv->bv_page);
}
out_free_bio:
while (++j < pi->raid_disks)
bio_put(r1_bio->bios[j]);
r1bio_pool_free(r1_bio, data);
return NULL;
}
static void r1buf_pool_free(void *__r1_bio, void *data)
{
struct pool_info *pi = data;
int i,j;
struct r1bio *r1bio = __r1_bio;
for (i = 0; i < RESYNC_PAGES; i++)
for (j = pi->raid_disks; j-- ;) {
if (j == 0 ||
r1bio->bios[j]->bi_io_vec[i].bv_page !=
r1bio->bios[0]->bi_io_vec[i].bv_page)
safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
}
for (i=0 ; i < pi->raid_disks; i++)
bio_put(r1bio->bios[i]);
r1bio_pool_free(r1bio, data);
}
static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
{
int i;
for (i = 0; i < conf->raid_disks * 2; i++) {
struct bio **bio = r1_bio->bios + i;
if (!BIO_SPECIAL(*bio))
bio_put(*bio);
*bio = NULL;
}
}
static void free_r1bio(struct r1bio *r1_bio)
{
struct r1conf *conf = r1_bio->mddev->private;
put_all_bios(conf, r1_bio);
mempool_free(r1_bio, conf->r1bio_pool);
}
static void put_buf(struct r1bio *r1_bio)
{
struct r1conf *conf = r1_bio->mddev->private;
int i;
for (i = 0; i < conf->raid_disks * 2; i++) {
struct bio *bio = r1_bio->bios[i];
if (bio->bi_end_io)
rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
}
mempool_free(r1_bio, conf->r1buf_pool);
lower_barrier(conf);
}
static void reschedule_retry(struct r1bio *r1_bio)
{
unsigned long flags;
struct mddev *mddev = r1_bio->mddev;
struct r1conf *conf = mddev->private;
spin_lock_irqsave(&conf->device_lock, flags);
list_add(&r1_bio->retry_list, &conf->retry_list);
conf->nr_queued ++;
spin_unlock_irqrestore(&conf->device_lock, flags);
wake_up(&conf->wait_barrier);
md_wakeup_thread(mddev->thread);
}
/*
* raid_end_bio_io() is called when we have finished servicing a mirrored
* operation and are ready to return a success/failure code to the buffer
* cache layer.
*/
static void call_bio_endio(struct r1bio *r1_bio)
{
struct bio *bio = r1_bio->master_bio;
int done;
struct r1conf *conf = r1_bio->mddev->private;
sector_t start_next_window = r1_bio->start_next_window;
sector_t bi_sector = bio->bi_iter.bi_sector;
if (bio->bi_phys_segments) {
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
bio->bi_phys_segments--;
done = (bio->bi_phys_segments == 0);
spin_unlock_irqrestore(&conf->device_lock, flags);
/*
* make_request() might be waiting for
* bi_phys_segments to decrease
*/
wake_up(&conf->wait_barrier);
} else
done = 1;
if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
bio->bi_error = -EIO;
if (done) {
bio_endio(bio);
/*
* Wake up any possible resync thread that waits for the device
* to go idle.
*/
allow_barrier(conf, start_next_window, bi_sector);
}
}
static void raid_end_bio_io(struct r1bio *r1_bio)
{
struct bio *bio = r1_bio->master_bio;
/* if nobody has done the final endio yet, do it now */
if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
(bio_data_dir(bio) == WRITE) ? "write" : "read",
(unsigned long long) bio->bi_iter.bi_sector,
(unsigned long long) bio_end_sector(bio) - 1);
call_bio_endio(r1_bio);
}
free_r1bio(r1_bio);
}
/*
* Update disk head position estimator based on IRQ completion info.
*/
static inline void update_head_pos(int disk, struct r1bio *r1_bio)
{
struct r1conf *conf = r1_bio->mddev->private;
conf->mirrors[disk].head_position =
r1_bio->sector + (r1_bio->sectors);
}
/*
* Find the disk number which triggered given bio
*/
static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
{
int mirror;
struct r1conf *conf = r1_bio->mddev->private;
int raid_disks = conf->raid_disks;
for (mirror = 0; mirror < raid_disks * 2; mirror++)
if (r1_bio->bios[mirror] == bio)
break;
BUG_ON(mirror == raid_disks * 2);
update_head_pos(mirror, r1_bio);
return mirror;
}
static void raid1_end_read_request(struct bio *bio)
{
int uptodate = !bio->bi_error;
struct r1bio *r1_bio = bio->bi_private;
int mirror;
struct r1conf *conf = r1_bio->mddev->private;
mirror = r1_bio->read_disk;
/*
* this branch is our 'one mirror IO has finished' event handler:
*/
update_head_pos(mirror, r1_bio);
if (uptodate)
set_bit(R1BIO_Uptodate, &r1_bio->state);
else {
/* If all other devices have failed, we want to return
* the error upwards rather than fail the last device.
* Here we redefine "uptodate" to mean "Don't want to retry"
*/
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
if (r1_bio->mddev->degraded == conf->raid_disks ||
(r1_bio->mddev->degraded == conf->raid_disks-1 &&
test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
uptodate = 1;
spin_unlock_irqrestore(&conf->device_lock, flags);
}
if (uptodate) {
raid_end_bio_io(r1_bio);
rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
} else {
/*
* oops, read error:
*/
char b[BDEVNAME_SIZE];
printk_ratelimited(
KERN_ERR "md/raid1:%s: %s: "
"rescheduling sector %llu\n",
mdname(conf->mddev),
bdevname(conf->mirrors[mirror].rdev->bdev,
b),
(unsigned long long)r1_bio->sector);
set_bit(R1BIO_ReadError, &r1_bio->state);
reschedule_retry(r1_bio);
/* don't drop the reference on read_disk yet */
}
}
static void close_write(struct r1bio *r1_bio)
{
/* it really is the end of this request */
if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
/* free extra copy of the data pages */
int i = r1_bio->behind_page_count;
while (i--)
safe_put_page(r1_bio->behind_bvecs[i].bv_page);
kfree(r1_bio->behind_bvecs);
r1_bio->behind_bvecs = NULL;
}
/* clear the bitmap if all writes complete successfully */
bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
r1_bio->sectors,
!test_bit(R1BIO_Degraded, &r1_bio->state),
test_bit(R1BIO_BehindIO, &r1_bio->state));
md_write_end(r1_bio->mddev);
}
static void r1_bio_write_done(struct r1bio *r1_bio)
{
if (!atomic_dec_and_test(&r1_bio->remaining))
return;
if (test_bit(R1BIO_WriteError, &r1_bio->state))
reschedule_retry(r1_bio);
else {
close_write(r1_bio);
if (test_bit(R1BIO_MadeGood, &r1_bio->state))
reschedule_retry(r1_bio);
else
raid_end_bio_io(r1_bio);
}
}
static void raid1_end_write_request(struct bio *bio)
{
struct r1bio *r1_bio = bio->bi_private;
int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
struct r1conf *conf = r1_bio->mddev->private;
struct bio *to_put = NULL;
mirror = find_bio_disk(r1_bio, bio);
/*
* 'one mirror IO has finished' event handler:
*/
if (bio->bi_error) {
set_bit(WriteErrorSeen,
&conf->mirrors[mirror].rdev->flags);
if (!test_and_set_bit(WantReplacement,
&conf->mirrors[mirror].rdev->flags))
set_bit(MD_RECOVERY_NEEDED, &
conf->mddev->recovery);
set_bit(R1BIO_WriteError, &r1_bio->state);
} else {
/*
* Set R1BIO_Uptodate in our master bio, so that we
* will return a good error code for to the higher
* levels even if IO on some other mirrored buffer
* fails.
*
* The 'master' represents the composite IO operation
* to user-side. So if something waits for IO, then it
* will wait for the 'master' bio.
*/
sector_t first_bad;
int bad_sectors;
r1_bio->bios[mirror] = NULL;
to_put = bio;
/*
* Do not set R1BIO_Uptodate if the current device is
* rebuilding or Faulty. This is because we cannot use
* such device for properly reading the data back (we could
* potentially use it, if the current write would have felt
* before rdev->recovery_offset, but for simplicity we don't
* check this here.
*/
if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
!test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
set_bit(R1BIO_Uptodate, &r1_bio->state);
/* Maybe we can clear some bad blocks. */
if (is_badblock(conf->mirrors[mirror].rdev,
r1_bio->sector, r1_bio->sectors,
&first_bad, &bad_sectors)) {
r1_bio->bios[mirror] = IO_MADE_GOOD;
set_bit(R1BIO_MadeGood, &r1_bio->state);
}
}
if (behind) {
if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
atomic_dec(&r1_bio->behind_remaining);
/*
* In behind mode, we ACK the master bio once the I/O
* has safely reached all non-writemostly
* disks. Setting the Returned bit ensures that this
* gets done only once -- we don't ever want to return
* -EIO here, instead we'll wait
*/
if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
test_bit(R1BIO_Uptodate, &r1_bio->state)) {
/* Maybe we can return now */
if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
struct bio *mbio = r1_bio->master_bio;
pr_debug("raid1: behind end write sectors"
" %llu-%llu\n",
(unsigned long long) mbio->bi_iter.bi_sector,
(unsigned long long) bio_end_sector(mbio) - 1);
call_bio_endio(r1_bio);
}
}
}
if (r1_bio->bios[mirror] == NULL)
rdev_dec_pending(conf->mirrors[mirror].rdev,
conf->mddev);
/*
* Let's see if all mirrored write operations have finished
* already.
*/
r1_bio_write_done(r1_bio);
if (to_put)
bio_put(to_put);
}
/*
* This routine returns the disk from which the requested read should
* be done. There is a per-array 'next expected sequential IO' sector
* number - if this matches on the next IO then we use the last disk.
* There is also a per-disk 'last know head position' sector that is
* maintained from IRQ contexts, both the normal and the resync IO
* completion handlers update this position correctly. If there is no
* perfect sequential match then we pick the disk whose head is closest.
*
* If there are 2 mirrors in the same 2 devices, performance degrades
* because position is mirror, not device based.
*
* The rdev for the device selected will have nr_pending incremented.
*/
static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
{
const sector_t this_sector = r1_bio->sector;
int sectors;
int best_good_sectors;
int best_disk, best_dist_disk, best_pending_disk;
int has_nonrot_disk;
int disk;
sector_t best_dist;
unsigned int min_pending;
struct md_rdev *rdev;
int choose_first;
int choose_next_idle;
rcu_read_lock();
/*
* Check if we can balance. We can balance on the whole
* device if no resync is going on, or below the resync window.
* We take the first readable disk when above the resync window.
*/
retry:
sectors = r1_bio->sectors;
best_disk = -1;
best_dist_disk = -1;
best_dist = MaxSector;
best_pending_disk = -1;
min_pending = UINT_MAX;
best_good_sectors = 0;
has_nonrot_disk = 0;
choose_next_idle = 0;
if ((conf->mddev->recovery_cp < this_sector + sectors) ||
(mddev_is_clustered(conf->mddev) &&
md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
this_sector + sectors)))
choose_first = 1;
else
choose_first = 0;
for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
sector_t dist;
sector_t first_bad;
int bad_sectors;
unsigned int pending;
bool nonrot;
rdev = rcu_dereference(conf->mirrors[disk].rdev);
if (r1_bio->bios[disk] == IO_BLOCKED
|| rdev == NULL
|| test_bit(Faulty, &rdev->flags))
continue;
if (!test_bit(In_sync, &rdev->flags) &&
rdev->recovery_offset < this_sector + sectors)
continue;
if (test_bit(WriteMostly, &rdev->flags)) {
/* Don't balance among write-mostly, just
* use the first as a last resort */
if (best_dist_disk < 0) {
if (is_badblock(rdev, this_sector, sectors,
&first_bad, &bad_sectors)) {
if (first_bad < this_sector)
/* Cannot use this */
continue;
best_good_sectors = first_bad - this_sector;
} else
best_good_sectors = sectors;
best_dist_disk = disk;
best_pending_disk = disk;
}
continue;
}
/* This is a reasonable device to use. It might
* even be best.
*/
if (is_badblock(rdev, this_sector, sectors,
&first_bad, &bad_sectors)) {
if (best_dist < MaxSector)
/* already have a better device */
continue;
if (first_bad <= this_sector) {
/* cannot read here. If this is the 'primary'
* device, then we must not read beyond
* bad_sectors from another device..
*/
bad_sectors -= (this_sector - first_bad);
if (choose_first && sectors > bad_sectors)
sectors = bad_sectors;
if (best_good_sectors > sectors)
best_good_sectors = sectors;
} else {
sector_t good_sectors = first_bad - this_sector;
if (good_sectors > best_good_sectors) {
best_good_sectors = good_sectors;
best_disk = disk;
}
if (choose_first)
break;
}
continue;
} else
best_good_sectors = sectors;
nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
has_nonrot_disk |= nonrot;
pending = atomic_read(&rdev->nr_pending);
dist = abs(this_sector - conf->mirrors[disk].head_position);
if (choose_first) {
best_disk = disk;
break;
}
/* Don't change to another disk for sequential reads */
if (conf->mirrors[disk].next_seq_sect == this_sector
|| dist == 0) {
int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
struct raid1_info *mirror = &conf->mirrors[disk];
best_disk = disk;
/*
* If buffered sequential IO size exceeds optimal
* iosize, check if there is idle disk. If yes, choose
* the idle disk. read_balance could already choose an
* idle disk before noticing it's a sequential IO in
* this disk. This doesn't matter because this disk
* will idle, next time it will be utilized after the
* first disk has IO size exceeds optimal iosize. In
* this way, iosize of the first disk will be optimal
* iosize at least. iosize of the second disk might be
* small, but not a big deal since when the second disk
* starts IO, the first disk is likely still busy.
*/
if (nonrot && opt_iosize > 0 &&
mirror->seq_start != MaxSector &&
mirror->next_seq_sect > opt_iosize &&
mirror->next_seq_sect - opt_iosize >=
mirror->seq_start) {
choose_next_idle = 1;
continue;
}
break;
}
/* If device is idle, use it */
if (pending == 0) {
best_disk = disk;
break;
}
if (choose_next_idle)
continue;
if (min_pending > pending) {
min_pending = pending;
best_pending_disk = disk;
}
if (dist < best_dist) {
best_dist = dist;
best_dist_disk = disk;
}
}
/*
* If all disks are rotational, choose the closest disk. If any disk is
* non-rotational, choose the disk with less pending request even the
* disk is rotational, which might/might not be optimal for raids with
* mixed ratation/non-rotational disks depending on workload.
*/
if (best_disk == -1) {
if (has_nonrot_disk)
best_disk = best_pending_disk;
else
best_disk = best_dist_disk;
}
if (best_disk >= 0) {
rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
if (!rdev)
goto retry;
atomic_inc(&rdev->nr_pending);
if (test_bit(Faulty, &rdev->flags)) {
/* cannot risk returning a device that failed
* before we inc'ed nr_pending
*/
rdev_dec_pending(rdev, conf->mddev);
goto retry;
}
sectors = best_good_sectors;
if (conf->mirrors[best_disk].next_seq_sect != this_sector)
conf->mirrors[best_disk].seq_start = this_sector;
conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
}
rcu_read_unlock();
*max_sectors = sectors;
return best_disk;
}
static int raid1_congested(struct mddev *mddev, int bits)
{
struct r1conf *conf = mddev->private;
int i, ret = 0;
if ((bits & (1 << WB_async_congested)) &&
conf->pending_count >= max_queued_requests)
return 1;
rcu_read_lock();
for (i = 0; i < conf->raid_disks * 2; i++) {
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
if (rdev && !test_bit(Faulty, &rdev->flags)) {
struct request_queue *q = bdev_get_queue(rdev->bdev);
BUG_ON(!q);
/* Note the '|| 1' - when read_balance prefers
* non-congested targets, it can be removed
*/
if ((bits & (1 << WB_async_congested)) || 1)
ret |= bdi_congested(&q->backing_dev_info, bits);
else
ret &= bdi_congested(&q->backing_dev_info, bits);
}
}
rcu_read_unlock();
return ret;
}
static void flush_pending_writes(struct r1conf *conf)
{
/* Any writes that have been queued but are awaiting
* bitmap updates get flushed here.
*/
spin_lock_irq(&conf->device_lock);
if (conf->pending_bio_list.head) {
struct bio *bio;
bio = bio_list_get(&conf->pending_bio_list);
conf->pending_count = 0;
spin_unlock_irq(&conf->device_lock);
/* flush any pending bitmap writes to
* disk before proceeding w/ I/O */
bitmap_unplug(conf->mddev->bitmap);
wake_up(&conf->wait_barrier);
while (bio) { /* submit pending writes */
struct bio *next = bio->bi_next;
bio->bi_next = NULL;
if (unlikely((bio->bi_rw & REQ_DISCARD) &&
!blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
/* Just ignore it */
bio_endio(bio);
else
generic_make_request(bio);
bio = next;
}
} else
spin_unlock_irq(&conf->device_lock);
}
/* Barriers....
* Sometimes we need to suspend IO while we do something else,
* either some resync/recovery, or reconfigure the array.
* To do this we raise a 'barrier'.
* The 'barrier' is a counter that can be raised multiple times
* to count how many activities are happening which preclude
* normal IO.
* We can only raise the barrier if there is no pending IO.
* i.e. if nr_pending == 0.
* We choose only to raise the barrier if no-one is waiting for the
* barrier to go down. This means that as soon as an IO request
* is ready, no other operations which require a barrier will start
* until the IO request has had a chance.
*
* So: regular IO calls 'wait_barrier'. When that returns there
* is no backgroup IO happening, It must arrange to call
* allow_barrier when it has finished its IO.
* backgroup IO calls must call raise_barrier. Once that returns
* there is no normal IO happeing. It must arrange to call
* lower_barrier when the particular background IO completes.
*/
static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
{
spin_lock_irq(&conf->resync_lock);
/* Wait until no block IO is waiting */
wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
conf->resync_lock);
/* block any new IO from starting */
conf->barrier++;
conf->next_resync = sector_nr;
/* For these conditions we must wait:
* A: while the array is in frozen state
* B: while barrier >= RESYNC_DEPTH, meaning resync reach
* the max count which allowed.
* C: next_resync + RESYNC_SECTORS > start_next_window, meaning
* next resync will reach to the window which normal bios are
* handling.
* D: while there are any active requests in the current window.
*/
wait_event_lock_irq(conf->wait_barrier,
!conf->array_frozen &&
conf->barrier < RESYNC_DEPTH &&
conf->current_window_requests == 0 &&
(conf->start_next_window >=
conf->next_resync + RESYNC_SECTORS),
conf->resync_lock);
conf->nr_pending++;
spin_unlock_irq(&conf->resync_lock);
}
static void lower_barrier(struct r1conf *conf)
{
unsigned long flags;
BUG_ON(conf->barrier <= 0);
spin_lock_irqsave(&conf->resync_lock, flags);
conf->barrier--;
conf->nr_pending--;
spin_unlock_irqrestore(&conf->resync_lock, flags);
wake_up(&conf->wait_barrier);
}
static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
{
bool wait = false;
if (conf->array_frozen || !bio)
wait = true;
else if (conf->barrier && bio_data_dir(bio) == WRITE) {
if ((conf->mddev->curr_resync_completed
>= bio_end_sector(bio)) ||
(conf->next_resync + NEXT_NORMALIO_DISTANCE
<= bio->bi_iter.bi_sector))
wait = false;
else
wait = true;
}
return wait;
}
static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
{
sector_t sector = 0;
spin_lock_irq(&conf->resync_lock);
if (need_to_wait_for_sync(conf, bio)) {
conf->nr_waiting++;
/* Wait for the barrier to drop.
* However if there are already pending
* requests (preventing the barrier from
* rising completely), and the
* per-process bio queue isn't empty,
* then don't wait, as we need to empty
* that queue to allow conf->start_next_window
* to increase.
*/
wait_event_lock_irq(conf->wait_barrier,
!conf->array_frozen &&
(!conf->barrier ||
((conf->start_next_window <
conf->next_resync + RESYNC_SECTORS) &&
current->bio_list &&
!bio_list_empty(current->bio_list))),
conf->resync_lock);
conf->nr_waiting--;
}
if (bio && bio_data_dir(bio) == WRITE) {
if (bio->bi_iter.bi_sector >=
conf->mddev->curr_resync_completed) {
if (conf->start_next_window == MaxSector)
conf->start_next_window =
conf->next_resync +
NEXT_NORMALIO_DISTANCE;
if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
<= bio->bi_iter.bi_sector)
conf->next_window_requests++;
else
conf->current_window_requests++;
sector = conf->start_next_window;
}
}
conf->nr_pending++;
spin_unlock_irq(&conf->resync_lock);
return sector;
}
static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
sector_t bi_sector)
{
unsigned long flags;
spin_lock_irqsave(&conf->resync_lock, flags);
conf->nr_pending--;
if (start_next_window) {
if (start_next_window == conf->start_next_window) {
if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
<= bi_sector)
conf->next_window_requests--;
else
conf->current_window_requests--;
} else
conf->current_window_requests--;
if (!conf->current_window_requests) {
if (conf->next_window_requests) {
conf->current_window_requests =
conf->next_window_requests;
conf->next_window_requests = 0;
conf->start_next_window +=
NEXT_NORMALIO_DISTANCE;
} else
conf->start_next_window = MaxSector;
}
}
spin_unlock_irqrestore(&conf->resync_lock, flags);
wake_up(&conf->wait_barrier);
}
static void freeze_array(struct r1conf *conf, int extra)
{
/* stop syncio and normal IO and wait for everything to
* go quite.
* We wait until nr_pending match nr_queued+extra
* This is called in the context of one normal IO request
* that has failed. Thus any sync request that might be pending
* will be blocked by nr_pending, and we need to wait for
* pending IO requests to complete or be queued for re-try.
* Thus the number queued (nr_queued) plus this request (extra)
* must match the number of pending IOs (nr_pending) before
* we continue.
*/
spin_lock_irq(&conf->resync_lock);
conf->array_frozen = 1;
wait_event_lock_irq_cmd(conf->wait_barrier,
conf->nr_pending == conf->nr_queued+extra,
conf->resync_lock,
flush_pending_writes(conf));
spin_unlock_irq(&conf->resync_lock);
}
static void unfreeze_array(struct r1conf *conf)
{
/* reverse the effect of the freeze */
spin_lock_irq(&conf->resync_lock);
conf->array_frozen = 0;
wake_up(&conf->wait_barrier);
spin_unlock_irq(&conf->resync_lock);
}
/* duplicate the data pages for behind I/O
*/
static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
{
int i;
struct bio_vec *bvec;
struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
GFP_NOIO);
if (unlikely(!bvecs))
return;
bio_for_each_segment_all(bvec, bio, i) {
bvecs[i] = *bvec;
bvecs[i].bv_page = alloc_page(GFP_NOIO);
if (unlikely(!bvecs[i].bv_page))
goto do_sync_io;
memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
kunmap(bvecs[i].bv_page);
kunmap(bvec->bv_page);
}
r1_bio->behind_bvecs = bvecs;
r1_bio->behind_page_count = bio->bi_vcnt;
set_bit(R1BIO_BehindIO, &r1_bio->state);
return;
do_sync_io:
for (i = 0; i < bio->bi_vcnt; i++)
if (bvecs[i].bv_page)
put_page(bvecs[i].bv_page);
kfree(bvecs);
pr_debug("%dB behind alloc failed, doing sync I/O\n",
bio->bi_iter.bi_size);
}
struct raid1_plug_cb {
struct blk_plug_cb cb;
struct bio_list pending;
int pending_cnt;
};
static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
cb);
struct mddev *mddev = plug->cb.data;
struct r1conf *conf = mddev->private;
struct bio *bio;
if (from_schedule || current->bio_list) {
spin_lock_irq(&conf->device_lock);
bio_list_merge(&conf->pending_bio_list, &plug->pending);
conf->pending_count += plug->pending_cnt;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_barrier);
md_wakeup_thread(mddev->thread);
kfree(plug);
return;
}
/* we aren't scheduling, so we can do the write-out directly. */
bio = bio_list_get(&plug->pending);
bitmap_unplug(mddev->bitmap);
wake_up(&conf->wait_barrier);
while (bio) { /* submit pending writes */
struct bio *next = bio->bi_next;
bio->bi_next = NULL;
if (unlikely((bio->bi_rw & REQ_DISCARD) &&
!blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
/* Just ignore it */
bio_endio(bio);
else
generic_make_request(bio);
bio = next;
}
kfree(plug);
}
static void make_request(struct mddev *mddev, struct bio * bio)
{
struct r1conf *conf = mddev->private;
struct raid1_info *mirror;
struct r1bio *r1_bio;
struct bio *read_bio;
int i, disks;
struct bitmap *bitmap;
unsigned long flags;
const int rw = bio_data_dir(bio);
const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
const unsigned long do_discard = (bio->bi_rw
& (REQ_DISCARD | REQ_SECURE));
const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
struct md_rdev *blocked_rdev;
struct blk_plug_cb *cb;
struct raid1_plug_cb *plug = NULL;
int first_clone;
int sectors_handled;
int max_sectors;
sector_t start_next_window;
/*
* Register the new request and wait if the reconstruction
* thread has put up a bar for new requests.
* Continue immediately if no resync is active currently.
*/
md_write_start(mddev, bio); /* wait on superblock update early */
if (bio_data_dir(bio) == WRITE &&
((bio_end_sector(bio) > mddev->suspend_lo &&
bio->bi_iter.bi_sector < mddev->suspend_hi) ||
(mddev_is_clustered(mddev) &&
md_cluster_ops->area_resyncing(mddev, WRITE,
bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
/* As the suspend_* range is controlled by
* userspace, we want an interruptible
* wait.
*/
DEFINE_WAIT(w);
for (;;) {
flush_signals(current);
prepare_to_wait(&conf->wait_barrier,
&w, TASK_INTERRUPTIBLE);
if (bio_end_sector(bio) <= mddev->suspend_lo ||
bio->bi_iter.bi_sector >= mddev->suspend_hi ||
(mddev_is_clustered(mddev) &&
!md_cluster_ops->area_resyncing(mddev, WRITE,
bio->bi_iter.bi_sector, bio_end_sector(bio))))
break;
schedule();
}
finish_wait(&conf->wait_barrier, &w);
}
start_next_window = wait_barrier(conf, bio);
bitmap = mddev->bitmap;
/*
* make_request() can abort the operation when READA is being
* used and no empty request is available.
*
*/
r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
r1_bio->master_bio = bio;
r1_bio->sectors = bio_sectors(bio);
r1_bio->state = 0;
r1_bio->mddev = mddev;
r1_bio->sector = bio->bi_iter.bi_sector;
/* We might need to issue multiple reads to different
* devices if there are bad blocks around, so we keep
* track of the number of reads in bio->bi_phys_segments.
* If this is 0, there is only one r1_bio and no locking
* will be needed when requests complete. If it is
* non-zero, then it is the number of not-completed requests.
*/
bio->bi_phys_segments = 0;
bio_clear_flag(bio, BIO_SEG_VALID);
if (rw == READ) {
/*
* read balancing logic:
*/
int rdisk;
read_again:
rdisk = read_balance(conf, r1_bio, &max_sectors);
if (rdisk < 0) {
/* couldn't find anywhere to read from */
raid_end_bio_io(r1_bio);
return;
}
mirror = conf->mirrors + rdisk;
if (test_bit(WriteMostly, &mirror->rdev->flags) &&
bitmap) {
/* Reading from a write-mostly device must
* take care not to over-take any writes
* that are 'behind'
*/
wait_event(bitmap->behind_wait,
atomic_read(&bitmap->behind_writes) == 0);
}
r1_bio->read_disk = rdisk;
r1_bio->start_next_window = 0;
read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
max_sectors);
r1_bio->bios[rdisk] = read_bio;
read_bio->bi_iter.bi_sector = r1_bio->sector +
mirror->rdev->data_offset;
read_bio->bi_bdev = mirror->rdev->bdev;
read_bio->bi_end_io = raid1_end_read_request;
read_bio->bi_rw = READ | do_sync;
read_bio->bi_private = r1_bio;
if (max_sectors < r1_bio->sectors) {
/* could not read all from this device, so we will
* need another r1_bio.
*/
sectors_handled = (r1_bio->sector + max_sectors
- bio->bi_iter.bi_sector);
r1_bio->sectors = max_sectors;
spin_lock_irq(&conf->device_lock);
if (bio->bi_phys_segments == 0)
bio->bi_phys_segments = 2;
else
bio->bi_phys_segments++;
spin_unlock_irq(&conf->device_lock);
/* Cannot call generic_make_request directly
* as that will be queued in __make_request
* and subsequent mempool_alloc might block waiting
* for it. So hand bio over to raid1d.
*/
reschedule_retry(r1_bio);
r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
r1_bio->master_bio = bio;
r1_bio->sectors = bio_sectors(bio) - sectors_handled;
r1_bio->state = 0;
r1_bio->mddev = mddev;
r1_bio->sector = bio->bi_iter.bi_sector +
sectors_handled;
goto read_again;
} else
generic_make_request(read_bio);
return;
}
/*
* WRITE:
*/
if (conf->pending_count >= max_queued_requests) {
md_wakeup_thread(mddev->thread);
wait_event(conf->wait_barrier,
conf->pending_count < max_queued_requests);
}
/* first select target devices under rcu_lock and
* inc refcount on their rdev. Record them by setting
* bios[x] to bio
* If there are known/acknowledged bad blocks on any device on
* which we have seen a write error, we want to avoid writing those
* blocks.
* This potentially requires several writes to write around
* the bad blocks. Each set of writes gets it's own r1bio
* with a set of bios attached.
*/
disks = conf->raid_disks * 2;
retry_write:
r1_bio->start_next_window = start_next_window;
blocked_rdev = NULL;
rcu_read_lock();
max_sectors = r1_bio->sectors;
for (i = 0; i < disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
atomic_inc(&rdev->nr_pending);
blocked_rdev = rdev;
break;
}
r1_bio->bios[i] = NULL;
if (!rdev || test_bit(Faulty, &rdev->flags)) {
if (i < conf->raid_disks)
set_bit(R1BIO_Degraded, &r1_bio->state);
continue;
}
atomic_inc(&rdev->nr_pending);
if (test_bit(WriteErrorSeen, &rdev->flags)) {
sector_t first_bad;
int bad_sectors;
int is_bad;
is_bad = is_badblock(rdev, r1_bio->sector,
max_sectors,
&first_bad, &bad_sectors);
if (is_bad < 0) {
/* mustn't write here until the bad block is
* acknowledged*/
set_bit(BlockedBadBlocks, &rdev->flags);
blocked_rdev = rdev;
break;
}
if (is_bad && first_bad <= r1_bio->sector) {
/* Cannot write here at all */
bad_sectors -= (r1_bio->sector - first_bad);
if (bad_sectors < max_sectors)
/* mustn't write more than bad_sectors
* to other devices yet
*/
max_sectors = bad_sectors;
rdev_dec_pending(rdev, mddev);
/* We don't set R1BIO_Degraded as that
* only applies if the disk is
* missing, so it might be re-added,
* and we want to know to recover this
* chunk.
* In this case the device is here,
* and the fact that this chunk is not
* in-sync is recorded in the bad
* block log
*/
continue;
}
if (is_bad) {
int good_sectors = first_bad - r1_bio->sector;
if (good_sectors < max_sectors)
max_sectors = good_sectors;
}
}
r1_bio->bios[i] = bio;
}
rcu_read_unlock();
if (unlikely(blocked_rdev)) {
/* Wait for this device to become unblocked */
int j;
sector_t old = start_next_window;
for (j = 0; j < i; j++)
if (r1_bio->bios[j])
rdev_dec_pending(conf->mirrors[j].rdev, mddev);
r1_bio->state = 0;
allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
md_wait_for_blocked_rdev(blocked_rdev, mddev);
start_next_window = wait_barrier(conf, bio);
/*
* We must make sure the multi r1bios of bio have
* the same value of bi_phys_segments
*/
if (bio->bi_phys_segments && old &&
old != start_next_window)
/* Wait for the former r1bio(s) to complete */
wait_event(conf->wait_barrier,
bio->bi_phys_segments == 1);
goto retry_write;
}
if (max_sectors < r1_bio->sectors) {
/* We are splitting this write into multiple parts, so
* we need to prepare for allocating another r1_bio.
*/
r1_bio->sectors = max_sectors;
spin_lock_irq(&conf->device_lock);
if (bio->bi_phys_segments == 0)
bio->bi_phys_segments = 2;
else
bio->bi_phys_segments++;
spin_unlock_irq(&conf->device_lock);
}
sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
atomic_set(&r1_bio->remaining, 1);
atomic_set(&r1_bio->behind_remaining, 0);
first_clone = 1;
for (i = 0; i < disks; i++) {
struct bio *mbio;
if (!r1_bio->bios[i])
continue;
mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
if (first_clone) {
/* do behind I/O ?
* Not if there are too many, or cannot
* allocate memory, or a reader on WriteMostly
* is waiting for behind writes to flush */
if (bitmap &&
(atomic_read(&bitmap->behind_writes)
< mddev->bitmap_info.max_write_behind) &&
!waitqueue_active(&bitmap->behind_wait))
alloc_behind_pages(mbio, r1_bio);
bitmap_startwrite(bitmap, r1_bio->sector,
r1_bio->sectors,
test_bit(R1BIO_BehindIO,
&r1_bio->state));
first_clone = 0;
}
if (r1_bio->behind_bvecs) {
struct bio_vec *bvec;
int j;
/*
* We trimmed the bio, so _all is legit
*/
bio_for_each_segment_all(bvec, mbio, j)
bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
atomic_inc(&r1_bio->behind_remaining);
}
r1_bio->bios[i] = mbio;
mbio->bi_iter.bi_sector = (r1_bio->sector +
conf->mirrors[i].rdev->data_offset);
mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
mbio->bi_end_io = raid1_end_write_request;
mbio->bi_rw =
WRITE | do_flush_fua | do_sync | do_discard | do_same;
mbio->bi_private = r1_bio;
atomic_inc(&r1_bio->remaining);
cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
if (cb)
plug = container_of(cb, struct raid1_plug_cb, cb);
else
plug = NULL;
spin_lock_irqsave(&conf->device_lock, flags);
if (plug) {
bio_list_add(&plug->pending, mbio);
plug->pending_cnt++;
} else {
bio_list_add(&conf->pending_bio_list, mbio);
conf->pending_count++;
}
spin_unlock_irqrestore(&conf->device_lock, flags);
if (!plug)
md_wakeup_thread(mddev->thread);
}
/* Mustn't call r1_bio_write_done before this next test,
* as it could result in the bio being freed.
*/
if (sectors_handled < bio_sectors(bio)) {
r1_bio_write_done(r1_bio);
/* We need another r1_bio. It has already been counted
* in bio->bi_phys_segments
*/
r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
r1_bio->master_bio = bio;
r1_bio->sectors = bio_sectors(bio) - sectors_handled;
r1_bio->state = 0;
r1_bio->mddev = mddev;
r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
goto retry_write;
}
r1_bio_write_done(r1_bio);
/* In case raid1d snuck in to freeze_array */
wake_up(&conf->wait_barrier);
}
static void status(struct seq_file *seq, struct mddev *mddev)
{
struct r1conf *conf = mddev->private;
int i;
seq_printf(seq, " [%d/%d] [", conf->raid_disks,
conf->raid_disks - mddev->degraded);
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
seq_printf(seq, "%s",
rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
}
rcu_read_unlock();
seq_printf(seq, "]");
}
static void error(struct mddev *mddev, struct md_rdev *rdev)
{
char b[BDEVNAME_SIZE];
struct r1conf *conf = mddev->private;
unsigned long flags;
/*
* If it is not operational, then we have already marked it as dead
* else if it is the last working disks, ignore the error, let the
* next level up know.
* else mark the drive as failed
*/
if (test_bit(In_sync, &rdev->flags)
&& (conf->raid_disks - mddev->degraded) == 1) {
/*
* Don't fail the drive, act as though we were just a
* normal single drive.
* However don't try a recovery from this drive as
* it is very likely to fail.
*/
conf->recovery_disabled = mddev->recovery_disabled;
return;
}
set_bit(Blocked, &rdev->flags);
spin_lock_irqsave(&conf->device_lock, flags);
if (test_and_clear_bit(In_sync, &rdev->flags)) {
mddev->degraded++;
set_bit(Faulty, &rdev->flags);
} else
set_bit(Faulty, &rdev->flags);
spin_unlock_irqrestore(&conf->device_lock, flags);
/*
* if recovery is running, make sure it aborts.
*/
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
set_bit(MD_CHANGE_DEVS, &mddev->flags);
printk(KERN_ALERT
"md/raid1:%s: Disk failure on %s, disabling device.\n"
"md/raid1:%s: Operation continuing on %d devices.\n",
mdname(mddev), bdevname(rdev->bdev, b),
mdname(mddev), conf->raid_disks - mddev->degraded);
}
static void print_conf(struct r1conf *conf)
{
int i;
printk(KERN_DEBUG "RAID1 conf printout:\n");
if (!conf) {
printk(KERN_DEBUG "(!conf)\n");
return;
}
printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
conf->raid_disks);
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
char b[BDEVNAME_SIZE];
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
if (rdev)
printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
i, !test_bit(In_sync, &rdev->flags),
!test_bit(Faulty, &rdev->flags),
bdevname(rdev->bdev,b));
}
rcu_read_unlock();
}
static void close_sync(struct r1conf *conf)
{
wait_barrier(conf, NULL);
allow_barrier(conf, 0, 0);
mempool_destroy(conf->r1buf_pool);
conf->r1buf_pool = NULL;
spin_lock_irq(&conf->resync_lock);
conf->next_resync = 0;
conf->start_next_window = MaxSector;
conf->current_window_requests +=
conf->next_window_requests;
conf->next_window_requests = 0;
spin_unlock_irq(&conf->resync_lock);
}
static int raid1_spare_active(struct mddev *mddev)
{
int i;
struct r1conf *conf = mddev->private;
int count = 0;
unsigned long flags;
/*
* Find all failed disks within the RAID1 configuration
* and mark them readable.
* Called under mddev lock, so rcu protection not needed.
* device_lock used to avoid races with raid1_end_read_request
* which expects 'In_sync' flags and ->degraded to be consistent.
*/
spin_lock_irqsave(&conf->device_lock, flags);
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = conf->mirrors[i].rdev;
struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
if (repl
&& !test_bit(Candidate, &repl->flags)
&& repl->recovery_offset == MaxSector
&& !test_bit(Faulty, &repl->flags)
&& !test_and_set_bit(In_sync, &repl->flags)) {
/* replacement has just become active */
if (!rdev ||
!test_and_clear_bit(In_sync, &rdev->flags))
count++;
if (rdev) {
/* Replaced device not technically
* faulty, but we need to be sure
* it gets removed and never re-added
*/
set_bit(Faulty, &rdev->flags);
sysfs_notify_dirent_safe(
rdev->sysfs_state);
}
}
if (rdev
&& rdev->recovery_offset == MaxSector
&& !test_bit(Faulty, &rdev->flags)
&& !test_and_set_bit(In_sync, &rdev->flags)) {
count++;
sysfs_notify_dirent_safe(rdev->sysfs_state);
}
}
mddev->degraded -= count;
spin_unlock_irqrestore(&conf->device_lock, flags);
print_conf(conf);
return count;
}
static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
{
struct r1conf *conf = mddev->private;
int err = -EEXIST;
int mirror = 0;
struct raid1_info *p;
int first = 0;
int last = conf->raid_disks - 1;
if (mddev->recovery_disabled == conf->recovery_disabled)
return -EBUSY;
if (rdev->raid_disk >= 0)
first = last = rdev->raid_disk;
for (mirror = first; mirror <= last; mirror++) {
p = conf->mirrors+mirror;
if (!p->rdev) {
if (mddev->gendisk)
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
p->head_position = 0;
rdev->raid_disk = mirror;
err = 0;
/* As all devices are equivalent, we don't need a full recovery
* if this was recently any drive of the array
*/
if (rdev->saved_raid_disk < 0)
conf->fullsync = 1;
rcu_assign_pointer(p->rdev, rdev);
break;
}
if (test_bit(WantReplacement, &p->rdev->flags) &&
p[conf->raid_disks].rdev == NULL) {
/* Add this device as a replacement */
clear_bit(In_sync, &rdev->flags);
set_bit(Replacement, &rdev->flags);
rdev->raid_disk = mirror;
err = 0;
conf->fullsync = 1;
rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
break;
}
}
md_integrity_add_rdev(rdev, mddev);
if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
print_conf(conf);
return err;
}
static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
{
struct r1conf *conf = mddev->private;
int err = 0;
int number = rdev->raid_disk;
struct raid1_info *p = conf->mirrors + number;
if (rdev != p->rdev)
p = conf->mirrors + conf->raid_disks + number;
print_conf(conf);
if (rdev == p->rdev) {
if (test_bit(In_sync, &rdev->flags) ||
atomic_read(&rdev->nr_pending)) {
err = -EBUSY;
goto abort;
}
/* Only remove non-faulty devices if recovery
* is not possible.
*/
if (!test_bit(Faulty, &rdev->flags) &&
mddev->recovery_disabled != conf->recovery_disabled &&
mddev->degraded < conf->raid_disks) {
err = -EBUSY;
goto abort;
}
p->rdev = NULL;
synchronize_rcu();
if (atomic_read(&rdev->nr_pending)) {
/* lost the race, try later */
err = -EBUSY;
p->rdev = rdev;
goto abort;
} else if (conf->mirrors[conf->raid_disks + number].rdev) {
/* We just removed a device that is being replaced.
* Move down the replacement. We drain all IO before
* doing this to avoid confusion.
*/
struct md_rdev *repl =
conf->mirrors[conf->raid_disks + number].rdev;
freeze_array(conf, 0);
clear_bit(Replacement, &repl->flags);
p->rdev = repl;
conf->mirrors[conf->raid_disks + number].rdev = NULL;
unfreeze_array(conf);
clear_bit(WantReplacement, &rdev->flags);
} else
clear_bit(WantReplacement, &rdev->flags);
err = md_integrity_register(mddev);
}
abort:
print_conf(conf);
return err;
}
static void end_sync_read(struct bio *bio)
{
struct r1bio *r1_bio = bio->bi_private;
update_head_pos(r1_bio->read_disk, r1_bio);
/*
* we have read a block, now it needs to be re-written,
* or re-read if the read failed.
* We don't do much here, just schedule handling by raid1d
*/
if (!bio->bi_error)
set_bit(R1BIO_Uptodate, &r1_bio->state);
if (atomic_dec_and_test(&r1_bio->remaining))
reschedule_retry(r1_bio);
}
static void end_sync_write(struct bio *bio)
{
int uptodate = !bio->bi_error;
struct r1bio *r1_bio = bio->bi_private;
struct mddev *mddev = r1_bio->mddev;
struct r1conf *conf = mddev->private;
int mirror=0;
sector_t first_bad;
int bad_sectors;
mirror = find_bio_disk(r1_bio, bio);
if (!uptodate) {
sector_t sync_blocks = 0;
sector_t s = r1_bio->sector;
long sectors_to_go = r1_bio->sectors;
/* make sure these bits doesn't get cleared. */
do {
bitmap_end_sync(mddev->bitmap, s,
&sync_blocks, 1);
s += sync_blocks;
sectors_to_go -= sync_blocks;
} while (sectors_to_go > 0);
set_bit(WriteErrorSeen,
&conf->mirrors[mirror].rdev->flags);
if (!test_and_set_bit(WantReplacement,
&conf->mirrors[mirror].rdev->flags))
set_bit(MD_RECOVERY_NEEDED, &
mddev->recovery);
set_bit(R1BIO_WriteError, &r1_bio->state);
} else if (is_badblock(conf->mirrors[mirror].rdev,
r1_bio->sector,
r1_bio->sectors,
&first_bad, &bad_sectors) &&
!is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
r1_bio->sector,
r1_bio->sectors,
&first_bad, &bad_sectors)
)
set_bit(R1BIO_MadeGood, &r1_bio->state);
if (atomic_dec_and_test(&r1_bio->remaining)) {
int s = r1_bio->sectors;
if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
test_bit(R1BIO_WriteError, &r1_bio->state))
reschedule_retry(r1_bio);
else {
put_buf(r1_bio);
md_done_sync(mddev, s, uptodate);
}
}
}
static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
int sectors, struct page *page, int rw)
{
if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
/* success */
return 1;
if (rw == WRITE) {
set_bit(WriteErrorSeen, &rdev->flags);
if (!test_and_set_bit(WantReplacement,
&rdev->flags))
set_bit(MD_RECOVERY_NEEDED, &
rdev->mddev->recovery);
}
/* need to record an error - either for the block or the device */
if (!rdev_set_badblocks(rdev, sector, sectors, 0))
md_error(rdev->mddev, rdev);
return 0;
}
static int fix_sync_read_error(struct r1bio *r1_bio)
{
/* Try some synchronous reads of other devices to get
* good data, much like with normal read errors. Only
* read into the pages we already have so we don't
* need to re-issue the read request.
* We don't need to freeze the array, because being in an
* active sync request, there is no normal IO, and
* no overlapping syncs.
* We don't need to check is_badblock() again as we
* made sure that anything with a bad block in range
* will have bi_end_io clear.
*/
struct mddev *mddev = r1_bio->mddev;
struct r1conf *conf = mddev->private;
struct bio *bio = r1_bio->bios[r1_bio->read_disk];
sector_t sect = r1_bio->sector;
int sectors = r1_bio->sectors;
int idx = 0;
while(sectors) {
int s = sectors;
int d = r1_bio->read_disk;
int success = 0;
struct md_rdev *rdev;
int start;
if (s > (PAGE_SIZE>>9))
s = PAGE_SIZE >> 9;
do {
if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
/* No rcu protection needed here devices
* can only be removed when no resync is
* active, and resync is currently active
*/
rdev = conf->mirrors[d].rdev;
if (sync_page_io(rdev, sect, s<<9,
bio->bi_io_vec[idx].bv_page,
READ, false)) {
success = 1;
break;
}
}
d++;
if (d == conf->raid_disks * 2)
d = 0;
} while (!success && d != r1_bio->read_disk);
if (!success) {
char b[BDEVNAME_SIZE];
int abort = 0;
/* Cannot read from anywhere, this block is lost.
* Record a bad block on each device. If that doesn't
* work just disable and interrupt the recovery.
* Don't fail devices as that won't really help.
*/
printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
" for block %llu\n",
mdname(mddev),
bdevname(bio->bi_bdev, b),
(unsigned long long)r1_bio->sector);
for (d = 0; d < conf->raid_disks * 2; d++) {
rdev = conf->mirrors[d].rdev;
if (!rdev || test_bit(Faulty, &rdev->flags))
continue;
if (!rdev_set_badblocks(rdev, sect, s, 0))
abort = 1;
}
if (abort) {
conf->recovery_disabled =
mddev->recovery_disabled;
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_done_sync(mddev, r1_bio->sectors, 0);
put_buf(r1_bio);
return 0;
}
/* Try next page */
sectors -= s;
sect += s;
idx++;
continue;
}
start = d;
/* write it back and re-read */
while (d != r1_bio->read_disk) {
if (d == 0)
d = conf->raid_disks * 2;
d--;
if (r1_bio->bios[d]->bi_end_io != end_sync_read)
continue;
rdev = conf->mirrors[d].rdev;
if (r1_sync_page_io(rdev, sect, s,
bio->bi_io_vec[idx].bv_page,
WRITE) == 0) {
r1_bio->bios[d]->bi_end_io = NULL;
rdev_dec_pending(rdev, mddev);
}
}
d = start;
while (d != r1_bio->read_disk) {
if (d == 0)
d = conf->raid_disks * 2;
d--;
if (r1_bio->bios[d]->bi_end_io != end_sync_read)
continue;
rdev = conf->mirrors[d].rdev;
if (r1_sync_page_io(rdev, sect, s,
bio->bi_io_vec[idx].bv_page,
READ) != 0)
atomic_add(s, &rdev->corrected_errors);
}
sectors -= s;
sect += s;
idx ++;
}
set_bit(R1BIO_Uptodate, &r1_bio->state);
bio->bi_error = 0;
return 1;
}
static void process_checks(struct r1bio *r1_bio)
{
/* We have read all readable devices. If we haven't
* got the block, then there is no hope left.
* If we have, then we want to do a comparison
* and skip the write if everything is the same.
* If any blocks failed to read, then we need to
* attempt an over-write
*/
struct mddev *mddev = r1_bio->mddev;
struct r1conf *conf = mddev->private;
int primary;
int i;
int vcnt;
/* Fix variable parts of all bios */
vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
for (i = 0; i < conf->raid_disks * 2; i++) {
int j;
int size;
int error;
struct bio *b = r1_bio->bios[i];
if (b->bi_end_io != end_sync_read)
continue;
/* fixup the bio for reuse, but preserve errno */
error = b->bi_error;
bio_reset(b);
b->bi_error = error;
b->bi_vcnt = vcnt;
b->bi_iter.bi_size = r1_bio->sectors << 9;
b->bi_iter.bi_sector = r1_bio->sector +
conf->mirrors[i].rdev->data_offset;
b->bi_bdev = conf->mirrors[i].rdev->bdev;
b->bi_end_io = end_sync_read;
b->bi_private = r1_bio;
size = b->bi_iter.bi_size;
for (j = 0; j < vcnt ; j++) {
struct bio_vec *bi;
bi = &b->bi_io_vec[j];
bi->bv_offset = 0;
if (size > PAGE_SIZE)
bi->bv_len = PAGE_SIZE;
else
bi->bv_len = size;
size -= PAGE_SIZE;
}
}
for (primary = 0; primary < conf->raid_disks * 2; primary++)
if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
!r1_bio->bios[primary]->bi_error) {
r1_bio->bios[primary]->bi_end_io = NULL;
rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
break;
}
r1_bio->read_disk = primary;
for (i = 0; i < conf->raid_disks * 2; i++) {
int j;
struct bio *pbio = r1_bio->bios[primary];
struct bio *sbio = r1_bio->bios[i];
int error = sbio->bi_error;
if (sbio->bi_end_io != end_sync_read)
continue;
/* Now we can 'fixup' the error value */
sbio->bi_error = 0;
if (!error) {
for (j = vcnt; j-- ; ) {
struct page *p, *s;
p = pbio->bi_io_vec[j].bv_page;
s = sbio->bi_io_vec[j].bv_page;
if (memcmp(page_address(p),
page_address(s),
sbio->bi_io_vec[j].bv_len))
break;
}
} else
j = 0;
if (j >= 0)
atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
&& !error)) {
/* No need to write to this device. */
sbio->bi_end_io = NULL;
rdev_dec_pending(conf->mirrors[i].rdev, mddev);
continue;
}
bio_copy_data(sbio, pbio);
}
}
static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
{
struct r1conf *conf = mddev->private;
int i;
int disks = conf->raid_disks * 2;
struct bio *bio, *wbio;
bio = r1_bio->bios[r1_bio->read_disk];
if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
/* ouch - failed to read all of that. */
if (!fix_sync_read_error(r1_bio))
return;
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
process_checks(r1_bio);
/*
* schedule writes
*/
atomic_set(&r1_bio->remaining, 1);
for (i = 0; i < disks ; i++) {
wbio = r1_bio->bios[i];
if (wbio->bi_end_io == NULL ||
(wbio->bi_end_io == end_sync_read &&
(i == r1_bio->read_disk ||
!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
continue;
wbio->bi_rw = WRITE;
wbio->bi_end_io = end_sync_write;
atomic_inc(&r1_bio->remaining);
md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
generic_make_request(wbio);
}
if (atomic_dec_and_test(&r1_bio->remaining)) {
/* if we're here, all write(s) have completed, so clean up */
int s = r1_bio->sectors;
if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
test_bit(R1BIO_WriteError, &r1_bio->state))
reschedule_retry(r1_bio);
else {
put_buf(r1_bio);
md_done_sync(mddev, s, 1);
}
}
}
/*
* This is a kernel thread which:
*
* 1. Retries failed read operations on working mirrors.
* 2. Updates the raid superblock when problems encounter.
* 3. Performs writes following reads for array synchronising.
*/
static void fix_read_error(struct r1conf *conf, int read_disk,
sector_t sect, int sectors)
{
struct mddev *mddev = conf->mddev;
while(sectors) {
int s = sectors;
int d = read_disk;
int success = 0;
int start;
struct md_rdev *rdev;
if (s > (PAGE_SIZE>>9))
s = PAGE_SIZE >> 9;
do {
/* Note: no rcu protection needed here
* as this is synchronous in the raid1d thread
* which is the thread that might remove
* a device. If raid1d ever becomes multi-threaded....
*/
sector_t first_bad;
int bad_sectors;
rdev = conf->mirrors[d].rdev;
if (rdev &&
(test_bit(In_sync, &rdev->flags) ||
(!test_bit(Faulty, &rdev->flags) &&
rdev->recovery_offset >= sect + s)) &&
is_badblock(rdev, sect, s,
&first_bad, &bad_sectors) == 0 &&
sync_page_io(rdev, sect, s<<9,
conf->tmppage, READ, false))
success = 1;
else {
d++;
if (d == conf->raid_disks * 2)
d = 0;
}
} while (!success && d != read_disk);
if (!success) {
/* Cannot read from anywhere - mark it bad */
struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
if (!rdev_set_badblocks(rdev, sect, s, 0))
md_error(mddev, rdev);
break;
}
/* write it back and re-read */
start = d;
while (d != read_disk) {
if (d==0)
d = conf->raid_disks * 2;
d--;
rdev = conf->mirrors[d].rdev;
if (rdev &&
!test_bit(Faulty, &rdev->flags))
r1_sync_page_io(rdev, sect, s,
conf->tmppage, WRITE);
}
d = start;
while (d != read_disk) {
char b[BDEVNAME_SIZE];
if (d==0)
d = conf->raid_disks * 2;
d--;
rdev = conf->mirrors[d].rdev;
if (rdev &&
!test_bit(Faulty, &rdev->flags)) {
if (r1_sync_page_io(rdev, sect, s,
conf->tmppage, READ)) {
atomic_add(s, &rdev->corrected_errors);
printk(KERN_INFO
"md/raid1:%s: read error corrected "
"(%d sectors at %llu on %s)\n",
mdname(mddev), s,
(unsigned long long)(sect +
rdev->data_offset),
bdevname(rdev->bdev, b));
}
}
}
sectors -= s;
sect += s;
}
}
static int narrow_write_error(struct r1bio *r1_bio, int i)
{
struct mddev *mddev = r1_bio->mddev;
struct r1conf *conf = mddev->private;
struct md_rdev *rdev = conf->mirrors[i].rdev;
/* bio has the data to be written to device 'i' where
* we just recently had a write error.
* We repeatedly clone the bio and trim down to one block,
* then try the write. Where the write fails we record
* a bad block.
* It is conceivable that the bio doesn't exactly align with
* blocks. We must handle this somehow.
*
* We currently own a reference on the rdev.
*/
int block_sectors;
sector_t sector;
int sectors;
int sect_to_write = r1_bio->sectors;
int ok = 1;
if (rdev->badblocks.shift < 0)
return 0;
block_sectors = roundup(1 << rdev->badblocks.shift,
bdev_logical_block_size(rdev->bdev) >> 9);
sector = r1_bio->sector;
sectors = ((sector + block_sectors)
& ~(sector_t)(block_sectors - 1))
- sector;
while (sect_to_write) {
struct bio *wbio;
if (sectors > sect_to_write)
sectors = sect_to_write;
/* Write at 'sector' for 'sectors'*/
if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
unsigned vcnt = r1_bio->behind_page_count;
struct bio_vec *vec = r1_bio->behind_bvecs;
while (!vec->bv_page) {
vec++;
vcnt--;
}
wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
wbio->bi_vcnt = vcnt;
} else {
wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
}
wbio->bi_rw = WRITE;
wbio->bi_iter.bi_sector = r1_bio->sector;
wbio->bi_iter.bi_size = r1_bio->sectors << 9;
bio_trim(wbio, sector - r1_bio->sector, sectors);
wbio->bi_iter.bi_sector += rdev->data_offset;
wbio->bi_bdev = rdev->bdev;
if (submit_bio_wait(WRITE, wbio) == 0)
/* failure! */
ok = rdev_set_badblocks(rdev, sector,
sectors, 0)
&& ok;
bio_put(wbio);
sect_to_write -= sectors;
sector += sectors;
sectors = block_sectors;
}
return ok;
}
static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
{
int m;
int s = r1_bio->sectors;
for (m = 0; m < conf->raid_disks * 2 ; m++) {
struct md_rdev *rdev = conf->mirrors[m].rdev;
struct bio *bio = r1_bio->bios[m];
if (bio->bi_end_io == NULL)
continue;
if (!bio->bi_error &&
test_bit(R1BIO_MadeGood, &r1_bio->state)) {
rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
}
if (bio->bi_error &&
test_bit(R1BIO_WriteError, &r1_bio->state)) {
if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
md_error(conf->mddev, rdev);
}
}
put_buf(r1_bio);
md_done_sync(conf->mddev, s, 1);
}
static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
{
int m;
for (m = 0; m < conf->raid_disks * 2 ; m++)
if (r1_bio->bios[m] == IO_MADE_GOOD) {
struct md_rdev *rdev = conf->mirrors[m].rdev;
rdev_clear_badblocks(rdev,
r1_bio->sector,
r1_bio->sectors, 0);
rdev_dec_pending(rdev, conf->mddev);
} else if (r1_bio->bios[m] != NULL) {
/* This drive got a write error. We need to
* narrow down and record precise write
* errors.
*/
if (!narrow_write_error(r1_bio, m)) {
md_error(conf->mddev,
conf->mirrors[m].rdev);
/* an I/O failed, we can't clear the bitmap */
set_bit(R1BIO_Degraded, &r1_bio->state);
}
rdev_dec_pending(conf->mirrors[m].rdev,
conf->mddev);
}
if (test_bit(R1BIO_WriteError, &r1_bio->state))
close_write(r1_bio);
raid_end_bio_io(r1_bio);
}
static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
{
int disk;
int max_sectors;
struct mddev *mddev = conf->mddev;
struct bio *bio;
char b[BDEVNAME_SIZE];
struct md_rdev *rdev;
clear_bit(R1BIO_ReadError, &r1_bio->state);
/* we got a read error. Maybe the drive is bad. Maybe just
* the block and we can fix it.
* We freeze all other IO, and try reading the block from
* other devices. When we find one, we re-write
* and check it that fixes the read error.
* This is all done synchronously while the array is
* frozen
*/
if (mddev->ro == 0) {
freeze_array(conf, 1);
fix_read_error(conf, r1_bio->read_disk,
r1_bio->sector, r1_bio->sectors);
unfreeze_array(conf);
} else
md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
bio = r1_bio->bios[r1_bio->read_disk];
bdevname(bio->bi_bdev, b);
read_more:
disk = read_balance(conf, r1_bio, &max_sectors);
if (disk == -1) {
printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
" read error for block %llu\n",
mdname(mddev), b, (unsigned long long)r1_bio->sector);
raid_end_bio_io(r1_bio);
} else {
const unsigned long do_sync
= r1_bio->master_bio->bi_rw & REQ_SYNC;
if (bio) {
r1_bio->bios[r1_bio->read_disk] =
mddev->ro ? IO_BLOCKED : NULL;
bio_put(bio);
}
r1_bio->read_disk = disk;
bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
max_sectors);
r1_bio->bios[r1_bio->read_disk] = bio;
rdev = conf->mirrors[disk].rdev;
printk_ratelimited(KERN_ERR
"md/raid1:%s: redirecting sector %llu"
" to other mirror: %s\n",
mdname(mddev),
(unsigned long long)r1_bio->sector,
bdevname(rdev->bdev, b));
bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
bio->bi_bdev = rdev->bdev;
bio->bi_end_io = raid1_end_read_request;
bio->bi_rw = READ | do_sync;
bio->bi_private = r1_bio;
if (max_sectors < r1_bio->sectors) {
/* Drat - have to split this up more */
struct bio *mbio = r1_bio->master_bio;
int sectors_handled = (r1_bio->sector + max_sectors
- mbio->bi_iter.bi_sector);
r1_bio->sectors = max_sectors;
spin_lock_irq(&conf->device_lock);
if (mbio->bi_phys_segments == 0)
mbio->bi_phys_segments = 2;
else
mbio->bi_phys_segments++;
spin_unlock_irq(&conf->device_lock);
generic_make_request(bio);
bio = NULL;
r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
r1_bio->master_bio = mbio;
r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
r1_bio->state = 0;
set_bit(R1BIO_ReadError, &r1_bio->state);
r1_bio->mddev = mddev;
r1_bio->sector = mbio->bi_iter.bi_sector +
sectors_handled;
goto read_more;
} else
generic_make_request(bio);
}
}
static void raid1d(struct md_thread *thread)
{
struct mddev *mddev = thread->mddev;
struct r1bio *r1_bio;
unsigned long flags;
struct r1conf *conf = mddev->private;
struct list_head *head = &conf->retry_list;
struct blk_plug plug;
md_check_recovery(mddev);
blk_start_plug(&plug);
for (;;) {
flush_pending_writes(conf);
spin_lock_irqsave(&conf->device_lock, flags);
if (list_empty(head)) {
spin_unlock_irqrestore(&conf->device_lock, flags);
break;
}
r1_bio = list_entry(head->prev, struct r1bio, retry_list);
list_del(head->prev);
conf->nr_queued--;
spin_unlock_irqrestore(&conf->device_lock, flags);
mddev = r1_bio->mddev;
conf = mddev->private;
if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
test_bit(R1BIO_WriteError, &r1_bio->state))
handle_sync_write_finished(conf, r1_bio);
else
sync_request_write(mddev, r1_bio);
} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
test_bit(R1BIO_WriteError, &r1_bio->state))
handle_write_finished(conf, r1_bio);
else if (test_bit(R1BIO_ReadError, &r1_bio->state))
handle_read_error(conf, r1_bio);
else
/* just a partial read to be scheduled from separate
* context
*/
generic_make_request(r1_bio->bios[r1_bio->read_disk]);
cond_resched();
if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
md_check_recovery(mddev);
}
blk_finish_plug(&plug);
}
static int init_resync(struct r1conf *conf)
{
int buffs;
buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
BUG_ON(conf->r1buf_pool);
conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
conf->poolinfo);
if (!conf->r1buf_pool)
return -ENOMEM;
conf->next_resync = 0;
return 0;
}
/*
* perform a "sync" on one "block"
*
* We need to make sure that no normal I/O request - particularly write
* requests - conflict with active sync requests.
*
* This is achieved by tracking pending requests and a 'barrier' concept
* that can be installed to exclude normal IO requests.
*/
static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
{
struct r1conf *conf = mddev->private;
struct r1bio *r1_bio;
struct bio *bio;
sector_t max_sector, nr_sectors;
int disk = -1;
int i;
int wonly = -1;
int write_targets = 0, read_targets = 0;
sector_t sync_blocks;
int still_degraded = 0;
int good_sectors = RESYNC_SECTORS;
int min_bad = 0; /* number of sectors that are bad in all devices */
if (!conf->r1buf_pool)
if (init_resync(conf))
return 0;
max_sector = mddev->dev_sectors;
if (sector_nr >= max_sector) {
/* If we aborted, we need to abort the
* sync on the 'current' bitmap chunk (there will
* only be one in raid1 resync.
* We can find the current addess in mddev->curr_resync
*/
if (mddev->curr_resync < max_sector) /* aborted */
bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
else /* completed sync */
conf->fullsync = 0;
bitmap_close_sync(mddev->bitmap);
close_sync(conf);
return 0;
}
if (mddev->bitmap == NULL &&
mddev->recovery_cp == MaxSector &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
conf->fullsync == 0) {
*skipped = 1;
return max_sector - sector_nr;
}
/* before building a request, check if we can skip these blocks..
* This call the bitmap_start_sync doesn't actually record anything
*/
if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
!conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
/* We can skip this block, and probably several more */
*skipped = 1;
return sync_blocks;
}
bitmap_cond_end_sync(mddev->bitmap, sector_nr);
r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
raise_barrier(conf, sector_nr);
rcu_read_lock();
/*
* If we get a correctably read error during resync or recovery,
* we might want to read from a different device. So we
* flag all drives that could conceivably be read from for READ,
* and any others (which will be non-In_sync devices) for WRITE.
* If a read fails, we try reading from something else for which READ
* is OK.
*/
r1_bio->mddev = mddev;
r1_bio->sector = sector_nr;
r1_bio->state = 0;
set_bit(R1BIO_IsSync, &r1_bio->state);
for (i = 0; i < conf->raid_disks * 2; i++) {
struct md_rdev *rdev;
bio = r1_bio->bios[i];
bio_reset(bio);
rdev = rcu_dereference(conf->mirrors[i].rdev);
if (rdev == NULL ||
test_bit(Faulty, &rdev->flags)) {
if (i < conf->raid_disks)
still_degraded = 1;
} else if (!test_bit(In_sync, &rdev->flags)) {
bio->bi_rw = WRITE;
bio->bi_end_io = end_sync_write;
write_targets ++;
} else {
/* may need to read from here */
sector_t first_bad = MaxSector;
int bad_sectors;
if (is_badblock(rdev, sector_nr, good_sectors,
&first_bad, &bad_sectors)) {
if (first_bad > sector_nr)
good_sectors = first_bad - sector_nr;
else {
bad_sectors -= (sector_nr - first_bad);
if (min_bad == 0 ||
min_bad > bad_sectors)
min_bad = bad_sectors;
}
}
if (sector_nr < first_bad) {
if (test_bit(WriteMostly, &rdev->flags)) {
if (wonly < 0)
wonly = i;
} else {
if (disk < 0)
disk = i;
}
bio->bi_rw = READ;
bio->bi_end_io = end_sync_read;
read_targets++;
} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
/*
* The device is suitable for reading (InSync),
* but has bad block(s) here. Let's try to correct them,
* if we are doing resync or repair. Otherwise, leave
* this device alone for this sync request.
*/
bio->bi_rw = WRITE;
bio->bi_end_io = end_sync_write;
write_targets++;
}
}
if (bio->bi_end_io) {
atomic_inc(&rdev->nr_pending);
bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
bio->bi_bdev = rdev->bdev;
bio->bi_private = r1_bio;
}
}
rcu_read_unlock();
if (disk < 0)
disk = wonly;
r1_bio->read_disk = disk;
if (read_targets == 0 && min_bad > 0) {
/* These sectors are bad on all InSync devices, so we
* need to mark them bad on all write targets
*/
int ok = 1;
for (i = 0 ; i < conf->raid_disks * 2 ; i++)
if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
struct md_rdev *rdev = conf->mirrors[i].rdev;
ok = rdev_set_badblocks(rdev, sector_nr,
min_bad, 0
) && ok;
}
set_bit(MD_CHANGE_DEVS, &mddev->flags);
*skipped = 1;
put_buf(r1_bio);
if (!ok) {
/* Cannot record the badblocks, so need to
* abort the resync.
* If there are multiple read targets, could just
* fail the really bad ones ???
*/
conf->recovery_disabled = mddev->recovery_disabled;
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
return 0;
} else
return min_bad;
}
if (min_bad > 0 && min_bad < good_sectors) {
/* only resync enough to reach the next bad->good
* transition */
good_sectors = min_bad;
}
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
/* extra read targets are also write targets */
write_targets += read_targets-1;
if (write_targets == 0 || read_targets == 0) {
/* There is nowhere to write, so all non-sync
* drives must be failed - so we are finished
*/
sector_t rv;
if (min_bad > 0)
max_sector = sector_nr + min_bad;
rv = max_sector - sector_nr;
*skipped = 1;
put_buf(r1_bio);
return rv;
}
if (max_sector > mddev->resync_max)
max_sector = mddev->resync_max; /* Don't do IO beyond here */
if (max_sector > sector_nr + good_sectors)
max_sector = sector_nr + good_sectors;
nr_sectors = 0;
sync_blocks = 0;
do {
struct page *page;
int len = PAGE_SIZE;
if (sector_nr + (len>>9) > max_sector)
len = (max_sector - sector_nr) << 9;
if (len == 0)
break;
if (sync_blocks == 0) {
if (!bitmap_start_sync(mddev->bitmap, sector_nr,
&sync_blocks, still_degraded) &&
!conf->fullsync &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
break;
BUG_ON(sync_blocks < (PAGE_SIZE>>9));
if ((len >> 9) > sync_blocks)
len = sync_blocks<<9;
}
for (i = 0 ; i < conf->raid_disks * 2; i++) {
bio = r1_bio->bios[i];
if (bio->bi_end_io) {
page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
if (bio_add_page(bio, page, len, 0) == 0) {
/* stop here */
bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
while (i > 0) {
i--;
bio = r1_bio->bios[i];
if (bio->bi_end_io==NULL)
continue;
/* remove last page from this bio */
bio->bi_vcnt--;
bio->bi_iter.bi_size -= len;
bio_clear_flag(bio, BIO_SEG_VALID);
}
goto bio_full;
}
}
}
nr_sectors += len>>9;
sector_nr += len>>9;
sync_blocks -= (len>>9);
} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
bio_full:
r1_bio->sectors = nr_sectors;
/* For a user-requested sync, we read all readable devices and do a
* compare
*/
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
atomic_set(&r1_bio->remaining, read_targets);
for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
bio = r1_bio->bios[i];
if (bio->bi_end_io == end_sync_read) {
read_targets--;
md_sync_acct(bio->bi_bdev, nr_sectors);
generic_make_request(bio);
}
}
} else {
atomic_set(&r1_bio->remaining, 1);
bio = r1_bio->bios[r1_bio->read_disk];
md_sync_acct(bio->bi_bdev, nr_sectors);
generic_make_request(bio);
}
return nr_sectors;
}
static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
{
if (sectors)
return sectors;
return mddev->dev_sectors;
}
static struct r1conf *setup_conf(struct mddev *mddev)
{
struct r1conf *conf;
int i;
struct raid1_info *disk;
struct md_rdev *rdev;
int err = -ENOMEM;
conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
if (!conf)
goto abort;
conf->mirrors = kzalloc(sizeof(struct raid1_info)
* mddev->raid_disks * 2,
GFP_KERNEL);
if (!conf->mirrors)
goto abort;
conf->tmppage = alloc_page(GFP_KERNEL);
if (!conf->tmppage)
goto abort;
conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
if (!conf->poolinfo)
goto abort;
conf->poolinfo->raid_disks = mddev->raid_disks * 2;
conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
r1bio_pool_free,
conf->poolinfo);
if (!conf->r1bio_pool)
goto abort;
conf->poolinfo->mddev = mddev;
err = -EINVAL;
spin_lock_init(&conf->device_lock);
rdev_for_each(rdev, mddev) {
struct request_queue *q;
int disk_idx = rdev->raid_disk;
if (disk_idx >= mddev->raid_disks
|| disk_idx < 0)
continue;
if (test_bit(Replacement, &rdev->flags))
disk = conf->mirrors + mddev->raid_disks + disk_idx;
else
disk = conf->mirrors + disk_idx;
if (disk->rdev)
goto abort;
disk->rdev = rdev;
q = bdev_get_queue(rdev->bdev);
disk->head_position = 0;
disk->seq_start = MaxSector;
}
conf->raid_disks = mddev->raid_disks;
conf->mddev = mddev;
INIT_LIST_HEAD(&conf->retry_list);
spin_lock_init(&conf->resync_lock);
init_waitqueue_head(&conf->wait_barrier);
bio_list_init(&conf->pending_bio_list);
conf->pending_count = 0;
conf->recovery_disabled = mddev->recovery_disabled - 1;
conf->start_next_window = MaxSector;
conf->current_window_requests = conf->next_window_requests = 0;
err = -EIO;
for (i = 0; i < conf->raid_disks * 2; i++) {
disk = conf->mirrors + i;
if (i < conf->raid_disks &&
disk[conf->raid_disks].rdev) {
/* This slot has a replacement. */
if (!disk->rdev) {
/* No original, just make the replacement
* a recovering spare
*/
disk->rdev =
disk[conf->raid_disks].rdev;
disk[conf->raid_disks].rdev = NULL;
} else if (!test_bit(In_sync, &disk->rdev->flags))
/* Original is not in_sync - bad */
goto abort;
}
if (!disk->rdev ||
!test_bit(In_sync, &disk->rdev->flags)) {
disk->head_position = 0;
if (disk->rdev &&
(disk->rdev->saved_raid_disk < 0))
conf->fullsync = 1;
}
}
err = -ENOMEM;
conf->thread = md_register_thread(raid1d, mddev, "raid1");
if (!conf->thread) {
printk(KERN_ERR
"md/raid1:%s: couldn't allocate thread\n",
mdname(mddev));
goto abort;
}
return conf;
abort:
if (conf) {
if (conf->r1bio_pool)
mempool_destroy(conf->r1bio_pool);
kfree(conf->mirrors);
safe_put_page(conf->tmppage);
kfree(conf->poolinfo);
kfree(conf);
}
return ERR_PTR(err);
}
static void raid1_free(struct mddev *mddev, void *priv);
static int run(struct mddev *mddev)
{
struct r1conf *conf;
int i;
struct md_rdev *rdev;
int ret;
bool discard_supported = false;
if (mddev->level != 1) {
printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
mdname(mddev), mddev->level);
return -EIO;
}
if (mddev->reshape_position != MaxSector) {
printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
mdname(mddev));
return -EIO;
}
/*
* copy the already verified devices into our private RAID1
* bookkeeping area. [whatever we allocate in run(),
* should be freed in raid1_free()]
*/
if (mddev->private == NULL)
conf = setup_conf(mddev);
else
conf = mddev->private;
if (IS_ERR(conf))
return PTR_ERR(conf);
if (mddev->queue)
blk_queue_max_write_same_sectors(mddev->queue, 0);
rdev_for_each(rdev, mddev) {
if (!mddev->gendisk)
continue;
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
discard_supported = true;
}
mddev->degraded = 0;
for (i=0; i < conf->raid_disks; i++)
if (conf->mirrors[i].rdev == NULL ||
!test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
test_bit(Faulty, &conf->mirrors[i].rdev->flags))
mddev->degraded++;
if (conf->raid_disks - mddev->degraded == 1)
mddev->recovery_cp = MaxSector;
if (mddev->recovery_cp != MaxSector)
printk(KERN_NOTICE "md/raid1:%s: not clean"
" -- starting background reconstruction\n",
mdname(mddev));
printk(KERN_INFO
"md/raid1:%s: active with %d out of %d mirrors\n",
mdname(mddev), mddev->raid_disks - mddev->degraded,
mddev->raid_disks);
/*
* Ok, everything is just fine now
*/
mddev->thread = conf->thread;
conf->thread = NULL;
mddev->private = conf;
md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
if (mddev->queue) {
if (discard_supported)
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
mddev->queue);
else
queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
mddev->queue);
}
ret = md_integrity_register(mddev);
if (ret) {
md_unregister_thread(&mddev->thread);
raid1_free(mddev, conf);
}
return ret;
}
static void raid1_free(struct mddev *mddev, void *priv)
{
struct r1conf *conf = priv;
if (conf->r1bio_pool)
mempool_destroy(conf->r1bio_pool);
kfree(conf->mirrors);
safe_put_page(conf->tmppage);
kfree(conf->poolinfo);
kfree(conf);
}
static int raid1_resize(struct mddev *mddev, sector_t sectors)
{
/* no resync is happening, and there is enough space
* on all devices, so we can resize.
* We need to make sure resync covers any new space.
* If the array is shrinking we should possibly wait until
* any io in the removed space completes, but it hardly seems
* worth it.
*/
sector_t newsize = raid1_size(mddev, sectors, 0);
if (mddev->external_size &&
mddev->array_sectors > newsize)
return -EINVAL;
if (mddev->bitmap) {
int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
if (ret)
return ret;
}
md_set_array_sectors(mddev, newsize);
set_capacity(mddev->gendisk, mddev->array_sectors);
revalidate_disk(mddev->gendisk);
if (sectors > mddev->dev_sectors &&
mddev->recovery_cp > mddev->dev_sectors) {
mddev->recovery_cp = mddev->dev_sectors;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
mddev->dev_sectors = sectors;
mddev->resync_max_sectors = sectors;
return 0;
}
static int raid1_reshape(struct mddev *mddev)
{
/* We need to:
* 1/ resize the r1bio_pool
* 2/ resize conf->mirrors
*
* We allocate a new r1bio_pool if we can.
* Then raise a device barrier and wait until all IO stops.
* Then resize conf->mirrors and swap in the new r1bio pool.
*
* At the same time, we "pack" the devices so that all the missing
* devices have the higher raid_disk numbers.
*/
mempool_t *newpool, *oldpool;
struct pool_info *newpoolinfo;
struct raid1_info *newmirrors;
struct r1conf *conf = mddev->private;
int cnt, raid_disks;
unsigned long flags;
int d, d2, err;
/* Cannot change chunk_size, layout, or level */
if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
mddev->layout != mddev->new_layout ||
mddev->level != mddev->new_level) {
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->new_layout = mddev->layout;
mddev->new_level = mddev->level;
return -EINVAL;
}
err = md_allow_write(mddev);
if (err)
return err;
raid_disks = mddev->raid_disks + mddev->delta_disks;
if (raid_disks < conf->raid_disks) {
cnt=0;
for (d= 0; d < conf->raid_disks; d++)
if (conf->mirrors[d].rdev)
cnt++;
if (cnt > raid_disks)
return -EBUSY;
}
newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
if (!newpoolinfo)
return -ENOMEM;
newpoolinfo->mddev = mddev;
newpoolinfo->raid_disks = raid_disks * 2;
newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
r1bio_pool_free, newpoolinfo);
if (!newpool) {
kfree(newpoolinfo);
return -ENOMEM;
}
newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
GFP_KERNEL);
if (!newmirrors) {
kfree(newpoolinfo);
mempool_destroy(newpool);
return -ENOMEM;
}
freeze_array(conf, 0);
/* ok, everything is stopped */
oldpool = conf->r1bio_pool;
conf->r1bio_pool = newpool;
for (d = d2 = 0; d < conf->raid_disks; d++) {
struct md_rdev *rdev = conf->mirrors[d].rdev;
if (rdev && rdev->raid_disk != d2) {
sysfs_unlink_rdev(mddev, rdev);
rdev->raid_disk = d2;
sysfs_unlink_rdev(mddev, rdev);
if (sysfs_link_rdev(mddev, rdev))
printk(KERN_WARNING
"md/raid1:%s: cannot register rd%d\n",
mdname(mddev), rdev->raid_disk);
}
if (rdev)
newmirrors[d2++].rdev = rdev;
}
kfree(conf->mirrors);
conf->mirrors = newmirrors;
kfree(conf->poolinfo);
conf->poolinfo = newpoolinfo;
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded += (raid_disks - conf->raid_disks);
spin_unlock_irqrestore(&conf->device_lock, flags);
conf->raid_disks = mddev->raid_disks = raid_disks;
mddev->delta_disks = 0;
unfreeze_array(conf);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
mempool_destroy(oldpool);
return 0;
}
static void raid1_quiesce(struct mddev *mddev, int state)
{
struct r1conf *conf = mddev->private;
switch(state) {
case 2: /* wake for suspend */
wake_up(&conf->wait_barrier);
break;
case 1:
freeze_array(conf, 0);
break;
case 0:
unfreeze_array(conf);
break;
}
}
static void *raid1_takeover(struct mddev *mddev)
{
/* raid1 can take over:
* raid5 with 2 devices, any layout or chunk size
*/
if (mddev->level == 5 && mddev->raid_disks == 2) {
struct r1conf *conf;
mddev->new_level = 1;
mddev->new_layout = 0;
mddev->new_chunk_sectors = 0;
conf = setup_conf(mddev);
if (!IS_ERR(conf))
/* Array must appear to be quiesced */
conf->array_frozen = 1;
return conf;
}
return ERR_PTR(-EINVAL);
}
static struct md_personality raid1_personality =
{
.name = "raid1",
.level = 1,
.owner = THIS_MODULE,
.make_request = make_request,
.run = run,
.free = raid1_free,
.status = status,
.error_handler = error,
.hot_add_disk = raid1_add_disk,
.hot_remove_disk= raid1_remove_disk,
.spare_active = raid1_spare_active,
.sync_request = sync_request,
.resize = raid1_resize,
.size = raid1_size,
.check_reshape = raid1_reshape,
.quiesce = raid1_quiesce,
.takeover = raid1_takeover,
.congested = raid1_congested,
};
static int __init raid_init(void)
{
return register_md_personality(&raid1_personality);
}
static void raid_exit(void)
{
unregister_md_personality(&raid1_personality);
}
module_init(raid_init);
module_exit(raid_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
MODULE_ALIAS("md-personality-3"); /* RAID1 */
MODULE_ALIAS("md-raid1");
MODULE_ALIAS("md-level-1");
module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);