kernel-fxtec-pro1x/fs/f2fs/inode.c
Jaegeuk Kim 0ff153a2f1 f2fs: do not skip writing file meta during fsync
This patch removes data_version check flow during the fsync call.
The original purpose for the use of data_version was to avoid writng inode
pages redundantly by the fsync calls repeatedly.
However, when user can modify file meta and then call fsync, we should not
skip fsync procedure.
So, let's remove this condition check and hope that user triggers in right
manner.

Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-03-27 09:16:16 +09:00

262 lines
7.2 KiB
C

/*
* fs/f2fs/inode.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include "f2fs.h"
#include "node.h"
void f2fs_set_inode_flags(struct inode *inode)
{
unsigned int flags = F2FS_I(inode)->i_flags;
inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE |
S_NOATIME | S_DIRSYNC);
if (flags & FS_SYNC_FL)
inode->i_flags |= S_SYNC;
if (flags & FS_APPEND_FL)
inode->i_flags |= S_APPEND;
if (flags & FS_IMMUTABLE_FL)
inode->i_flags |= S_IMMUTABLE;
if (flags & FS_NOATIME_FL)
inode->i_flags |= S_NOATIME;
if (flags & FS_DIRSYNC_FL)
inode->i_flags |= S_DIRSYNC;
}
static int do_read_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct page *node_page;
struct f2fs_node *rn;
struct f2fs_inode *ri;
/* Check if ino is within scope */
if (check_nid_range(sbi, inode->i_ino)) {
f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
(unsigned long) inode->i_ino);
return -EINVAL;
}
node_page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
rn = page_address(node_page);
ri = &(rn->i);
inode->i_mode = le16_to_cpu(ri->i_mode);
i_uid_write(inode, le32_to_cpu(ri->i_uid));
i_gid_write(inode, le32_to_cpu(ri->i_gid));
set_nlink(inode, le32_to_cpu(ri->i_links));
inode->i_size = le64_to_cpu(ri->i_size);
inode->i_blocks = le64_to_cpu(ri->i_blocks);
inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
inode->i_generation = le32_to_cpu(ri->i_generation);
if (ri->i_addr[0])
inode->i_rdev = old_decode_dev(le32_to_cpu(ri->i_addr[0]));
else
inode->i_rdev = new_decode_dev(le32_to_cpu(ri->i_addr[1]));
fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
fi->i_flags = le32_to_cpu(ri->i_flags);
fi->flags = 0;
fi->i_advise = ri->i_advise;
fi->i_pino = le32_to_cpu(ri->i_pino);
get_extent_info(&fi->ext, ri->i_ext);
f2fs_put_page(node_page, 1);
return 0;
}
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct inode *inode;
int ret;
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
goto make_now;
ret = do_read_inode(inode);
if (ret)
goto bad_inode;
if (!sbi->por_doing && inode->i_nlink == 0) {
ret = -ENOENT;
goto bad_inode;
}
make_now:
if (ino == F2FS_NODE_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_node_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
} else if (ino == F2FS_META_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_meta_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
} else if (S_ISREG(inode->i_mode)) {
inode->i_op = &f2fs_file_inode_operations;
inode->i_fop = &f2fs_file_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &f2fs_dir_inode_operations;
inode->i_fop = &f2fs_dir_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_HIGHUSER_MOVABLE |
__GFP_ZERO);
} else if (S_ISLNK(inode->i_mode)) {
inode->i_op = &f2fs_symlink_inode_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
inode->i_op = &f2fs_special_inode_operations;
init_special_inode(inode, inode->i_mode, inode->i_rdev);
} else {
ret = -EIO;
goto bad_inode;
}
unlock_new_inode(inode);
return inode;
bad_inode:
iget_failed(inode);
return ERR_PTR(ret);
}
void update_inode(struct inode *inode, struct page *node_page)
{
struct f2fs_node *rn;
struct f2fs_inode *ri;
wait_on_page_writeback(node_page);
rn = page_address(node_page);
ri = &(rn->i);
ri->i_mode = cpu_to_le16(inode->i_mode);
ri->i_advise = F2FS_I(inode)->i_advise;
ri->i_uid = cpu_to_le32(i_uid_read(inode));
ri->i_gid = cpu_to_le32(i_gid_read(inode));
ri->i_links = cpu_to_le32(inode->i_nlink);
ri->i_size = cpu_to_le64(i_size_read(inode));
ri->i_blocks = cpu_to_le64(inode->i_blocks);
set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
ri->i_generation = cpu_to_le32(inode->i_generation);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
if (old_valid_dev(inode->i_rdev)) {
ri->i_addr[0] =
cpu_to_le32(old_encode_dev(inode->i_rdev));
ri->i_addr[1] = 0;
} else {
ri->i_addr[0] = 0;
ri->i_addr[1] =
cpu_to_le32(new_encode_dev(inode->i_rdev));
ri->i_addr[2] = 0;
}
}
set_cold_node(inode, node_page);
set_page_dirty(node_page);
}
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct page *node_page;
bool need_lock = false;
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
return 0;
if (wbc)
f2fs_balance_fs(sbi);
node_page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
if (!PageDirty(node_page)) {
need_lock = true;
f2fs_put_page(node_page, 1);
mutex_lock(&sbi->write_inode);
node_page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page)) {
mutex_unlock(&sbi->write_inode);
return PTR_ERR(node_page);
}
}
update_inode(inode, node_page);
f2fs_put_page(node_page, 1);
if (need_lock)
mutex_unlock(&sbi->write_inode);
return 0;
}
/*
* Called at the last iput() if i_nlink is zero
*/
void f2fs_evict_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
truncate_inode_pages(&inode->i_data, 0);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
goto no_delete;
BUG_ON(atomic_read(&F2FS_I(inode)->dirty_dents));
remove_dirty_dir_inode(inode);
if (inode->i_nlink || is_bad_inode(inode))
goto no_delete;
sb_start_intwrite(inode->i_sb);
set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
i_size_write(inode, 0);
if (F2FS_HAS_BLOCKS(inode))
f2fs_truncate(inode);
remove_inode_page(inode);
sb_end_intwrite(inode->i_sb);
no_delete:
clear_inode(inode);
}