kernel-fxtec-pro1x/fs/nfs/nfs4filelayoutdev.c
Weston Andros Adamson 35124a0994 Cleanup XDR parsing for LAYOUTGET, GETDEVICEINFO
changes LAYOUTGET and GETDEVICEINFO XDR parsing to:
 - not use vmap, which doesn't work on incoherent archs
 - use xdr_stream parsing for all xdr

Signed-off-by: Weston Andros Adamson <dros@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2011-03-24 17:01:41 -04:00

719 lines
18 KiB
C

/*
* Device operations for the pnfs nfs4 file layout driver.
*
* Copyright (c) 2002
* The Regents of the University of Michigan
* All Rights Reserved
*
* Dean Hildebrand <dhildebz@umich.edu>
* Garth Goodson <Garth.Goodson@netapp.com>
*
* Permission is granted to use, copy, create derivative works, and
* redistribute this software and such derivative works for any purpose,
* so long as the name of the University of Michigan is not used in
* any advertising or publicity pertaining to the use or distribution
* of this software without specific, written prior authorization. If
* the above copyright notice or any other identification of the
* University of Michigan is included in any copy of any portion of
* this software, then the disclaimer below must also be included.
*
* This software is provided as is, without representation or warranty
* of any kind either express or implied, including without limitation
* the implied warranties of merchantability, fitness for a particular
* purpose, or noninfringement. The Regents of the University of
* Michigan shall not be liable for any damages, including special,
* indirect, incidental, or consequential damages, with respect to any
* claim arising out of or in connection with the use of the software,
* even if it has been or is hereafter advised of the possibility of
* such damages.
*/
#include <linux/nfs_fs.h>
#include <linux/vmalloc.h>
#include "internal.h"
#include "nfs4filelayout.h"
#define NFSDBG_FACILITY NFSDBG_PNFS_LD
/*
* Device ID RCU cache. A device ID is unique per client ID and layout type.
*/
#define NFS4_FL_DEVICE_ID_HASH_BITS 5
#define NFS4_FL_DEVICE_ID_HASH_SIZE (1 << NFS4_FL_DEVICE_ID_HASH_BITS)
#define NFS4_FL_DEVICE_ID_HASH_MASK (NFS4_FL_DEVICE_ID_HASH_SIZE - 1)
static inline u32
nfs4_fl_deviceid_hash(struct nfs4_deviceid *id)
{
unsigned char *cptr = (unsigned char *)id->data;
unsigned int nbytes = NFS4_DEVICEID4_SIZE;
u32 x = 0;
while (nbytes--) {
x *= 37;
x += *cptr++;
}
return x & NFS4_FL_DEVICE_ID_HASH_MASK;
}
static struct hlist_head filelayout_deviceid_cache[NFS4_FL_DEVICE_ID_HASH_SIZE];
static DEFINE_SPINLOCK(filelayout_deviceid_lock);
/*
* Data server cache
*
* Data servers can be mapped to different device ids.
* nfs4_pnfs_ds reference counting
* - set to 1 on allocation
* - incremented when a device id maps a data server already in the cache.
* - decremented when deviceid is removed from the cache.
*/
DEFINE_SPINLOCK(nfs4_ds_cache_lock);
static LIST_HEAD(nfs4_data_server_cache);
/* Debug routines */
void
print_ds(struct nfs4_pnfs_ds *ds)
{
if (ds == NULL) {
printk("%s NULL device\n", __func__);
return;
}
printk(" ip_addr %x port %hu\n"
" ref count %d\n"
" client %p\n"
" cl_exchange_flags %x\n",
ntohl(ds->ds_ip_addr), ntohs(ds->ds_port),
atomic_read(&ds->ds_count), ds->ds_clp,
ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0);
}
void
print_ds_list(struct nfs4_file_layout_dsaddr *dsaddr)
{
int i;
ifdebug(FACILITY) {
printk("%s dsaddr->ds_num %d\n", __func__,
dsaddr->ds_num);
for (i = 0; i < dsaddr->ds_num; i++)
print_ds(dsaddr->ds_list[i]);
}
}
void print_deviceid(struct nfs4_deviceid *id)
{
u32 *p = (u32 *)id;
dprintk("%s: device id= [%x%x%x%x]\n", __func__,
p[0], p[1], p[2], p[3]);
}
/* nfs4_ds_cache_lock is held */
static struct nfs4_pnfs_ds *
_data_server_lookup_locked(u32 ip_addr, u32 port)
{
struct nfs4_pnfs_ds *ds;
dprintk("_data_server_lookup: ip_addr=%x port=%hu\n",
ntohl(ip_addr), ntohs(port));
list_for_each_entry(ds, &nfs4_data_server_cache, ds_node) {
if (ds->ds_ip_addr == ip_addr &&
ds->ds_port == port) {
return ds;
}
}
return NULL;
}
/*
* Create an rpc connection to the nfs4_pnfs_ds data server
* Currently only support IPv4
*/
static int
nfs4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds)
{
struct nfs_client *clp;
struct sockaddr_in sin;
int status = 0;
dprintk("--> %s ip:port %x:%hu au_flavor %d\n", __func__,
ntohl(ds->ds_ip_addr), ntohs(ds->ds_port),
mds_srv->nfs_client->cl_rpcclient->cl_auth->au_flavor);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = ds->ds_ip_addr;
sin.sin_port = ds->ds_port;
clp = nfs4_set_ds_client(mds_srv->nfs_client, (struct sockaddr *)&sin,
sizeof(sin), IPPROTO_TCP);
if (IS_ERR(clp)) {
status = PTR_ERR(clp);
goto out;
}
if ((clp->cl_exchange_flags & EXCHGID4_FLAG_MASK_PNFS) != 0) {
if (!is_ds_client(clp)) {
status = -ENODEV;
goto out_put;
}
ds->ds_clp = clp;
dprintk("%s [existing] ip=%x, port=%hu\n", __func__,
ntohl(ds->ds_ip_addr), ntohs(ds->ds_port));
goto out;
}
/*
* Do not set NFS_CS_CHECK_LEASE_TIME instead set the DS lease to
* be equal to the MDS lease. Renewal is scheduled in create_session.
*/
spin_lock(&mds_srv->nfs_client->cl_lock);
clp->cl_lease_time = mds_srv->nfs_client->cl_lease_time;
spin_unlock(&mds_srv->nfs_client->cl_lock);
clp->cl_last_renewal = jiffies;
/* New nfs_client */
status = nfs4_init_ds_session(clp);
if (status)
goto out_put;
ds->ds_clp = clp;
dprintk("%s [new] ip=%x, port=%hu\n", __func__, ntohl(ds->ds_ip_addr),
ntohs(ds->ds_port));
out:
return status;
out_put:
nfs_put_client(clp);
goto out;
}
static void
destroy_ds(struct nfs4_pnfs_ds *ds)
{
dprintk("--> %s\n", __func__);
ifdebug(FACILITY)
print_ds(ds);
if (ds->ds_clp)
nfs_put_client(ds->ds_clp);
kfree(ds);
}
static void
nfs4_fl_free_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
{
struct nfs4_pnfs_ds *ds;
int i;
print_deviceid(&dsaddr->deviceid);
for (i = 0; i < dsaddr->ds_num; i++) {
ds = dsaddr->ds_list[i];
if (ds != NULL) {
if (atomic_dec_and_lock(&ds->ds_count,
&nfs4_ds_cache_lock)) {
list_del_init(&ds->ds_node);
spin_unlock(&nfs4_ds_cache_lock);
destroy_ds(ds);
}
}
}
kfree(dsaddr->stripe_indices);
kfree(dsaddr);
}
static struct nfs4_pnfs_ds *
nfs4_pnfs_ds_add(struct inode *inode, u32 ip_addr, u32 port)
{
struct nfs4_pnfs_ds *tmp_ds, *ds;
ds = kzalloc(sizeof(*tmp_ds), GFP_KERNEL);
if (!ds)
goto out;
spin_lock(&nfs4_ds_cache_lock);
tmp_ds = _data_server_lookup_locked(ip_addr, port);
if (tmp_ds == NULL) {
ds->ds_ip_addr = ip_addr;
ds->ds_port = port;
atomic_set(&ds->ds_count, 1);
INIT_LIST_HEAD(&ds->ds_node);
ds->ds_clp = NULL;
list_add(&ds->ds_node, &nfs4_data_server_cache);
dprintk("%s add new data server ip 0x%x\n", __func__,
ds->ds_ip_addr);
} else {
kfree(ds);
atomic_inc(&tmp_ds->ds_count);
dprintk("%s data server found ip 0x%x, inc'ed ds_count to %d\n",
__func__, tmp_ds->ds_ip_addr,
atomic_read(&tmp_ds->ds_count));
ds = tmp_ds;
}
spin_unlock(&nfs4_ds_cache_lock);
out:
return ds;
}
/*
* Currently only support ipv4, and one multi-path address.
*/
static struct nfs4_pnfs_ds *
decode_and_add_ds(struct xdr_stream *streamp, struct inode *inode)
{
struct nfs4_pnfs_ds *ds = NULL;
char *buf;
const char *ipend, *pstr;
u32 ip_addr, port;
int nlen, rlen, i;
int tmp[2];
__be32 *p;
/* r_netid */
p = xdr_inline_decode(streamp, 4);
if (unlikely(!p))
goto out_err;
nlen = be32_to_cpup(p++);
p = xdr_inline_decode(streamp, nlen);
if (unlikely(!p))
goto out_err;
/* Check that netid is "tcp" */
if (nlen != 3 || memcmp((char *)p, "tcp", 3)) {
dprintk("%s: ERROR: non ipv4 TCP r_netid\n", __func__);
goto out_err;
}
/* r_addr */
p = xdr_inline_decode(streamp, 4);
if (unlikely(!p))
goto out_err;
rlen = be32_to_cpup(p);
p = xdr_inline_decode(streamp, rlen);
if (unlikely(!p))
goto out_err;
/* ipv6 length plus port is legal */
if (rlen > INET6_ADDRSTRLEN + 8) {
dprintk("%s: Invalid address, length %d\n", __func__,
rlen);
goto out_err;
}
buf = kmalloc(rlen + 1, GFP_KERNEL);
if (!buf) {
dprintk("%s: Not enough memory\n", __func__);
goto out_err;
}
buf[rlen] = '\0';
memcpy(buf, p, rlen);
/* replace the port dots with dashes for the in4_pton() delimiter*/
for (i = 0; i < 2; i++) {
char *res = strrchr(buf, '.');
if (!res) {
dprintk("%s: Failed finding expected dots in port\n",
__func__);
goto out_free;
}
*res = '-';
}
/* Currently only support ipv4 address */
if (in4_pton(buf, rlen, (u8 *)&ip_addr, '-', &ipend) == 0) {
dprintk("%s: Only ipv4 addresses supported\n", __func__);
goto out_free;
}
/* port */
pstr = ipend;
sscanf(pstr, "-%d-%d", &tmp[0], &tmp[1]);
port = htons((tmp[0] << 8) | (tmp[1]));
ds = nfs4_pnfs_ds_add(inode, ip_addr, port);
dprintk("%s: Decoded address and port %s\n", __func__, buf);
out_free:
kfree(buf);
out_err:
return ds;
}
/* Decode opaque device data and return the result */
static struct nfs4_file_layout_dsaddr*
decode_device(struct inode *ino, struct pnfs_device *pdev)
{
int i;
u32 cnt, num;
u8 *indexp;
__be32 *p;
u8 *stripe_indices;
u8 max_stripe_index;
struct nfs4_file_layout_dsaddr *dsaddr = NULL;
struct xdr_stream stream;
struct xdr_buf buf = {
.pages = pdev->pages,
.page_len = pdev->pglen,
.buflen = pdev->pglen,
.len = pdev->pglen,
};
struct page *scratch;
/* set up xdr stream */
scratch = alloc_page(GFP_KERNEL);
if (!scratch)
goto out_err;
xdr_init_decode(&stream, &buf, NULL);
xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
/* Get the stripe count (number of stripe index) */
p = xdr_inline_decode(&stream, 4);
if (unlikely(!p))
goto out_err_free_scratch;
cnt = be32_to_cpup(p);
dprintk("%s stripe count %d\n", __func__, cnt);
if (cnt > NFS4_PNFS_MAX_STRIPE_CNT) {
printk(KERN_WARNING "%s: stripe count %d greater than "
"supported maximum %d\n", __func__,
cnt, NFS4_PNFS_MAX_STRIPE_CNT);
goto out_err_free_scratch;
}
/* read stripe indices */
stripe_indices = kcalloc(cnt, sizeof(u8), GFP_KERNEL);
if (!stripe_indices)
goto out_err_free_scratch;
p = xdr_inline_decode(&stream, cnt << 2);
if (unlikely(!p))
goto out_err_free_stripe_indices;
indexp = &stripe_indices[0];
max_stripe_index = 0;
for (i = 0; i < cnt; i++) {
*indexp = be32_to_cpup(p++);
max_stripe_index = max(max_stripe_index, *indexp);
indexp++;
}
/* Check the multipath list count */
p = xdr_inline_decode(&stream, 4);
if (unlikely(!p))
goto out_err_free_stripe_indices;
num = be32_to_cpup(p);
dprintk("%s ds_num %u\n", __func__, num);
if (num > NFS4_PNFS_MAX_MULTI_CNT) {
printk(KERN_WARNING "%s: multipath count %d greater than "
"supported maximum %d\n", __func__,
num, NFS4_PNFS_MAX_MULTI_CNT);
goto out_err_free_stripe_indices;
}
/* validate stripe indices are all < num */
if (max_stripe_index >= num) {
printk(KERN_WARNING "%s: stripe index %u >= num ds %u\n",
__func__, max_stripe_index, num);
goto out_err_free_stripe_indices;
}
dsaddr = kzalloc(sizeof(*dsaddr) +
(sizeof(struct nfs4_pnfs_ds *) * (num - 1)),
GFP_KERNEL);
if (!dsaddr)
goto out_err_free_stripe_indices;
dsaddr->stripe_count = cnt;
dsaddr->stripe_indices = stripe_indices;
stripe_indices = NULL;
dsaddr->ds_num = num;
memcpy(&dsaddr->deviceid, &pdev->dev_id, sizeof(pdev->dev_id));
for (i = 0; i < dsaddr->ds_num; i++) {
int j;
u32 mp_count;
p = xdr_inline_decode(&stream, 4);
if (unlikely(!p))
goto out_err_free_deviceid;
mp_count = be32_to_cpup(p); /* multipath count */
if (mp_count > 1) {
printk(KERN_WARNING
"%s: Multipath count %d not supported, "
"skipping all greater than 1\n", __func__,
mp_count);
}
for (j = 0; j < mp_count; j++) {
if (j == 0) {
dsaddr->ds_list[i] = decode_and_add_ds(&stream,
ino);
if (dsaddr->ds_list[i] == NULL)
goto out_err_free_deviceid;
} else {
u32 len;
/* skip extra multipath */
/* read len, skip */
p = xdr_inline_decode(&stream, 4);
if (unlikely(!p))
goto out_err_free_deviceid;
len = be32_to_cpup(p);
p = xdr_inline_decode(&stream, len);
if (unlikely(!p))
goto out_err_free_deviceid;
/* read len, skip */
p = xdr_inline_decode(&stream, 4);
if (unlikely(!p))
goto out_err_free_deviceid;
len = be32_to_cpup(p);
p = xdr_inline_decode(&stream, len);
if (unlikely(!p))
goto out_err_free_deviceid;
}
}
}
__free_page(scratch);
return dsaddr;
out_err_free_deviceid:
nfs4_fl_free_deviceid(dsaddr);
/* stripe_indicies was part of dsaddr */
goto out_err_free_scratch;
out_err_free_stripe_indices:
kfree(stripe_indices);
out_err_free_scratch:
__free_page(scratch);
out_err:
dprintk("%s ERROR: returning NULL\n", __func__);
return NULL;
}
/*
* Decode the opaque device specified in 'dev' and add it to the cache of
* available devices.
*/
static struct nfs4_file_layout_dsaddr *
decode_and_add_device(struct inode *inode, struct pnfs_device *dev)
{
struct nfs4_file_layout_dsaddr *d, *new;
long hash;
new = decode_device(inode, dev);
if (!new) {
printk(KERN_WARNING "%s: Could not decode or add device\n",
__func__);
return NULL;
}
spin_lock(&filelayout_deviceid_lock);
d = nfs4_fl_find_get_deviceid(&new->deviceid);
if (d) {
spin_unlock(&filelayout_deviceid_lock);
nfs4_fl_free_deviceid(new);
return d;
}
INIT_HLIST_NODE(&new->node);
atomic_set(&new->ref, 1);
hash = nfs4_fl_deviceid_hash(&new->deviceid);
hlist_add_head_rcu(&new->node, &filelayout_deviceid_cache[hash]);
spin_unlock(&filelayout_deviceid_lock);
return new;
}
/*
* Retrieve the information for dev_id, add it to the list
* of available devices, and return it.
*/
struct nfs4_file_layout_dsaddr *
get_device_info(struct inode *inode, struct nfs4_deviceid *dev_id)
{
struct pnfs_device *pdev = NULL;
u32 max_resp_sz;
int max_pages;
struct page **pages = NULL;
struct nfs4_file_layout_dsaddr *dsaddr = NULL;
int rc, i;
struct nfs_server *server = NFS_SERVER(inode);
/*
* Use the session max response size as the basis for setting
* GETDEVICEINFO's maxcount
*/
max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz;
max_pages = max_resp_sz >> PAGE_SHIFT;
dprintk("%s inode %p max_resp_sz %u max_pages %d\n",
__func__, inode, max_resp_sz, max_pages);
pdev = kzalloc(sizeof(struct pnfs_device), GFP_KERNEL);
if (pdev == NULL)
return NULL;
pages = kzalloc(max_pages * sizeof(struct page *), GFP_KERNEL);
if (pages == NULL) {
kfree(pdev);
return NULL;
}
for (i = 0; i < max_pages; i++) {
pages[i] = alloc_page(GFP_KERNEL);
if (!pages[i])
goto out_free;
}
memcpy(&pdev->dev_id, dev_id, sizeof(*dev_id));
pdev->layout_type = LAYOUT_NFSV4_1_FILES;
pdev->pages = pages;
pdev->pgbase = 0;
pdev->pglen = PAGE_SIZE * max_pages;
pdev->mincount = 0;
rc = nfs4_proc_getdeviceinfo(server, pdev);
dprintk("%s getdevice info returns %d\n", __func__, rc);
if (rc)
goto out_free;
/*
* Found new device, need to decode it and then add it to the
* list of known devices for this mountpoint.
*/
dsaddr = decode_and_add_device(inode, pdev);
out_free:
for (i = 0; i < max_pages; i++)
__free_page(pages[i]);
kfree(pages);
kfree(pdev);
dprintk("<-- %s dsaddr %p\n", __func__, dsaddr);
return dsaddr;
}
void
nfs4_fl_put_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
{
if (atomic_dec_and_lock(&dsaddr->ref, &filelayout_deviceid_lock)) {
hlist_del_rcu(&dsaddr->node);
spin_unlock(&filelayout_deviceid_lock);
synchronize_rcu();
nfs4_fl_free_deviceid(dsaddr);
}
}
struct nfs4_file_layout_dsaddr *
nfs4_fl_find_get_deviceid(struct nfs4_deviceid *id)
{
struct nfs4_file_layout_dsaddr *d;
struct hlist_node *n;
long hash = nfs4_fl_deviceid_hash(id);
rcu_read_lock();
hlist_for_each_entry_rcu(d, n, &filelayout_deviceid_cache[hash], node) {
if (!memcmp(&d->deviceid, id, sizeof(*id))) {
if (!atomic_inc_not_zero(&d->ref))
goto fail;
rcu_read_unlock();
return d;
}
}
fail:
rcu_read_unlock();
return NULL;
}
/*
* Want res = (offset - layout->pattern_offset)/ layout->stripe_unit
* Then: ((res + fsi) % dsaddr->stripe_count)
*/
u32
nfs4_fl_calc_j_index(struct pnfs_layout_segment *lseg, loff_t offset)
{
struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
u64 tmp;
tmp = offset - flseg->pattern_offset;
do_div(tmp, flseg->stripe_unit);
tmp += flseg->first_stripe_index;
return do_div(tmp, flseg->dsaddr->stripe_count);
}
u32
nfs4_fl_calc_ds_index(struct pnfs_layout_segment *lseg, u32 j)
{
return FILELAYOUT_LSEG(lseg)->dsaddr->stripe_indices[j];
}
struct nfs_fh *
nfs4_fl_select_ds_fh(struct pnfs_layout_segment *lseg, u32 j)
{
struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
u32 i;
if (flseg->stripe_type == STRIPE_SPARSE) {
if (flseg->num_fh == 1)
i = 0;
else if (flseg->num_fh == 0)
/* Use the MDS OPEN fh set in nfs_read_rpcsetup */
return NULL;
else
i = nfs4_fl_calc_ds_index(lseg, j);
} else
i = j;
return flseg->fh_array[i];
}
static void
filelayout_mark_devid_negative(struct nfs4_file_layout_dsaddr *dsaddr,
int err, u32 ds_addr)
{
u32 *p = (u32 *)&dsaddr->deviceid;
printk(KERN_ERR "NFS: data server %x connection error %d."
" Deviceid [%x%x%x%x] marked out of use.\n",
ds_addr, err, p[0], p[1], p[2], p[3]);
spin_lock(&filelayout_deviceid_lock);
dsaddr->flags |= NFS4_DEVICE_ID_NEG_ENTRY;
spin_unlock(&filelayout_deviceid_lock);
}
struct nfs4_pnfs_ds *
nfs4_fl_prepare_ds(struct pnfs_layout_segment *lseg, u32 ds_idx)
{
struct nfs4_file_layout_dsaddr *dsaddr = FILELAYOUT_LSEG(lseg)->dsaddr;
struct nfs4_pnfs_ds *ds = dsaddr->ds_list[ds_idx];
if (ds == NULL) {
printk(KERN_ERR "%s: No data server for offset index %d\n",
__func__, ds_idx);
return NULL;
}
if (!ds->ds_clp) {
struct nfs_server *s = NFS_SERVER(lseg->pls_layout->plh_inode);
int err;
if (dsaddr->flags & NFS4_DEVICE_ID_NEG_ENTRY) {
/* Already tried to connect, don't try again */
dprintk("%s Deviceid marked out of use\n", __func__);
return NULL;
}
err = nfs4_ds_connect(s, ds);
if (err) {
filelayout_mark_devid_negative(dsaddr, err,
ntohl(ds->ds_ip_addr));
return NULL;
}
}
return ds;
}