6396bb2215
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
1946 lines
54 KiB
C
1946 lines
54 KiB
C
/*
|
|
* Copyright 2012 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include "radeon.h"
|
|
#include "radeon_asic.h"
|
|
#include "sumod.h"
|
|
#include "r600_dpm.h"
|
|
#include "cypress_dpm.h"
|
|
#include "sumo_dpm.h"
|
|
#include <linux/seq_file.h>
|
|
|
|
#define SUMO_MAX_DEEPSLEEP_DIVIDER_ID 5
|
|
#define SUMO_MINIMUM_ENGINE_CLOCK 800
|
|
#define BOOST_DPM_LEVEL 7
|
|
|
|
static const u32 sumo_utc[SUMO_PM_NUMBER_OF_TC] =
|
|
{
|
|
SUMO_UTC_DFLT_00,
|
|
SUMO_UTC_DFLT_01,
|
|
SUMO_UTC_DFLT_02,
|
|
SUMO_UTC_DFLT_03,
|
|
SUMO_UTC_DFLT_04,
|
|
SUMO_UTC_DFLT_05,
|
|
SUMO_UTC_DFLT_06,
|
|
SUMO_UTC_DFLT_07,
|
|
SUMO_UTC_DFLT_08,
|
|
SUMO_UTC_DFLT_09,
|
|
SUMO_UTC_DFLT_10,
|
|
SUMO_UTC_DFLT_11,
|
|
SUMO_UTC_DFLT_12,
|
|
SUMO_UTC_DFLT_13,
|
|
SUMO_UTC_DFLT_14,
|
|
};
|
|
|
|
static const u32 sumo_dtc[SUMO_PM_NUMBER_OF_TC] =
|
|
{
|
|
SUMO_DTC_DFLT_00,
|
|
SUMO_DTC_DFLT_01,
|
|
SUMO_DTC_DFLT_02,
|
|
SUMO_DTC_DFLT_03,
|
|
SUMO_DTC_DFLT_04,
|
|
SUMO_DTC_DFLT_05,
|
|
SUMO_DTC_DFLT_06,
|
|
SUMO_DTC_DFLT_07,
|
|
SUMO_DTC_DFLT_08,
|
|
SUMO_DTC_DFLT_09,
|
|
SUMO_DTC_DFLT_10,
|
|
SUMO_DTC_DFLT_11,
|
|
SUMO_DTC_DFLT_12,
|
|
SUMO_DTC_DFLT_13,
|
|
SUMO_DTC_DFLT_14,
|
|
};
|
|
|
|
static struct sumo_ps *sumo_get_ps(struct radeon_ps *rps)
|
|
{
|
|
struct sumo_ps *ps = rps->ps_priv;
|
|
|
|
return ps;
|
|
}
|
|
|
|
struct sumo_power_info *sumo_get_pi(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = rdev->pm.dpm.priv;
|
|
|
|
return pi;
|
|
}
|
|
|
|
static void sumo_gfx_clockgating_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN);
|
|
else {
|
|
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN);
|
|
WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON);
|
|
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON);
|
|
RREG32(GB_ADDR_CONFIG);
|
|
}
|
|
}
|
|
|
|
#define CGCG_CGTT_LOCAL0_MASK 0xE5BFFFFF
|
|
#define CGCG_CGTT_LOCAL1_MASK 0xEFFF07FF
|
|
|
|
static void sumo_mg_clockgating_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
u32 local0;
|
|
u32 local1;
|
|
|
|
local0 = RREG32(CG_CGTT_LOCAL_0);
|
|
local1 = RREG32(CG_CGTT_LOCAL_1);
|
|
|
|
if (enable) {
|
|
WREG32(CG_CGTT_LOCAL_0, (0 & CGCG_CGTT_LOCAL0_MASK) | (local0 & ~CGCG_CGTT_LOCAL0_MASK) );
|
|
WREG32(CG_CGTT_LOCAL_1, (0 & CGCG_CGTT_LOCAL1_MASK) | (local1 & ~CGCG_CGTT_LOCAL1_MASK) );
|
|
} else {
|
|
WREG32(CG_CGTT_LOCAL_0, (0xFFFFFFFF & CGCG_CGTT_LOCAL0_MASK) | (local0 & ~CGCG_CGTT_LOCAL0_MASK) );
|
|
WREG32(CG_CGTT_LOCAL_1, (0xFFFFCFFF & CGCG_CGTT_LOCAL1_MASK) | (local1 & ~CGCG_CGTT_LOCAL1_MASK) );
|
|
}
|
|
}
|
|
|
|
static void sumo_program_git(struct radeon_device *rdev)
|
|
{
|
|
u32 p, u;
|
|
u32 xclk = radeon_get_xclk(rdev);
|
|
|
|
r600_calculate_u_and_p(SUMO_GICST_DFLT,
|
|
xclk, 16, &p, &u);
|
|
|
|
WREG32_P(CG_GIT, CG_GICST(p), ~CG_GICST_MASK);
|
|
}
|
|
|
|
static void sumo_program_grsd(struct radeon_device *rdev)
|
|
{
|
|
u32 p, u;
|
|
u32 xclk = radeon_get_xclk(rdev);
|
|
u32 grs = 256 * 25 / 100;
|
|
|
|
r600_calculate_u_and_p(1, xclk, 14, &p, &u);
|
|
|
|
WREG32(CG_GCOOR, PHC(grs) | SDC(p) | SU(u));
|
|
}
|
|
|
|
void sumo_gfx_clockgating_initialize(struct radeon_device *rdev)
|
|
{
|
|
sumo_program_git(rdev);
|
|
sumo_program_grsd(rdev);
|
|
}
|
|
|
|
static void sumo_gfx_powergating_initialize(struct radeon_device *rdev)
|
|
{
|
|
u32 rcu_pwr_gating_cntl;
|
|
u32 p, u;
|
|
u32 p_c, p_p, d_p;
|
|
u32 r_t, i_t;
|
|
u32 xclk = radeon_get_xclk(rdev);
|
|
|
|
if (rdev->family == CHIP_PALM) {
|
|
p_c = 4;
|
|
d_p = 10;
|
|
r_t = 10;
|
|
i_t = 4;
|
|
p_p = 50 + 1000/200 + 6 * 32;
|
|
} else {
|
|
p_c = 16;
|
|
d_p = 50;
|
|
r_t = 50;
|
|
i_t = 50;
|
|
p_p = 113;
|
|
}
|
|
|
|
WREG32(CG_SCRATCH2, 0x01B60A17);
|
|
|
|
r600_calculate_u_and_p(SUMO_GFXPOWERGATINGT_DFLT,
|
|
xclk, 16, &p, &u);
|
|
|
|
WREG32_P(CG_PWR_GATING_CNTL, PGP(p) | PGU(u),
|
|
~(PGP_MASK | PGU_MASK));
|
|
|
|
r600_calculate_u_and_p(SUMO_VOLTAGEDROPT_DFLT,
|
|
xclk, 16, &p, &u);
|
|
|
|
WREG32_P(CG_CG_VOLTAGE_CNTL, PGP(p) | PGU(u),
|
|
~(PGP_MASK | PGU_MASK));
|
|
|
|
if (rdev->family == CHIP_PALM) {
|
|
WREG32_RCU(RCU_PWR_GATING_SEQ0, 0x10103210);
|
|
WREG32_RCU(RCU_PWR_GATING_SEQ1, 0x10101010);
|
|
} else {
|
|
WREG32_RCU(RCU_PWR_GATING_SEQ0, 0x76543210);
|
|
WREG32_RCU(RCU_PWR_GATING_SEQ1, 0xFEDCBA98);
|
|
}
|
|
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL);
|
|
rcu_pwr_gating_cntl &=
|
|
~(RSVD_MASK | PCV_MASK | PGS_MASK);
|
|
rcu_pwr_gating_cntl |= PCV(p_c) | PGS(1) | PWR_GATING_EN;
|
|
if (rdev->family == CHIP_PALM) {
|
|
rcu_pwr_gating_cntl &= ~PCP_MASK;
|
|
rcu_pwr_gating_cntl |= PCP(0x77);
|
|
}
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL, rcu_pwr_gating_cntl);
|
|
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_2);
|
|
rcu_pwr_gating_cntl &= ~(MPPU_MASK | MPPD_MASK);
|
|
rcu_pwr_gating_cntl |= MPPU(p_p) | MPPD(50);
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL_2, rcu_pwr_gating_cntl);
|
|
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_3);
|
|
rcu_pwr_gating_cntl &= ~(DPPU_MASK | DPPD_MASK);
|
|
rcu_pwr_gating_cntl |= DPPU(d_p) | DPPD(50);
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL_3, rcu_pwr_gating_cntl);
|
|
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_4);
|
|
rcu_pwr_gating_cntl &= ~(RT_MASK | IT_MASK);
|
|
rcu_pwr_gating_cntl |= RT(r_t) | IT(i_t);
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL_4, rcu_pwr_gating_cntl);
|
|
|
|
if (rdev->family == CHIP_PALM)
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL_5, 0xA02);
|
|
|
|
sumo_smu_pg_init(rdev);
|
|
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL);
|
|
rcu_pwr_gating_cntl &=
|
|
~(RSVD_MASK | PCV_MASK | PGS_MASK);
|
|
rcu_pwr_gating_cntl |= PCV(p_c) | PGS(4) | PWR_GATING_EN;
|
|
if (rdev->family == CHIP_PALM) {
|
|
rcu_pwr_gating_cntl &= ~PCP_MASK;
|
|
rcu_pwr_gating_cntl |= PCP(0x77);
|
|
}
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL, rcu_pwr_gating_cntl);
|
|
|
|
if (rdev->family == CHIP_PALM) {
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_2);
|
|
rcu_pwr_gating_cntl &= ~(MPPU_MASK | MPPD_MASK);
|
|
rcu_pwr_gating_cntl |= MPPU(113) | MPPD(50);
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL_2, rcu_pwr_gating_cntl);
|
|
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_3);
|
|
rcu_pwr_gating_cntl &= ~(DPPU_MASK | DPPD_MASK);
|
|
rcu_pwr_gating_cntl |= DPPU(16) | DPPD(50);
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL_3, rcu_pwr_gating_cntl);
|
|
}
|
|
|
|
sumo_smu_pg_init(rdev);
|
|
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL);
|
|
rcu_pwr_gating_cntl &=
|
|
~(RSVD_MASK | PCV_MASK | PGS_MASK);
|
|
rcu_pwr_gating_cntl |= PGS(5) | PWR_GATING_EN;
|
|
|
|
if (rdev->family == CHIP_PALM) {
|
|
rcu_pwr_gating_cntl |= PCV(4);
|
|
rcu_pwr_gating_cntl &= ~PCP_MASK;
|
|
rcu_pwr_gating_cntl |= PCP(0x77);
|
|
} else
|
|
rcu_pwr_gating_cntl |= PCV(11);
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL, rcu_pwr_gating_cntl);
|
|
|
|
if (rdev->family == CHIP_PALM) {
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_2);
|
|
rcu_pwr_gating_cntl &= ~(MPPU_MASK | MPPD_MASK);
|
|
rcu_pwr_gating_cntl |= MPPU(113) | MPPD(50);
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL_2, rcu_pwr_gating_cntl);
|
|
|
|
rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_3);
|
|
rcu_pwr_gating_cntl &= ~(DPPU_MASK | DPPD_MASK);
|
|
rcu_pwr_gating_cntl |= DPPU(22) | DPPD(50);
|
|
WREG32_RCU(RCU_PWR_GATING_CNTL_3, rcu_pwr_gating_cntl);
|
|
}
|
|
|
|
sumo_smu_pg_init(rdev);
|
|
}
|
|
|
|
static void sumo_gfx_powergating_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(CG_PWR_GATING_CNTL, DYN_PWR_DOWN_EN, ~DYN_PWR_DOWN_EN);
|
|
else {
|
|
WREG32_P(CG_PWR_GATING_CNTL, 0, ~DYN_PWR_DOWN_EN);
|
|
RREG32(GB_ADDR_CONFIG);
|
|
}
|
|
}
|
|
|
|
static int sumo_enable_clock_power_gating(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
if (pi->enable_gfx_clock_gating)
|
|
sumo_gfx_clockgating_initialize(rdev);
|
|
if (pi->enable_gfx_power_gating)
|
|
sumo_gfx_powergating_initialize(rdev);
|
|
if (pi->enable_mg_clock_gating)
|
|
sumo_mg_clockgating_enable(rdev, true);
|
|
if (pi->enable_gfx_clock_gating)
|
|
sumo_gfx_clockgating_enable(rdev, true);
|
|
if (pi->enable_gfx_power_gating)
|
|
sumo_gfx_powergating_enable(rdev, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sumo_disable_clock_power_gating(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
if (pi->enable_gfx_clock_gating)
|
|
sumo_gfx_clockgating_enable(rdev, false);
|
|
if (pi->enable_gfx_power_gating)
|
|
sumo_gfx_powergating_enable(rdev, false);
|
|
if (pi->enable_mg_clock_gating)
|
|
sumo_mg_clockgating_enable(rdev, false);
|
|
}
|
|
|
|
static void sumo_calculate_bsp(struct radeon_device *rdev,
|
|
u32 high_clk)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
u32 xclk = radeon_get_xclk(rdev);
|
|
|
|
pi->pasi = 65535 * 100 / high_clk;
|
|
pi->asi = 65535 * 100 / high_clk;
|
|
|
|
r600_calculate_u_and_p(pi->asi,
|
|
xclk, 16, &pi->bsp, &pi->bsu);
|
|
|
|
r600_calculate_u_and_p(pi->pasi,
|
|
xclk, 16, &pi->pbsp, &pi->pbsu);
|
|
|
|
pi->dsp = BSP(pi->bsp) | BSU(pi->bsu);
|
|
pi->psp = BSP(pi->pbsp) | BSU(pi->pbsu);
|
|
}
|
|
|
|
static void sumo_init_bsp(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
WREG32(CG_BSP_0, pi->psp);
|
|
}
|
|
|
|
|
|
static void sumo_program_bsp(struct radeon_device *rdev,
|
|
struct radeon_ps *rps)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct sumo_ps *ps = sumo_get_ps(rps);
|
|
u32 i;
|
|
u32 highest_engine_clock = ps->levels[ps->num_levels - 1].sclk;
|
|
|
|
if (ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
|
|
highest_engine_clock = pi->boost_pl.sclk;
|
|
|
|
sumo_calculate_bsp(rdev, highest_engine_clock);
|
|
|
|
for (i = 0; i < ps->num_levels - 1; i++)
|
|
WREG32(CG_BSP_0 + (i * 4), pi->dsp);
|
|
|
|
WREG32(CG_BSP_0 + (i * 4), pi->psp);
|
|
|
|
if (ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
|
|
WREG32(CG_BSP_0 + (BOOST_DPM_LEVEL * 4), pi->psp);
|
|
}
|
|
|
|
static void sumo_write_at(struct radeon_device *rdev,
|
|
u32 index, u32 value)
|
|
{
|
|
if (index == 0)
|
|
WREG32(CG_AT_0, value);
|
|
else if (index == 1)
|
|
WREG32(CG_AT_1, value);
|
|
else if (index == 2)
|
|
WREG32(CG_AT_2, value);
|
|
else if (index == 3)
|
|
WREG32(CG_AT_3, value);
|
|
else if (index == 4)
|
|
WREG32(CG_AT_4, value);
|
|
else if (index == 5)
|
|
WREG32(CG_AT_5, value);
|
|
else if (index == 6)
|
|
WREG32(CG_AT_6, value);
|
|
else if (index == 7)
|
|
WREG32(CG_AT_7, value);
|
|
}
|
|
|
|
static void sumo_program_at(struct radeon_device *rdev,
|
|
struct radeon_ps *rps)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct sumo_ps *ps = sumo_get_ps(rps);
|
|
u32 asi;
|
|
u32 i;
|
|
u32 m_a;
|
|
u32 a_t;
|
|
u32 r[SUMO_MAX_HARDWARE_POWERLEVELS];
|
|
u32 l[SUMO_MAX_HARDWARE_POWERLEVELS];
|
|
|
|
r[0] = SUMO_R_DFLT0;
|
|
r[1] = SUMO_R_DFLT1;
|
|
r[2] = SUMO_R_DFLT2;
|
|
r[3] = SUMO_R_DFLT3;
|
|
r[4] = SUMO_R_DFLT4;
|
|
|
|
l[0] = SUMO_L_DFLT0;
|
|
l[1] = SUMO_L_DFLT1;
|
|
l[2] = SUMO_L_DFLT2;
|
|
l[3] = SUMO_L_DFLT3;
|
|
l[4] = SUMO_L_DFLT4;
|
|
|
|
for (i = 0; i < ps->num_levels; i++) {
|
|
asi = (i == ps->num_levels - 1) ? pi->pasi : pi->asi;
|
|
|
|
m_a = asi * ps->levels[i].sclk / 100;
|
|
|
|
a_t = CG_R(m_a * r[i] / 100) | CG_L(m_a * l[i] / 100);
|
|
|
|
sumo_write_at(rdev, i, a_t);
|
|
}
|
|
|
|
if (ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) {
|
|
asi = pi->pasi;
|
|
|
|
m_a = asi * pi->boost_pl.sclk / 100;
|
|
|
|
a_t = CG_R(m_a * r[ps->num_levels - 1] / 100) |
|
|
CG_L(m_a * l[ps->num_levels - 1] / 100);
|
|
|
|
sumo_write_at(rdev, BOOST_DPM_LEVEL, a_t);
|
|
}
|
|
}
|
|
|
|
static void sumo_program_tp(struct radeon_device *rdev)
|
|
{
|
|
int i;
|
|
enum r600_td td = R600_TD_DFLT;
|
|
|
|
for (i = 0; i < SUMO_PM_NUMBER_OF_TC; i++) {
|
|
WREG32_P(CG_FFCT_0 + (i * 4), UTC_0(sumo_utc[i]), ~UTC_0_MASK);
|
|
WREG32_P(CG_FFCT_0 + (i * 4), DTC_0(sumo_dtc[i]), ~DTC_0_MASK);
|
|
}
|
|
|
|
if (td == R600_TD_AUTO)
|
|
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL);
|
|
else
|
|
WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL);
|
|
|
|
if (td == R600_TD_UP)
|
|
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE);
|
|
|
|
if (td == R600_TD_DOWN)
|
|
WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE);
|
|
}
|
|
|
|
void sumo_program_vc(struct radeon_device *rdev, u32 vrc)
|
|
{
|
|
WREG32(CG_FTV, vrc);
|
|
}
|
|
|
|
void sumo_clear_vc(struct radeon_device *rdev)
|
|
{
|
|
WREG32(CG_FTV, 0);
|
|
}
|
|
|
|
void sumo_program_sstp(struct radeon_device *rdev)
|
|
{
|
|
u32 p, u;
|
|
u32 xclk = radeon_get_xclk(rdev);
|
|
|
|
r600_calculate_u_and_p(SUMO_SST_DFLT,
|
|
xclk, 16, &p, &u);
|
|
|
|
WREG32(CG_SSP, SSTU(u) | SST(p));
|
|
}
|
|
|
|
static void sumo_set_divider_value(struct radeon_device *rdev,
|
|
u32 index, u32 divider)
|
|
{
|
|
u32 reg_index = index / 4;
|
|
u32 field_index = index % 4;
|
|
|
|
if (field_index == 0)
|
|
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
|
|
SCLK_FSTATE_0_DIV(divider), ~SCLK_FSTATE_0_DIV_MASK);
|
|
else if (field_index == 1)
|
|
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
|
|
SCLK_FSTATE_1_DIV(divider), ~SCLK_FSTATE_1_DIV_MASK);
|
|
else if (field_index == 2)
|
|
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
|
|
SCLK_FSTATE_2_DIV(divider), ~SCLK_FSTATE_2_DIV_MASK);
|
|
else if (field_index == 3)
|
|
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
|
|
SCLK_FSTATE_3_DIV(divider), ~SCLK_FSTATE_3_DIV_MASK);
|
|
}
|
|
|
|
static void sumo_set_ds_dividers(struct radeon_device *rdev,
|
|
u32 index, u32 divider)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
if (pi->enable_sclk_ds) {
|
|
u32 dpm_ctrl = RREG32(CG_SCLK_DPM_CTRL_6);
|
|
|
|
dpm_ctrl &= ~(0x7 << (index * 3));
|
|
dpm_ctrl |= (divider << (index * 3));
|
|
WREG32(CG_SCLK_DPM_CTRL_6, dpm_ctrl);
|
|
}
|
|
}
|
|
|
|
static void sumo_set_ss_dividers(struct radeon_device *rdev,
|
|
u32 index, u32 divider)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
if (pi->enable_sclk_ds) {
|
|
u32 dpm_ctrl = RREG32(CG_SCLK_DPM_CTRL_11);
|
|
|
|
dpm_ctrl &= ~(0x7 << (index * 3));
|
|
dpm_ctrl |= (divider << (index * 3));
|
|
WREG32(CG_SCLK_DPM_CTRL_11, dpm_ctrl);
|
|
}
|
|
}
|
|
|
|
static void sumo_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
|
|
{
|
|
u32 voltage_cntl = RREG32(CG_DPM_VOLTAGE_CNTL);
|
|
|
|
voltage_cntl &= ~(DPM_STATE0_LEVEL_MASK << (index * 2));
|
|
voltage_cntl |= (vid << (DPM_STATE0_LEVEL_SHIFT + index * 2));
|
|
WREG32(CG_DPM_VOLTAGE_CNTL, voltage_cntl);
|
|
}
|
|
|
|
static void sumo_set_allos_gnb_slow(struct radeon_device *rdev, u32 index, u32 gnb_slow)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
u32 temp = gnb_slow;
|
|
u32 cg_sclk_dpm_ctrl_3;
|
|
|
|
if (pi->driver_nbps_policy_disable)
|
|
temp = 1;
|
|
|
|
cg_sclk_dpm_ctrl_3 = RREG32(CG_SCLK_DPM_CTRL_3);
|
|
cg_sclk_dpm_ctrl_3 &= ~(GNB_SLOW_FSTATE_0_MASK << index);
|
|
cg_sclk_dpm_ctrl_3 |= (temp << (GNB_SLOW_FSTATE_0_SHIFT + index));
|
|
|
|
WREG32(CG_SCLK_DPM_CTRL_3, cg_sclk_dpm_ctrl_3);
|
|
}
|
|
|
|
static void sumo_program_power_level(struct radeon_device *rdev,
|
|
struct sumo_pl *pl, u32 index)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
int ret;
|
|
struct atom_clock_dividers dividers;
|
|
u32 ds_en = RREG32(DEEP_SLEEP_CNTL) & ENABLE_DS;
|
|
|
|
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
|
|
pl->sclk, false, ÷rs);
|
|
if (ret)
|
|
return;
|
|
|
|
sumo_set_divider_value(rdev, index, dividers.post_div);
|
|
|
|
sumo_set_vid(rdev, index, pl->vddc_index);
|
|
|
|
if (pl->ss_divider_index == 0 || pl->ds_divider_index == 0) {
|
|
if (ds_en)
|
|
WREG32_P(DEEP_SLEEP_CNTL, 0, ~ENABLE_DS);
|
|
} else {
|
|
sumo_set_ss_dividers(rdev, index, pl->ss_divider_index);
|
|
sumo_set_ds_dividers(rdev, index, pl->ds_divider_index);
|
|
|
|
if (!ds_en)
|
|
WREG32_P(DEEP_SLEEP_CNTL, ENABLE_DS, ~ENABLE_DS);
|
|
}
|
|
|
|
sumo_set_allos_gnb_slow(rdev, index, pl->allow_gnb_slow);
|
|
|
|
if (pi->enable_boost)
|
|
sumo_set_tdp_limit(rdev, index, pl->sclk_dpm_tdp_limit);
|
|
}
|
|
|
|
static void sumo_power_level_enable(struct radeon_device *rdev, u32 index, bool enable)
|
|
{
|
|
u32 reg_index = index / 4;
|
|
u32 field_index = index % 4;
|
|
|
|
if (field_index == 0)
|
|
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
|
|
enable ? SCLK_FSTATE_0_VLD : 0, ~SCLK_FSTATE_0_VLD);
|
|
else if (field_index == 1)
|
|
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
|
|
enable ? SCLK_FSTATE_1_VLD : 0, ~SCLK_FSTATE_1_VLD);
|
|
else if (field_index == 2)
|
|
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
|
|
enable ? SCLK_FSTATE_2_VLD : 0, ~SCLK_FSTATE_2_VLD);
|
|
else if (field_index == 3)
|
|
WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4),
|
|
enable ? SCLK_FSTATE_3_VLD : 0, ~SCLK_FSTATE_3_VLD);
|
|
}
|
|
|
|
static bool sumo_dpm_enabled(struct radeon_device *rdev)
|
|
{
|
|
if (RREG32(CG_SCLK_DPM_CTRL_3) & DPM_SCLK_ENABLE)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static void sumo_start_dpm(struct radeon_device *rdev)
|
|
{
|
|
WREG32_P(CG_SCLK_DPM_CTRL_3, DPM_SCLK_ENABLE, ~DPM_SCLK_ENABLE);
|
|
}
|
|
|
|
static void sumo_stop_dpm(struct radeon_device *rdev)
|
|
{
|
|
WREG32_P(CG_SCLK_DPM_CTRL_3, 0, ~DPM_SCLK_ENABLE);
|
|
}
|
|
|
|
static void sumo_set_forced_mode(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(CG_SCLK_DPM_CTRL_3, FORCE_SCLK_STATE_EN, ~FORCE_SCLK_STATE_EN);
|
|
else
|
|
WREG32_P(CG_SCLK_DPM_CTRL_3, 0, ~FORCE_SCLK_STATE_EN);
|
|
}
|
|
|
|
static void sumo_set_forced_mode_enabled(struct radeon_device *rdev)
|
|
{
|
|
int i;
|
|
|
|
sumo_set_forced_mode(rdev, true);
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if (RREG32(CG_SCLK_STATUS) & SCLK_OVERCLK_DETECT)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
static void sumo_wait_for_level_0(struct radeon_device *rdev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) == 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) == 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
static void sumo_set_forced_mode_disabled(struct radeon_device *rdev)
|
|
{
|
|
sumo_set_forced_mode(rdev, false);
|
|
}
|
|
|
|
static void sumo_enable_power_level_0(struct radeon_device *rdev)
|
|
{
|
|
sumo_power_level_enable(rdev, 0, true);
|
|
}
|
|
|
|
static void sumo_patch_boost_state(struct radeon_device *rdev,
|
|
struct radeon_ps *rps)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct sumo_ps *new_ps = sumo_get_ps(rps);
|
|
|
|
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) {
|
|
pi->boost_pl = new_ps->levels[new_ps->num_levels - 1];
|
|
pi->boost_pl.sclk = pi->sys_info.boost_sclk;
|
|
pi->boost_pl.vddc_index = pi->sys_info.boost_vid_2bit;
|
|
pi->boost_pl.sclk_dpm_tdp_limit = pi->sys_info.sclk_dpm_tdp_limit_boost;
|
|
}
|
|
}
|
|
|
|
static void sumo_pre_notify_alt_vddnb_change(struct radeon_device *rdev,
|
|
struct radeon_ps *new_rps,
|
|
struct radeon_ps *old_rps)
|
|
{
|
|
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
|
|
struct sumo_ps *old_ps = sumo_get_ps(old_rps);
|
|
u32 nbps1_old = 0;
|
|
u32 nbps1_new = 0;
|
|
|
|
if (old_ps != NULL)
|
|
nbps1_old = (old_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE) ? 1 : 0;
|
|
|
|
nbps1_new = (new_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE) ? 1 : 0;
|
|
|
|
if (nbps1_old == 1 && nbps1_new == 0)
|
|
sumo_smu_notify_alt_vddnb_change(rdev, 0, 0);
|
|
}
|
|
|
|
static void sumo_post_notify_alt_vddnb_change(struct radeon_device *rdev,
|
|
struct radeon_ps *new_rps,
|
|
struct radeon_ps *old_rps)
|
|
{
|
|
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
|
|
struct sumo_ps *old_ps = sumo_get_ps(old_rps);
|
|
u32 nbps1_old = 0;
|
|
u32 nbps1_new = 0;
|
|
|
|
if (old_ps != NULL)
|
|
nbps1_old = (old_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)? 1 : 0;
|
|
|
|
nbps1_new = (new_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)? 1 : 0;
|
|
|
|
if (nbps1_old == 0 && nbps1_new == 1)
|
|
sumo_smu_notify_alt_vddnb_change(rdev, 1, 1);
|
|
}
|
|
|
|
static void sumo_enable_boost(struct radeon_device *rdev,
|
|
struct radeon_ps *rps,
|
|
bool enable)
|
|
{
|
|
struct sumo_ps *new_ps = sumo_get_ps(rps);
|
|
|
|
if (enable) {
|
|
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
|
|
sumo_boost_state_enable(rdev, true);
|
|
} else
|
|
sumo_boost_state_enable(rdev, false);
|
|
}
|
|
|
|
static void sumo_set_forced_level(struct radeon_device *rdev, u32 index)
|
|
{
|
|
WREG32_P(CG_SCLK_DPM_CTRL_3, FORCE_SCLK_STATE(index), ~FORCE_SCLK_STATE_MASK);
|
|
}
|
|
|
|
static void sumo_set_forced_level_0(struct radeon_device *rdev)
|
|
{
|
|
sumo_set_forced_level(rdev, 0);
|
|
}
|
|
|
|
static void sumo_program_wl(struct radeon_device *rdev,
|
|
struct radeon_ps *rps)
|
|
{
|
|
struct sumo_ps *new_ps = sumo_get_ps(rps);
|
|
u32 dpm_ctrl4 = RREG32(CG_SCLK_DPM_CTRL_4);
|
|
|
|
dpm_ctrl4 &= 0xFFFFFF00;
|
|
dpm_ctrl4 |= (1 << (new_ps->num_levels - 1));
|
|
|
|
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
|
|
dpm_ctrl4 |= (1 << BOOST_DPM_LEVEL);
|
|
|
|
WREG32(CG_SCLK_DPM_CTRL_4, dpm_ctrl4);
|
|
}
|
|
|
|
static void sumo_program_power_levels_0_to_n(struct radeon_device *rdev,
|
|
struct radeon_ps *new_rps,
|
|
struct radeon_ps *old_rps)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
|
|
struct sumo_ps *old_ps = sumo_get_ps(old_rps);
|
|
u32 i;
|
|
u32 n_current_state_levels = (old_ps == NULL) ? 1 : old_ps->num_levels;
|
|
|
|
for (i = 0; i < new_ps->num_levels; i++) {
|
|
sumo_program_power_level(rdev, &new_ps->levels[i], i);
|
|
sumo_power_level_enable(rdev, i, true);
|
|
}
|
|
|
|
for (i = new_ps->num_levels; i < n_current_state_levels; i++)
|
|
sumo_power_level_enable(rdev, i, false);
|
|
|
|
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE)
|
|
sumo_program_power_level(rdev, &pi->boost_pl, BOOST_DPM_LEVEL);
|
|
}
|
|
|
|
static void sumo_enable_acpi_pm(struct radeon_device *rdev)
|
|
{
|
|
WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN);
|
|
}
|
|
|
|
static void sumo_program_power_level_enter_state(struct radeon_device *rdev)
|
|
{
|
|
WREG32_P(CG_SCLK_DPM_CTRL_5, SCLK_FSTATE_BOOTUP(0), ~SCLK_FSTATE_BOOTUP_MASK);
|
|
}
|
|
|
|
static void sumo_program_acpi_power_level(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct atom_clock_dividers dividers;
|
|
int ret;
|
|
|
|
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
|
|
pi->acpi_pl.sclk,
|
|
false, ÷rs);
|
|
if (ret)
|
|
return;
|
|
|
|
WREG32_P(CG_ACPI_CNTL, SCLK_ACPI_DIV(dividers.post_div), ~SCLK_ACPI_DIV_MASK);
|
|
WREG32_P(CG_ACPI_VOLTAGE_CNTL, 0, ~ACPI_VOLTAGE_EN);
|
|
}
|
|
|
|
static void sumo_program_bootup_state(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
u32 dpm_ctrl4 = RREG32(CG_SCLK_DPM_CTRL_4);
|
|
u32 i;
|
|
|
|
sumo_program_power_level(rdev, &pi->boot_pl, 0);
|
|
|
|
dpm_ctrl4 &= 0xFFFFFF00;
|
|
WREG32(CG_SCLK_DPM_CTRL_4, dpm_ctrl4);
|
|
|
|
for (i = 1; i < 8; i++)
|
|
sumo_power_level_enable(rdev, i, false);
|
|
}
|
|
|
|
static void sumo_setup_uvd_clocks(struct radeon_device *rdev,
|
|
struct radeon_ps *new_rps,
|
|
struct radeon_ps *old_rps)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
if (pi->enable_gfx_power_gating) {
|
|
sumo_gfx_powergating_enable(rdev, false);
|
|
}
|
|
|
|
radeon_set_uvd_clocks(rdev, new_rps->vclk, new_rps->dclk);
|
|
|
|
if (pi->enable_gfx_power_gating) {
|
|
if (!pi->disable_gfx_power_gating_in_uvd ||
|
|
!r600_is_uvd_state(new_rps->class, new_rps->class2))
|
|
sumo_gfx_powergating_enable(rdev, true);
|
|
}
|
|
}
|
|
|
|
static void sumo_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev,
|
|
struct radeon_ps *new_rps,
|
|
struct radeon_ps *old_rps)
|
|
{
|
|
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
|
|
struct sumo_ps *current_ps = sumo_get_ps(old_rps);
|
|
|
|
if ((new_rps->vclk == old_rps->vclk) &&
|
|
(new_rps->dclk == old_rps->dclk))
|
|
return;
|
|
|
|
if (new_ps->levels[new_ps->num_levels - 1].sclk >=
|
|
current_ps->levels[current_ps->num_levels - 1].sclk)
|
|
return;
|
|
|
|
sumo_setup_uvd_clocks(rdev, new_rps, old_rps);
|
|
}
|
|
|
|
static void sumo_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev,
|
|
struct radeon_ps *new_rps,
|
|
struct radeon_ps *old_rps)
|
|
{
|
|
struct sumo_ps *new_ps = sumo_get_ps(new_rps);
|
|
struct sumo_ps *current_ps = sumo_get_ps(old_rps);
|
|
|
|
if ((new_rps->vclk == old_rps->vclk) &&
|
|
(new_rps->dclk == old_rps->dclk))
|
|
return;
|
|
|
|
if (new_ps->levels[new_ps->num_levels - 1].sclk <
|
|
current_ps->levels[current_ps->num_levels - 1].sclk)
|
|
return;
|
|
|
|
sumo_setup_uvd_clocks(rdev, new_rps, old_rps);
|
|
}
|
|
|
|
void sumo_take_smu_control(struct radeon_device *rdev, bool enable)
|
|
{
|
|
/* This bit selects who handles display phy powergating.
|
|
* Clear the bit to let atom handle it.
|
|
* Set it to let the driver handle it.
|
|
* For now we just let atom handle it.
|
|
*/
|
|
#if 0
|
|
u32 v = RREG32(DOUT_SCRATCH3);
|
|
|
|
if (enable)
|
|
v |= 0x4;
|
|
else
|
|
v &= 0xFFFFFFFB;
|
|
|
|
WREG32(DOUT_SCRATCH3, v);
|
|
#endif
|
|
}
|
|
|
|
static void sumo_enable_sclk_ds(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable) {
|
|
u32 deep_sleep_cntl = RREG32(DEEP_SLEEP_CNTL);
|
|
u32 deep_sleep_cntl2 = RREG32(DEEP_SLEEP_CNTL2);
|
|
u32 t = 1;
|
|
|
|
deep_sleep_cntl &= ~R_DIS;
|
|
deep_sleep_cntl &= ~HS_MASK;
|
|
deep_sleep_cntl |= HS(t > 4095 ? 4095 : t);
|
|
|
|
deep_sleep_cntl2 |= LB_UFP_EN;
|
|
deep_sleep_cntl2 &= INOUT_C_MASK;
|
|
deep_sleep_cntl2 |= INOUT_C(0xf);
|
|
|
|
WREG32(DEEP_SLEEP_CNTL2, deep_sleep_cntl2);
|
|
WREG32(DEEP_SLEEP_CNTL, deep_sleep_cntl);
|
|
} else
|
|
WREG32_P(DEEP_SLEEP_CNTL, 0, ~ENABLE_DS);
|
|
}
|
|
|
|
static void sumo_program_bootup_at(struct radeon_device *rdev)
|
|
{
|
|
WREG32_P(CG_AT_0, CG_R(0xffff), ~CG_R_MASK);
|
|
WREG32_P(CG_AT_0, CG_L(0), ~CG_L_MASK);
|
|
}
|
|
|
|
static void sumo_reset_am(struct radeon_device *rdev)
|
|
{
|
|
WREG32_P(SCLK_PWRMGT_CNTL, FIR_RESET, ~FIR_RESET);
|
|
}
|
|
|
|
static void sumo_start_am(struct radeon_device *rdev)
|
|
{
|
|
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_RESET);
|
|
}
|
|
|
|
static void sumo_program_ttp(struct radeon_device *rdev)
|
|
{
|
|
u32 xclk = radeon_get_xclk(rdev);
|
|
u32 p, u;
|
|
u32 cg_sclk_dpm_ctrl_5 = RREG32(CG_SCLK_DPM_CTRL_5);
|
|
|
|
r600_calculate_u_and_p(1000,
|
|
xclk, 16, &p, &u);
|
|
|
|
cg_sclk_dpm_ctrl_5 &= ~(TT_TP_MASK | TT_TU_MASK);
|
|
cg_sclk_dpm_ctrl_5 |= TT_TP(p) | TT_TU(u);
|
|
|
|
WREG32(CG_SCLK_DPM_CTRL_5, cg_sclk_dpm_ctrl_5);
|
|
}
|
|
|
|
static void sumo_program_ttt(struct radeon_device *rdev)
|
|
{
|
|
u32 cg_sclk_dpm_ctrl_3 = RREG32(CG_SCLK_DPM_CTRL_3);
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
cg_sclk_dpm_ctrl_3 &= ~(GNB_TT_MASK | GNB_THERMTHRO_MASK);
|
|
cg_sclk_dpm_ctrl_3 |= GNB_TT(pi->thermal_auto_throttling + 49);
|
|
|
|
WREG32(CG_SCLK_DPM_CTRL_3, cg_sclk_dpm_ctrl_3);
|
|
}
|
|
|
|
|
|
static void sumo_enable_voltage_scaling(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable) {
|
|
WREG32_P(CG_DPM_VOLTAGE_CNTL, DPM_VOLTAGE_EN, ~DPM_VOLTAGE_EN);
|
|
WREG32_P(CG_CG_VOLTAGE_CNTL, 0, ~CG_VOLTAGE_EN);
|
|
} else {
|
|
WREG32_P(CG_CG_VOLTAGE_CNTL, CG_VOLTAGE_EN, ~CG_VOLTAGE_EN);
|
|
WREG32_P(CG_DPM_VOLTAGE_CNTL, 0, ~DPM_VOLTAGE_EN);
|
|
}
|
|
}
|
|
|
|
static void sumo_override_cnb_thermal_events(struct radeon_device *rdev)
|
|
{
|
|
WREG32_P(CG_SCLK_DPM_CTRL_3, CNB_THERMTHRO_MASK_SCLK,
|
|
~CNB_THERMTHRO_MASK_SCLK);
|
|
}
|
|
|
|
static void sumo_program_dc_hto(struct radeon_device *rdev)
|
|
{
|
|
u32 cg_sclk_dpm_ctrl_4 = RREG32(CG_SCLK_DPM_CTRL_4);
|
|
u32 p, u;
|
|
u32 xclk = radeon_get_xclk(rdev);
|
|
|
|
r600_calculate_u_and_p(100000,
|
|
xclk, 14, &p, &u);
|
|
|
|
cg_sclk_dpm_ctrl_4 &= ~(DC_HDC_MASK | DC_HU_MASK);
|
|
cg_sclk_dpm_ctrl_4 |= DC_HDC(p) | DC_HU(u);
|
|
|
|
WREG32(CG_SCLK_DPM_CTRL_4, cg_sclk_dpm_ctrl_4);
|
|
}
|
|
|
|
static void sumo_force_nbp_state(struct radeon_device *rdev,
|
|
struct radeon_ps *rps)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct sumo_ps *new_ps = sumo_get_ps(rps);
|
|
|
|
if (!pi->driver_nbps_policy_disable) {
|
|
if (new_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)
|
|
WREG32_P(CG_SCLK_DPM_CTRL_3, FORCE_NB_PSTATE_1, ~FORCE_NB_PSTATE_1);
|
|
else
|
|
WREG32_P(CG_SCLK_DPM_CTRL_3, 0, ~FORCE_NB_PSTATE_1);
|
|
}
|
|
}
|
|
|
|
u32 sumo_get_sleep_divider_from_id(u32 id)
|
|
{
|
|
return 1 << id;
|
|
}
|
|
|
|
u32 sumo_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
|
|
u32 sclk,
|
|
u32 min_sclk_in_sr)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
u32 i;
|
|
u32 temp;
|
|
u32 min = (min_sclk_in_sr > SUMO_MINIMUM_ENGINE_CLOCK) ?
|
|
min_sclk_in_sr : SUMO_MINIMUM_ENGINE_CLOCK;
|
|
|
|
if (sclk < min)
|
|
return 0;
|
|
|
|
if (!pi->enable_sclk_ds)
|
|
return 0;
|
|
|
|
for (i = SUMO_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
|
|
temp = sclk / sumo_get_sleep_divider_from_id(i);
|
|
|
|
if (temp >= min || i == 0)
|
|
break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static u32 sumo_get_valid_engine_clock(struct radeon_device *rdev,
|
|
u32 lower_limit)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
u32 i;
|
|
|
|
for (i = 0; i < pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries; i++) {
|
|
if (pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency >= lower_limit)
|
|
return pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency;
|
|
}
|
|
|
|
return pi->sys_info.sclk_voltage_mapping_table.entries[pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1].sclk_frequency;
|
|
}
|
|
|
|
static void sumo_patch_thermal_state(struct radeon_device *rdev,
|
|
struct sumo_ps *ps,
|
|
struct sumo_ps *current_ps)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
u32 sclk_in_sr = pi->sys_info.min_sclk; /* ??? */
|
|
u32 current_vddc;
|
|
u32 current_sclk;
|
|
u32 current_index = 0;
|
|
|
|
if (current_ps) {
|
|
current_vddc = current_ps->levels[current_index].vddc_index;
|
|
current_sclk = current_ps->levels[current_index].sclk;
|
|
} else {
|
|
current_vddc = pi->boot_pl.vddc_index;
|
|
current_sclk = pi->boot_pl.sclk;
|
|
}
|
|
|
|
ps->levels[0].vddc_index = current_vddc;
|
|
|
|
if (ps->levels[0].sclk > current_sclk)
|
|
ps->levels[0].sclk = current_sclk;
|
|
|
|
ps->levels[0].ss_divider_index =
|
|
sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[0].sclk, sclk_in_sr);
|
|
|
|
ps->levels[0].ds_divider_index =
|
|
sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[0].sclk, SUMO_MINIMUM_ENGINE_CLOCK);
|
|
|
|
if (ps->levels[0].ds_divider_index > ps->levels[0].ss_divider_index + 1)
|
|
ps->levels[0].ds_divider_index = ps->levels[0].ss_divider_index + 1;
|
|
|
|
if (ps->levels[0].ss_divider_index == ps->levels[0].ds_divider_index) {
|
|
if (ps->levels[0].ss_divider_index > 1)
|
|
ps->levels[0].ss_divider_index = ps->levels[0].ss_divider_index - 1;
|
|
}
|
|
|
|
if (ps->levels[0].ss_divider_index == 0)
|
|
ps->levels[0].ds_divider_index = 0;
|
|
|
|
if (ps->levels[0].ds_divider_index == 0)
|
|
ps->levels[0].ss_divider_index = 0;
|
|
}
|
|
|
|
static void sumo_apply_state_adjust_rules(struct radeon_device *rdev,
|
|
struct radeon_ps *new_rps,
|
|
struct radeon_ps *old_rps)
|
|
{
|
|
struct sumo_ps *ps = sumo_get_ps(new_rps);
|
|
struct sumo_ps *current_ps = sumo_get_ps(old_rps);
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
u32 min_voltage = 0; /* ??? */
|
|
u32 min_sclk = pi->sys_info.min_sclk; /* XXX check against disp reqs */
|
|
u32 sclk_in_sr = pi->sys_info.min_sclk; /* ??? */
|
|
u32 i;
|
|
|
|
if (new_rps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
|
|
return sumo_patch_thermal_state(rdev, ps, current_ps);
|
|
|
|
if (pi->enable_boost) {
|
|
if (new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE)
|
|
ps->flags |= SUMO_POWERSTATE_FLAGS_BOOST_STATE;
|
|
}
|
|
|
|
if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) ||
|
|
(new_rps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) ||
|
|
(new_rps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE))
|
|
ps->flags |= SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE;
|
|
|
|
for (i = 0; i < ps->num_levels; i++) {
|
|
if (ps->levels[i].vddc_index < min_voltage)
|
|
ps->levels[i].vddc_index = min_voltage;
|
|
|
|
if (ps->levels[i].sclk < min_sclk)
|
|
ps->levels[i].sclk =
|
|
sumo_get_valid_engine_clock(rdev, min_sclk);
|
|
|
|
ps->levels[i].ss_divider_index =
|
|
sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[i].sclk, sclk_in_sr);
|
|
|
|
ps->levels[i].ds_divider_index =
|
|
sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[i].sclk, SUMO_MINIMUM_ENGINE_CLOCK);
|
|
|
|
if (ps->levels[i].ds_divider_index > ps->levels[i].ss_divider_index + 1)
|
|
ps->levels[i].ds_divider_index = ps->levels[i].ss_divider_index + 1;
|
|
|
|
if (ps->levels[i].ss_divider_index == ps->levels[i].ds_divider_index) {
|
|
if (ps->levels[i].ss_divider_index > 1)
|
|
ps->levels[i].ss_divider_index = ps->levels[i].ss_divider_index - 1;
|
|
}
|
|
|
|
if (ps->levels[i].ss_divider_index == 0)
|
|
ps->levels[i].ds_divider_index = 0;
|
|
|
|
if (ps->levels[i].ds_divider_index == 0)
|
|
ps->levels[i].ss_divider_index = 0;
|
|
|
|
if (ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)
|
|
ps->levels[i].allow_gnb_slow = 1;
|
|
else if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) ||
|
|
(new_rps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC))
|
|
ps->levels[i].allow_gnb_slow = 0;
|
|
else if (i == ps->num_levels - 1)
|
|
ps->levels[i].allow_gnb_slow = 0;
|
|
else
|
|
ps->levels[i].allow_gnb_slow = 1;
|
|
}
|
|
}
|
|
|
|
static void sumo_cleanup_asic(struct radeon_device *rdev)
|
|
{
|
|
sumo_take_smu_control(rdev, false);
|
|
}
|
|
|
|
static int sumo_set_thermal_temperature_range(struct radeon_device *rdev,
|
|
int min_temp, int max_temp)
|
|
{
|
|
int low_temp = 0 * 1000;
|
|
int high_temp = 255 * 1000;
|
|
|
|
if (low_temp < min_temp)
|
|
low_temp = min_temp;
|
|
if (high_temp > max_temp)
|
|
high_temp = max_temp;
|
|
if (high_temp < low_temp) {
|
|
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
|
|
return -EINVAL;
|
|
}
|
|
|
|
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(49 + (high_temp / 1000)), ~DIG_THERM_INTH_MASK);
|
|
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(49 + (low_temp / 1000)), ~DIG_THERM_INTL_MASK);
|
|
|
|
rdev->pm.dpm.thermal.min_temp = low_temp;
|
|
rdev->pm.dpm.thermal.max_temp = high_temp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sumo_update_current_ps(struct radeon_device *rdev,
|
|
struct radeon_ps *rps)
|
|
{
|
|
struct sumo_ps *new_ps = sumo_get_ps(rps);
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
pi->current_rps = *rps;
|
|
pi->current_ps = *new_ps;
|
|
pi->current_rps.ps_priv = &pi->current_ps;
|
|
}
|
|
|
|
static void sumo_update_requested_ps(struct radeon_device *rdev,
|
|
struct radeon_ps *rps)
|
|
{
|
|
struct sumo_ps *new_ps = sumo_get_ps(rps);
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
pi->requested_rps = *rps;
|
|
pi->requested_ps = *new_ps;
|
|
pi->requested_rps.ps_priv = &pi->requested_ps;
|
|
}
|
|
|
|
int sumo_dpm_enable(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
if (sumo_dpm_enabled(rdev))
|
|
return -EINVAL;
|
|
|
|
sumo_program_bootup_state(rdev);
|
|
sumo_init_bsp(rdev);
|
|
sumo_reset_am(rdev);
|
|
sumo_program_tp(rdev);
|
|
sumo_program_bootup_at(rdev);
|
|
sumo_start_am(rdev);
|
|
if (pi->enable_auto_thermal_throttling) {
|
|
sumo_program_ttp(rdev);
|
|
sumo_program_ttt(rdev);
|
|
}
|
|
sumo_program_dc_hto(rdev);
|
|
sumo_program_power_level_enter_state(rdev);
|
|
sumo_enable_voltage_scaling(rdev, true);
|
|
sumo_program_sstp(rdev);
|
|
sumo_program_vc(rdev, SUMO_VRC_DFLT);
|
|
sumo_override_cnb_thermal_events(rdev);
|
|
sumo_start_dpm(rdev);
|
|
sumo_wait_for_level_0(rdev);
|
|
if (pi->enable_sclk_ds)
|
|
sumo_enable_sclk_ds(rdev, true);
|
|
if (pi->enable_boost)
|
|
sumo_enable_boost_timer(rdev);
|
|
|
|
sumo_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sumo_dpm_late_enable(struct radeon_device *rdev)
|
|
{
|
|
int ret;
|
|
|
|
ret = sumo_enable_clock_power_gating(rdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (rdev->irq.installed &&
|
|
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
|
|
ret = sumo_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
|
|
if (ret)
|
|
return ret;
|
|
rdev->irq.dpm_thermal = true;
|
|
radeon_irq_set(rdev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sumo_dpm_disable(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
if (!sumo_dpm_enabled(rdev))
|
|
return;
|
|
sumo_disable_clock_power_gating(rdev);
|
|
if (pi->enable_sclk_ds)
|
|
sumo_enable_sclk_ds(rdev, false);
|
|
sumo_clear_vc(rdev);
|
|
sumo_wait_for_level_0(rdev);
|
|
sumo_stop_dpm(rdev);
|
|
sumo_enable_voltage_scaling(rdev, false);
|
|
|
|
if (rdev->irq.installed &&
|
|
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
|
|
rdev->irq.dpm_thermal = false;
|
|
radeon_irq_set(rdev);
|
|
}
|
|
|
|
sumo_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
|
|
}
|
|
|
|
int sumo_dpm_pre_set_power_state(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
|
|
struct radeon_ps *new_ps = &requested_ps;
|
|
|
|
sumo_update_requested_ps(rdev, new_ps);
|
|
|
|
if (pi->enable_dynamic_patch_ps)
|
|
sumo_apply_state_adjust_rules(rdev,
|
|
&pi->requested_rps,
|
|
&pi->current_rps);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sumo_dpm_set_power_state(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct radeon_ps *new_ps = &pi->requested_rps;
|
|
struct radeon_ps *old_ps = &pi->current_rps;
|
|
|
|
if (pi->enable_dpm)
|
|
sumo_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps);
|
|
if (pi->enable_boost) {
|
|
sumo_enable_boost(rdev, new_ps, false);
|
|
sumo_patch_boost_state(rdev, new_ps);
|
|
}
|
|
if (pi->enable_dpm) {
|
|
sumo_pre_notify_alt_vddnb_change(rdev, new_ps, old_ps);
|
|
sumo_enable_power_level_0(rdev);
|
|
sumo_set_forced_level_0(rdev);
|
|
sumo_set_forced_mode_enabled(rdev);
|
|
sumo_wait_for_level_0(rdev);
|
|
sumo_program_power_levels_0_to_n(rdev, new_ps, old_ps);
|
|
sumo_program_wl(rdev, new_ps);
|
|
sumo_program_bsp(rdev, new_ps);
|
|
sumo_program_at(rdev, new_ps);
|
|
sumo_force_nbp_state(rdev, new_ps);
|
|
sumo_set_forced_mode_disabled(rdev);
|
|
sumo_set_forced_mode_enabled(rdev);
|
|
sumo_set_forced_mode_disabled(rdev);
|
|
sumo_post_notify_alt_vddnb_change(rdev, new_ps, old_ps);
|
|
}
|
|
if (pi->enable_boost)
|
|
sumo_enable_boost(rdev, new_ps, true);
|
|
if (pi->enable_dpm)
|
|
sumo_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sumo_dpm_post_set_power_state(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct radeon_ps *new_ps = &pi->requested_rps;
|
|
|
|
sumo_update_current_ps(rdev, new_ps);
|
|
}
|
|
|
|
#if 0
|
|
void sumo_dpm_reset_asic(struct radeon_device *rdev)
|
|
{
|
|
sumo_program_bootup_state(rdev);
|
|
sumo_enable_power_level_0(rdev);
|
|
sumo_set_forced_level_0(rdev);
|
|
sumo_set_forced_mode_enabled(rdev);
|
|
sumo_wait_for_level_0(rdev);
|
|
sumo_set_forced_mode_disabled(rdev);
|
|
sumo_set_forced_mode_enabled(rdev);
|
|
sumo_set_forced_mode_disabled(rdev);
|
|
}
|
|
#endif
|
|
|
|
void sumo_dpm_setup_asic(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
sumo_initialize_m3_arb(rdev);
|
|
pi->fw_version = sumo_get_running_fw_version(rdev);
|
|
DRM_INFO("Found smc ucode version: 0x%08x\n", pi->fw_version);
|
|
sumo_program_acpi_power_level(rdev);
|
|
sumo_enable_acpi_pm(rdev);
|
|
sumo_take_smu_control(rdev, true);
|
|
}
|
|
|
|
void sumo_dpm_display_configuration_changed(struct radeon_device *rdev)
|
|
{
|
|
|
|
}
|
|
|
|
union power_info {
|
|
struct _ATOM_POWERPLAY_INFO info;
|
|
struct _ATOM_POWERPLAY_INFO_V2 info_2;
|
|
struct _ATOM_POWERPLAY_INFO_V3 info_3;
|
|
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
|
|
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
|
|
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
|
|
};
|
|
|
|
union pplib_clock_info {
|
|
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
|
|
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
|
|
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
|
|
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
|
|
};
|
|
|
|
union pplib_power_state {
|
|
struct _ATOM_PPLIB_STATE v1;
|
|
struct _ATOM_PPLIB_STATE_V2 v2;
|
|
};
|
|
|
|
static void sumo_patch_boot_state(struct radeon_device *rdev,
|
|
struct sumo_ps *ps)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
ps->num_levels = 1;
|
|
ps->flags = 0;
|
|
ps->levels[0] = pi->boot_pl;
|
|
}
|
|
|
|
static void sumo_parse_pplib_non_clock_info(struct radeon_device *rdev,
|
|
struct radeon_ps *rps,
|
|
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
|
|
u8 table_rev)
|
|
{
|
|
struct sumo_ps *ps = sumo_get_ps(rps);
|
|
|
|
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
|
|
rps->class = le16_to_cpu(non_clock_info->usClassification);
|
|
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
|
|
|
|
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
|
|
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
|
|
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
|
|
} else {
|
|
rps->vclk = 0;
|
|
rps->dclk = 0;
|
|
}
|
|
|
|
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
|
|
rdev->pm.dpm.boot_ps = rps;
|
|
sumo_patch_boot_state(rdev, ps);
|
|
}
|
|
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
|
|
rdev->pm.dpm.uvd_ps = rps;
|
|
}
|
|
|
|
static void sumo_parse_pplib_clock_info(struct radeon_device *rdev,
|
|
struct radeon_ps *rps, int index,
|
|
union pplib_clock_info *clock_info)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct sumo_ps *ps = sumo_get_ps(rps);
|
|
struct sumo_pl *pl = &ps->levels[index];
|
|
u32 sclk;
|
|
|
|
sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
|
|
sclk |= clock_info->sumo.ucEngineClockHigh << 16;
|
|
pl->sclk = sclk;
|
|
pl->vddc_index = clock_info->sumo.vddcIndex;
|
|
pl->sclk_dpm_tdp_limit = clock_info->sumo.tdpLimit;
|
|
|
|
ps->num_levels = index + 1;
|
|
|
|
if (pi->enable_sclk_ds) {
|
|
pl->ds_divider_index = 5;
|
|
pl->ss_divider_index = 4;
|
|
}
|
|
}
|
|
|
|
static int sumo_parse_power_table(struct radeon_device *rdev)
|
|
{
|
|
struct radeon_mode_info *mode_info = &rdev->mode_info;
|
|
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
|
|
union pplib_power_state *power_state;
|
|
int i, j, k, non_clock_array_index, clock_array_index;
|
|
union pplib_clock_info *clock_info;
|
|
struct _StateArray *state_array;
|
|
struct _ClockInfoArray *clock_info_array;
|
|
struct _NonClockInfoArray *non_clock_info_array;
|
|
union power_info *power_info;
|
|
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
|
|
u16 data_offset;
|
|
u8 frev, crev;
|
|
u8 *power_state_offset;
|
|
struct sumo_ps *ps;
|
|
|
|
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
|
|
&frev, &crev, &data_offset))
|
|
return -EINVAL;
|
|
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
|
|
|
|
state_array = (struct _StateArray *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib.usStateArrayOffset));
|
|
clock_info_array = (struct _ClockInfoArray *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
|
|
non_clock_info_array = (struct _NonClockInfoArray *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
|
|
|
|
rdev->pm.dpm.ps = kcalloc(state_array->ucNumEntries,
|
|
sizeof(struct radeon_ps),
|
|
GFP_KERNEL);
|
|
if (!rdev->pm.dpm.ps)
|
|
return -ENOMEM;
|
|
power_state_offset = (u8 *)state_array->states;
|
|
for (i = 0; i < state_array->ucNumEntries; i++) {
|
|
u8 *idx;
|
|
power_state = (union pplib_power_state *)power_state_offset;
|
|
non_clock_array_index = power_state->v2.nonClockInfoIndex;
|
|
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
|
|
&non_clock_info_array->nonClockInfo[non_clock_array_index];
|
|
if (!rdev->pm.power_state[i].clock_info)
|
|
return -EINVAL;
|
|
ps = kzalloc(sizeof(struct sumo_ps), GFP_KERNEL);
|
|
if (ps == NULL) {
|
|
kfree(rdev->pm.dpm.ps);
|
|
return -ENOMEM;
|
|
}
|
|
rdev->pm.dpm.ps[i].ps_priv = ps;
|
|
k = 0;
|
|
idx = (u8 *)&power_state->v2.clockInfoIndex[0];
|
|
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
|
|
clock_array_index = idx[j];
|
|
if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
|
|
break;
|
|
|
|
clock_info = (union pplib_clock_info *)
|
|
((u8 *)&clock_info_array->clockInfo[0] +
|
|
(clock_array_index * clock_info_array->ucEntrySize));
|
|
sumo_parse_pplib_clock_info(rdev,
|
|
&rdev->pm.dpm.ps[i], k,
|
|
clock_info);
|
|
k++;
|
|
}
|
|
sumo_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
|
|
non_clock_info,
|
|
non_clock_info_array->ucEntrySize);
|
|
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
|
|
}
|
|
rdev->pm.dpm.num_ps = state_array->ucNumEntries;
|
|
return 0;
|
|
}
|
|
|
|
u32 sumo_convert_vid2_to_vid7(struct radeon_device *rdev,
|
|
struct sumo_vid_mapping_table *vid_mapping_table,
|
|
u32 vid_2bit)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < vid_mapping_table->num_entries; i++) {
|
|
if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
|
|
return vid_mapping_table->entries[i].vid_7bit;
|
|
}
|
|
|
|
return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
|
|
}
|
|
|
|
#if 0
|
|
u32 sumo_convert_vid7_to_vid2(struct radeon_device *rdev,
|
|
struct sumo_vid_mapping_table *vid_mapping_table,
|
|
u32 vid_7bit)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < vid_mapping_table->num_entries; i++) {
|
|
if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
|
|
return vid_mapping_table->entries[i].vid_2bit;
|
|
}
|
|
|
|
return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
|
|
}
|
|
#endif
|
|
|
|
static u16 sumo_convert_voltage_index_to_value(struct radeon_device *rdev,
|
|
u32 vid_2bit)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
u32 vid_7bit = sumo_convert_vid2_to_vid7(rdev, &pi->sys_info.vid_mapping_table, vid_2bit);
|
|
|
|
if (vid_7bit > 0x7C)
|
|
return 0;
|
|
|
|
return (15500 - vid_7bit * 125 + 5) / 10;
|
|
}
|
|
|
|
static void sumo_construct_display_voltage_mapping_table(struct radeon_device *rdev,
|
|
struct sumo_disp_clock_voltage_mapping_table *disp_clk_voltage_mapping_table,
|
|
ATOM_CLK_VOLT_CAPABILITY *table)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) {
|
|
if (table[i].ulMaximumSupportedCLK == 0)
|
|
break;
|
|
|
|
disp_clk_voltage_mapping_table->display_clock_frequency[i] =
|
|
table[i].ulMaximumSupportedCLK;
|
|
}
|
|
|
|
disp_clk_voltage_mapping_table->num_max_voltage_levels = i;
|
|
|
|
if (disp_clk_voltage_mapping_table->num_max_voltage_levels == 0) {
|
|
disp_clk_voltage_mapping_table->display_clock_frequency[0] = 80000;
|
|
disp_clk_voltage_mapping_table->num_max_voltage_levels = 1;
|
|
}
|
|
}
|
|
|
|
void sumo_construct_sclk_voltage_mapping_table(struct radeon_device *rdev,
|
|
struct sumo_sclk_voltage_mapping_table *sclk_voltage_mapping_table,
|
|
ATOM_AVAILABLE_SCLK_LIST *table)
|
|
{
|
|
u32 i;
|
|
u32 n = 0;
|
|
u32 prev_sclk = 0;
|
|
|
|
for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
|
|
if (table[i].ulSupportedSCLK > prev_sclk) {
|
|
sclk_voltage_mapping_table->entries[n].sclk_frequency =
|
|
table[i].ulSupportedSCLK;
|
|
sclk_voltage_mapping_table->entries[n].vid_2bit =
|
|
table[i].usVoltageIndex;
|
|
prev_sclk = table[i].ulSupportedSCLK;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
sclk_voltage_mapping_table->num_max_dpm_entries = n;
|
|
}
|
|
|
|
void sumo_construct_vid_mapping_table(struct radeon_device *rdev,
|
|
struct sumo_vid_mapping_table *vid_mapping_table,
|
|
ATOM_AVAILABLE_SCLK_LIST *table)
|
|
{
|
|
u32 i, j;
|
|
|
|
for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) {
|
|
if (table[i].ulSupportedSCLK != 0) {
|
|
vid_mapping_table->entries[table[i].usVoltageIndex].vid_7bit =
|
|
table[i].usVoltageID;
|
|
vid_mapping_table->entries[table[i].usVoltageIndex].vid_2bit =
|
|
table[i].usVoltageIndex;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) {
|
|
if (vid_mapping_table->entries[i].vid_7bit == 0) {
|
|
for (j = i + 1; j < SUMO_MAX_NUMBER_VOLTAGES; j++) {
|
|
if (vid_mapping_table->entries[j].vid_7bit != 0) {
|
|
vid_mapping_table->entries[i] =
|
|
vid_mapping_table->entries[j];
|
|
vid_mapping_table->entries[j].vid_7bit = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (j == SUMO_MAX_NUMBER_VOLTAGES)
|
|
break;
|
|
}
|
|
}
|
|
|
|
vid_mapping_table->num_entries = i;
|
|
}
|
|
|
|
union igp_info {
|
|
struct _ATOM_INTEGRATED_SYSTEM_INFO info;
|
|
struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
|
|
struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
|
|
struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
|
|
};
|
|
|
|
static int sumo_parse_sys_info_table(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct radeon_mode_info *mode_info = &rdev->mode_info;
|
|
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
|
|
union igp_info *igp_info;
|
|
u8 frev, crev;
|
|
u16 data_offset;
|
|
int i;
|
|
|
|
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
|
|
&frev, &crev, &data_offset)) {
|
|
igp_info = (union igp_info *)(mode_info->atom_context->bios +
|
|
data_offset);
|
|
|
|
if (crev != 6) {
|
|
DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
|
|
return -EINVAL;
|
|
}
|
|
pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_6.ulBootUpEngineClock);
|
|
pi->sys_info.min_sclk = le32_to_cpu(igp_info->info_6.ulMinEngineClock);
|
|
pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_6.ulBootUpUMAClock);
|
|
pi->sys_info.bootup_nb_voltage_index =
|
|
le16_to_cpu(igp_info->info_6.usBootUpNBVoltage);
|
|
if (igp_info->info_6.ucHtcTmpLmt == 0)
|
|
pi->sys_info.htc_tmp_lmt = 203;
|
|
else
|
|
pi->sys_info.htc_tmp_lmt = igp_info->info_6.ucHtcTmpLmt;
|
|
if (igp_info->info_6.ucHtcHystLmt == 0)
|
|
pi->sys_info.htc_hyst_lmt = 5;
|
|
else
|
|
pi->sys_info.htc_hyst_lmt = igp_info->info_6.ucHtcHystLmt;
|
|
if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
|
|
DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
|
|
}
|
|
for (i = 0; i < NUMBER_OF_M3ARB_PARAM_SETS; i++) {
|
|
pi->sys_info.csr_m3_arb_cntl_default[i] =
|
|
le32_to_cpu(igp_info->info_6.ulCSR_M3_ARB_CNTL_DEFAULT[i]);
|
|
pi->sys_info.csr_m3_arb_cntl_uvd[i] =
|
|
le32_to_cpu(igp_info->info_6.ulCSR_M3_ARB_CNTL_UVD[i]);
|
|
pi->sys_info.csr_m3_arb_cntl_fs3d[i] =
|
|
le32_to_cpu(igp_info->info_6.ulCSR_M3_ARB_CNTL_FS3D[i]);
|
|
}
|
|
pi->sys_info.sclk_dpm_boost_margin =
|
|
le32_to_cpu(igp_info->info_6.SclkDpmBoostMargin);
|
|
pi->sys_info.sclk_dpm_throttle_margin =
|
|
le32_to_cpu(igp_info->info_6.SclkDpmThrottleMargin);
|
|
pi->sys_info.sclk_dpm_tdp_limit_pg =
|
|
le16_to_cpu(igp_info->info_6.SclkDpmTdpLimitPG);
|
|
pi->sys_info.gnb_tdp_limit = le16_to_cpu(igp_info->info_6.GnbTdpLimit);
|
|
pi->sys_info.sclk_dpm_tdp_limit_boost =
|
|
le16_to_cpu(igp_info->info_6.SclkDpmTdpLimitBoost);
|
|
pi->sys_info.boost_sclk = le32_to_cpu(igp_info->info_6.ulBoostEngineCLock);
|
|
pi->sys_info.boost_vid_2bit = igp_info->info_6.ulBoostVid_2bit;
|
|
if (igp_info->info_6.EnableBoost)
|
|
pi->sys_info.enable_boost = true;
|
|
else
|
|
pi->sys_info.enable_boost = false;
|
|
sumo_construct_display_voltage_mapping_table(rdev,
|
|
&pi->sys_info.disp_clk_voltage_mapping_table,
|
|
igp_info->info_6.sDISPCLK_Voltage);
|
|
sumo_construct_sclk_voltage_mapping_table(rdev,
|
|
&pi->sys_info.sclk_voltage_mapping_table,
|
|
igp_info->info_6.sAvail_SCLK);
|
|
sumo_construct_vid_mapping_table(rdev, &pi->sys_info.vid_mapping_table,
|
|
igp_info->info_6.sAvail_SCLK);
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void sumo_construct_boot_and_acpi_state(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
|
|
pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
|
|
pi->boot_pl.ds_divider_index = 0;
|
|
pi->boot_pl.ss_divider_index = 0;
|
|
pi->boot_pl.allow_gnb_slow = 1;
|
|
pi->acpi_pl = pi->boot_pl;
|
|
pi->current_ps.num_levels = 1;
|
|
pi->current_ps.levels[0] = pi->boot_pl;
|
|
}
|
|
|
|
int sumo_dpm_init(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi;
|
|
u32 hw_rev = (RREG32(HW_REV) & ATI_REV_ID_MASK) >> ATI_REV_ID_SHIFT;
|
|
int ret;
|
|
|
|
pi = kzalloc(sizeof(struct sumo_power_info), GFP_KERNEL);
|
|
if (pi == NULL)
|
|
return -ENOMEM;
|
|
rdev->pm.dpm.priv = pi;
|
|
|
|
pi->driver_nbps_policy_disable = false;
|
|
if ((rdev->family == CHIP_PALM) && (hw_rev < 3))
|
|
pi->disable_gfx_power_gating_in_uvd = true;
|
|
else
|
|
pi->disable_gfx_power_gating_in_uvd = false;
|
|
pi->enable_alt_vddnb = true;
|
|
pi->enable_sclk_ds = true;
|
|
pi->enable_dynamic_m3_arbiter = false;
|
|
pi->enable_dynamic_patch_ps = true;
|
|
/* Some PALM chips don't seem to properly ungate gfx when UVD is in use;
|
|
* for now just disable gfx PG.
|
|
*/
|
|
if (rdev->family == CHIP_PALM)
|
|
pi->enable_gfx_power_gating = false;
|
|
else
|
|
pi->enable_gfx_power_gating = true;
|
|
pi->enable_gfx_clock_gating = true;
|
|
pi->enable_mg_clock_gating = true;
|
|
pi->enable_auto_thermal_throttling = true;
|
|
|
|
ret = sumo_parse_sys_info_table(rdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sumo_construct_boot_and_acpi_state(rdev);
|
|
|
|
ret = r600_get_platform_caps(rdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = sumo_parse_power_table(rdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pi->pasi = CYPRESS_HASI_DFLT;
|
|
pi->asi = RV770_ASI_DFLT;
|
|
pi->thermal_auto_throttling = pi->sys_info.htc_tmp_lmt;
|
|
pi->enable_boost = pi->sys_info.enable_boost;
|
|
pi->enable_dpm = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sumo_dpm_print_power_state(struct radeon_device *rdev,
|
|
struct radeon_ps *rps)
|
|
{
|
|
int i;
|
|
struct sumo_ps *ps = sumo_get_ps(rps);
|
|
|
|
r600_dpm_print_class_info(rps->class, rps->class2);
|
|
r600_dpm_print_cap_info(rps->caps);
|
|
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
|
|
for (i = 0; i < ps->num_levels; i++) {
|
|
struct sumo_pl *pl = &ps->levels[i];
|
|
printk("\t\tpower level %d sclk: %u vddc: %u\n",
|
|
i, pl->sclk,
|
|
sumo_convert_voltage_index_to_value(rdev, pl->vddc_index));
|
|
}
|
|
r600_dpm_print_ps_status(rdev, rps);
|
|
}
|
|
|
|
void sumo_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
|
|
struct seq_file *m)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct radeon_ps *rps = &pi->current_rps;
|
|
struct sumo_ps *ps = sumo_get_ps(rps);
|
|
struct sumo_pl *pl;
|
|
u32 current_index =
|
|
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) >>
|
|
CURR_INDEX_SHIFT;
|
|
|
|
if (current_index == BOOST_DPM_LEVEL) {
|
|
pl = &pi->boost_pl;
|
|
seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
|
|
seq_printf(m, "power level %d sclk: %u vddc: %u\n",
|
|
current_index, pl->sclk,
|
|
sumo_convert_voltage_index_to_value(rdev, pl->vddc_index));
|
|
} else if (current_index >= ps->num_levels) {
|
|
seq_printf(m, "invalid dpm profile %d\n", current_index);
|
|
} else {
|
|
pl = &ps->levels[current_index];
|
|
seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
|
|
seq_printf(m, "power level %d sclk: %u vddc: %u\n",
|
|
current_index, pl->sclk,
|
|
sumo_convert_voltage_index_to_value(rdev, pl->vddc_index));
|
|
}
|
|
}
|
|
|
|
u32 sumo_dpm_get_current_sclk(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct radeon_ps *rps = &pi->current_rps;
|
|
struct sumo_ps *ps = sumo_get_ps(rps);
|
|
struct sumo_pl *pl;
|
|
u32 current_index =
|
|
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) >>
|
|
CURR_INDEX_SHIFT;
|
|
|
|
if (current_index == BOOST_DPM_LEVEL) {
|
|
pl = &pi->boost_pl;
|
|
return pl->sclk;
|
|
} else if (current_index >= ps->num_levels) {
|
|
return 0;
|
|
} else {
|
|
pl = &ps->levels[current_index];
|
|
return pl->sclk;
|
|
}
|
|
}
|
|
|
|
u32 sumo_dpm_get_current_mclk(struct radeon_device *rdev)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
return pi->sys_info.bootup_uma_clk;
|
|
}
|
|
|
|
void sumo_dpm_fini(struct radeon_device *rdev)
|
|
{
|
|
int i;
|
|
|
|
sumo_cleanup_asic(rdev); /* ??? */
|
|
|
|
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
|
|
kfree(rdev->pm.dpm.ps[i].ps_priv);
|
|
}
|
|
kfree(rdev->pm.dpm.ps);
|
|
kfree(rdev->pm.dpm.priv);
|
|
}
|
|
|
|
u32 sumo_dpm_get_sclk(struct radeon_device *rdev, bool low)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct sumo_ps *requested_state = sumo_get_ps(&pi->requested_rps);
|
|
|
|
if (low)
|
|
return requested_state->levels[0].sclk;
|
|
else
|
|
return requested_state->levels[requested_state->num_levels - 1].sclk;
|
|
}
|
|
|
|
u32 sumo_dpm_get_mclk(struct radeon_device *rdev, bool low)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
|
|
return pi->sys_info.bootup_uma_clk;
|
|
}
|
|
|
|
int sumo_dpm_force_performance_level(struct radeon_device *rdev,
|
|
enum radeon_dpm_forced_level level)
|
|
{
|
|
struct sumo_power_info *pi = sumo_get_pi(rdev);
|
|
struct radeon_ps *rps = &pi->current_rps;
|
|
struct sumo_ps *ps = sumo_get_ps(rps);
|
|
int i;
|
|
|
|
if (ps->num_levels <= 1)
|
|
return 0;
|
|
|
|
if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
|
|
if (pi->enable_boost)
|
|
sumo_enable_boost(rdev, rps, false);
|
|
sumo_power_level_enable(rdev, ps->num_levels - 1, true);
|
|
sumo_set_forced_level(rdev, ps->num_levels - 1);
|
|
sumo_set_forced_mode_enabled(rdev);
|
|
for (i = 0; i < ps->num_levels - 1; i++) {
|
|
sumo_power_level_enable(rdev, i, false);
|
|
}
|
|
sumo_set_forced_mode(rdev, false);
|
|
sumo_set_forced_mode_enabled(rdev);
|
|
sumo_set_forced_mode(rdev, false);
|
|
} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
|
|
if (pi->enable_boost)
|
|
sumo_enable_boost(rdev, rps, false);
|
|
sumo_power_level_enable(rdev, 0, true);
|
|
sumo_set_forced_level(rdev, 0);
|
|
sumo_set_forced_mode_enabled(rdev);
|
|
for (i = 1; i < ps->num_levels; i++) {
|
|
sumo_power_level_enable(rdev, i, false);
|
|
}
|
|
sumo_set_forced_mode(rdev, false);
|
|
sumo_set_forced_mode_enabled(rdev);
|
|
sumo_set_forced_mode(rdev, false);
|
|
} else {
|
|
for (i = 0; i < ps->num_levels; i++) {
|
|
sumo_power_level_enable(rdev, i, true);
|
|
}
|
|
if (pi->enable_boost)
|
|
sumo_enable_boost(rdev, rps, true);
|
|
}
|
|
|
|
rdev->pm.dpm.forced_level = level;
|
|
|
|
return 0;
|
|
}
|