Previously if inode is with inline data, we will try to invalid partial inline data in page #0 when we truncate size of inode in truncate_partial_data_page(). And then we set page #0 to dirty, after this we can synchronize inode page with page #0 at ->writepage(). But sometimes we will fail to operate page #0 in truncate_partial_data_page() due to below reason: a) if offset is zero, we will skip setting page #0 to dirty. b) if page #0 is not uptodate, we will fail to update it as it has no mapping data. So with following operations, we will meet recent data which should be truncated. 1.write inline data to file 2.sync first data page to inode page 3.truncate file size to 0 4.truncate file size to max_inline_size 5.echo 1 > /proc/sys/vm/drop_caches 6.read file --> meet original inline data which is remained in inode page. This patch renames truncate_inline_data() to truncate_inline_inode() for code readability, then use truncate_inline_inode() to truncate inline data in inode page in truncate_blocks() and truncate page #0 in truncate_partial_data_page() for fixing. v2: o truncate partially #0 page in truncate_partial_data_page to avoid keeping old data in #0 page. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
533 lines
12 KiB
C
533 lines
12 KiB
C
/*
|
|
* fs/f2fs/inline.c
|
|
* Copyright (c) 2013, Intel Corporation
|
|
* Authors: Huajun Li <huajun.li@intel.com>
|
|
* Haicheng Li <haicheng.li@intel.com>
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
|
|
#include "f2fs.h"
|
|
|
|
bool f2fs_may_inline(struct inode *inode)
|
|
{
|
|
if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
|
|
return false;
|
|
|
|
if (f2fs_is_atomic_file(inode))
|
|
return false;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return false;
|
|
|
|
if (i_size_read(inode) > MAX_INLINE_DATA)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void read_inline_data(struct page *page, struct page *ipage)
|
|
{
|
|
void *src_addr, *dst_addr;
|
|
|
|
if (PageUptodate(page))
|
|
return;
|
|
|
|
f2fs_bug_on(F2FS_P_SB(page), page->index);
|
|
|
|
zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
|
|
|
|
/* Copy the whole inline data block */
|
|
src_addr = inline_data_addr(ipage);
|
|
dst_addr = kmap_atomic(page);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(dst_addr);
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
bool truncate_inline_inode(struct page *ipage, u64 from)
|
|
{
|
|
void *addr;
|
|
|
|
/*
|
|
* we should never truncate inline data past max inline data size,
|
|
* because we always convert inline inode to normal one before
|
|
* truncating real data if new size is past max inline data size.
|
|
*/
|
|
f2fs_bug_on(F2FS_P_SB(ipage), from > MAX_INLINE_DATA);
|
|
|
|
if (from >= MAX_INLINE_DATA)
|
|
return false;
|
|
|
|
addr = inline_data_addr(ipage);
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE);
|
|
memset(addr + from, 0, MAX_INLINE_DATA - from);
|
|
|
|
return true;
|
|
}
|
|
|
|
int f2fs_read_inline_data(struct inode *inode, struct page *page)
|
|
{
|
|
struct page *ipage;
|
|
|
|
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
unlock_page(page);
|
|
return PTR_ERR(ipage);
|
|
}
|
|
|
|
if (!f2fs_has_inline_data(inode)) {
|
|
f2fs_put_page(ipage, 1);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (page->index)
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
else
|
|
read_inline_data(page, ipage);
|
|
|
|
SetPageUptodate(page);
|
|
f2fs_put_page(ipage, 1);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
|
|
{
|
|
void *src_addr, *dst_addr;
|
|
struct f2fs_io_info fio = {
|
|
.type = DATA,
|
|
.rw = WRITE_SYNC | REQ_PRIO,
|
|
};
|
|
int dirty, err;
|
|
|
|
f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
|
|
|
|
if (!f2fs_exist_data(dn->inode))
|
|
goto clear_out;
|
|
|
|
err = f2fs_reserve_block(dn, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA);
|
|
|
|
if (PageUptodate(page))
|
|
goto no_update;
|
|
|
|
zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
|
|
|
|
/* Copy the whole inline data block */
|
|
src_addr = inline_data_addr(dn->inode_page);
|
|
dst_addr = kmap_atomic(page);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(dst_addr);
|
|
SetPageUptodate(page);
|
|
no_update:
|
|
/* clear dirty state */
|
|
dirty = clear_page_dirty_for_io(page);
|
|
|
|
/* write data page to try to make data consistent */
|
|
set_page_writeback(page);
|
|
fio.blk_addr = dn->data_blkaddr;
|
|
write_data_page(page, dn, &fio);
|
|
f2fs_update_extent_cache(dn);
|
|
f2fs_wait_on_page_writeback(page, DATA);
|
|
if (dirty)
|
|
inode_dec_dirty_pages(dn->inode);
|
|
|
|
/* this converted inline_data should be recovered. */
|
|
set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
|
|
|
|
/* clear inline data and flag after data writeback */
|
|
truncate_inline_inode(dn->inode_page, 0);
|
|
clear_out:
|
|
stat_dec_inline_inode(dn->inode);
|
|
f2fs_clear_inline_inode(dn->inode);
|
|
sync_inode_page(dn);
|
|
f2fs_put_dnode(dn);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_convert_inline_inode(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
struct page *ipage, *page;
|
|
int err = 0;
|
|
|
|
page = grab_cache_page(inode->i_mapping, 0);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto out;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, ipage, 0);
|
|
|
|
if (f2fs_has_inline_data(inode))
|
|
err = f2fs_convert_inline_page(&dn, page);
|
|
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
f2fs_unlock_op(sbi);
|
|
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_write_inline_data(struct inode *inode, struct page *page)
|
|
{
|
|
void *src_addr, *dst_addr;
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!f2fs_has_inline_data(inode)) {
|
|
f2fs_put_dnode(&dn);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
f2fs_bug_on(F2FS_I_SB(inode), page->index);
|
|
|
|
f2fs_wait_on_page_writeback(dn.inode_page, NODE);
|
|
src_addr = kmap_atomic(page);
|
|
dst_addr = inline_data_addr(dn.inode_page);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
|
|
kunmap_atomic(src_addr);
|
|
|
|
set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
|
|
set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
|
|
|
|
sync_inode_page(&dn);
|
|
f2fs_put_dnode(&dn);
|
|
return 0;
|
|
}
|
|
|
|
bool recover_inline_data(struct inode *inode, struct page *npage)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode *ri = NULL;
|
|
void *src_addr, *dst_addr;
|
|
struct page *ipage;
|
|
|
|
/*
|
|
* The inline_data recovery policy is as follows.
|
|
* [prev.] [next] of inline_data flag
|
|
* o o -> recover inline_data
|
|
* o x -> remove inline_data, and then recover data blocks
|
|
* x o -> remove inline_data, and then recover inline_data
|
|
* x x -> recover data blocks
|
|
*/
|
|
if (IS_INODE(npage))
|
|
ri = F2FS_INODE(npage);
|
|
|
|
if (f2fs_has_inline_data(inode) &&
|
|
ri && (ri->i_inline & F2FS_INLINE_DATA)) {
|
|
process_inline:
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
f2fs_bug_on(sbi, IS_ERR(ipage));
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE);
|
|
|
|
src_addr = inline_data_addr(npage);
|
|
dst_addr = inline_data_addr(ipage);
|
|
memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
|
|
|
|
set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
|
|
set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
|
|
|
|
update_inode(inode, ipage);
|
|
f2fs_put_page(ipage, 1);
|
|
return true;
|
|
}
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
f2fs_bug_on(sbi, IS_ERR(ipage));
|
|
truncate_inline_inode(ipage, 0);
|
|
f2fs_clear_inline_inode(inode);
|
|
update_inode(inode, ipage);
|
|
f2fs_put_page(ipage, 1);
|
|
} else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
|
|
truncate_blocks(inode, 0, false);
|
|
goto process_inline;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
|
|
struct qstr *name, struct page **res_page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
|
struct f2fs_inline_dentry *inline_dentry;
|
|
struct f2fs_dir_entry *de;
|
|
struct f2fs_dentry_ptr d;
|
|
struct page *ipage;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return NULL;
|
|
|
|
inline_dentry = inline_data_addr(ipage);
|
|
|
|
make_dentry_ptr(&d, (void *)inline_dentry, 2);
|
|
de = find_target_dentry(name, NULL, &d);
|
|
|
|
unlock_page(ipage);
|
|
if (de)
|
|
*res_page = ipage;
|
|
else
|
|
f2fs_put_page(ipage, 0);
|
|
|
|
/*
|
|
* For the most part, it should be a bug when name_len is zero.
|
|
* We stop here for figuring out where the bugs has occurred.
|
|
*/
|
|
f2fs_bug_on(sbi, d.max < 0);
|
|
return de;
|
|
}
|
|
|
|
struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
|
|
struct page **p)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
|
|
struct page *ipage;
|
|
struct f2fs_dir_entry *de;
|
|
struct f2fs_inline_dentry *dentry_blk;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return NULL;
|
|
|
|
dentry_blk = inline_data_addr(ipage);
|
|
de = &dentry_blk->dentry[1];
|
|
*p = ipage;
|
|
unlock_page(ipage);
|
|
return de;
|
|
}
|
|
|
|
int make_empty_inline_dir(struct inode *inode, struct inode *parent,
|
|
struct page *ipage)
|
|
{
|
|
struct f2fs_inline_dentry *dentry_blk;
|
|
struct f2fs_dentry_ptr d;
|
|
|
|
dentry_blk = inline_data_addr(ipage);
|
|
|
|
make_dentry_ptr(&d, (void *)dentry_blk, 2);
|
|
do_make_empty_dir(inode, parent, &d);
|
|
|
|
set_page_dirty(ipage);
|
|
|
|
/* update i_size to MAX_INLINE_DATA */
|
|
if (i_size_read(inode) < MAX_INLINE_DATA) {
|
|
i_size_write(inode, MAX_INLINE_DATA);
|
|
set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
|
|
struct f2fs_inline_dentry *inline_dentry)
|
|
{
|
|
struct page *page;
|
|
struct dnode_of_data dn;
|
|
struct f2fs_dentry_block *dentry_blk;
|
|
int err;
|
|
|
|
page = grab_cache_page(dir->i_mapping, 0);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
set_new_dnode(&dn, dir, ipage, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, 0);
|
|
if (err)
|
|
goto out;
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA);
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
|
|
dentry_blk = kmap_atomic(page);
|
|
|
|
/* copy data from inline dentry block to new dentry block */
|
|
memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
|
|
INLINE_DENTRY_BITMAP_SIZE);
|
|
memcpy(dentry_blk->dentry, inline_dentry->dentry,
|
|
sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
|
|
memcpy(dentry_blk->filename, inline_dentry->filename,
|
|
NR_INLINE_DENTRY * F2FS_SLOT_LEN);
|
|
|
|
kunmap_atomic(dentry_blk);
|
|
SetPageUptodate(page);
|
|
set_page_dirty(page);
|
|
|
|
/* clear inline dir and flag after data writeback */
|
|
truncate_inline_inode(ipage, 0);
|
|
|
|
stat_dec_inline_dir(dir);
|
|
clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
|
|
|
|
if (i_size_read(dir) < PAGE_CACHE_SIZE) {
|
|
i_size_write(dir, PAGE_CACHE_SIZE);
|
|
set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
|
|
}
|
|
|
|
sync_inode_page(&dn);
|
|
out:
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
|
|
struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
|
|
struct page *ipage;
|
|
unsigned int bit_pos;
|
|
f2fs_hash_t name_hash;
|
|
size_t namelen = name->len;
|
|
struct f2fs_inline_dentry *dentry_blk = NULL;
|
|
struct f2fs_dentry_ptr d;
|
|
int slots = GET_DENTRY_SLOTS(namelen);
|
|
struct page *page;
|
|
int err = 0;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return PTR_ERR(ipage);
|
|
|
|
dentry_blk = inline_data_addr(ipage);
|
|
bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
|
|
slots, NR_INLINE_DENTRY);
|
|
if (bit_pos >= NR_INLINE_DENTRY) {
|
|
err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
|
|
if (!err)
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
down_write(&F2FS_I(inode)->i_sem);
|
|
page = init_inode_metadata(inode, dir, name, ipage);
|
|
if (IS_ERR(page)) {
|
|
err = PTR_ERR(page);
|
|
goto fail;
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(ipage, NODE);
|
|
|
|
name_hash = f2fs_dentry_hash(name);
|
|
make_dentry_ptr(&d, (void *)dentry_blk, 2);
|
|
f2fs_update_dentry(inode, &d, name, name_hash, bit_pos);
|
|
|
|
set_page_dirty(ipage);
|
|
|
|
/* we don't need to mark_inode_dirty now */
|
|
F2FS_I(inode)->i_pino = dir->i_ino;
|
|
update_inode(inode, page);
|
|
f2fs_put_page(page, 1);
|
|
|
|
update_parent_metadata(dir, inode, 0);
|
|
fail:
|
|
up_write(&F2FS_I(inode)->i_sem);
|
|
|
|
if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
|
|
update_inode(dir, ipage);
|
|
clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
|
|
}
|
|
out:
|
|
f2fs_put_page(ipage, 1);
|
|
return err;
|
|
}
|
|
|
|
void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
|
|
struct inode *dir, struct inode *inode)
|
|
{
|
|
struct f2fs_inline_dentry *inline_dentry;
|
|
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
|
|
unsigned int bit_pos;
|
|
int i;
|
|
|
|
lock_page(page);
|
|
f2fs_wait_on_page_writeback(page, NODE);
|
|
|
|
inline_dentry = inline_data_addr(page);
|
|
bit_pos = dentry - inline_dentry->dentry;
|
|
for (i = 0; i < slots; i++)
|
|
test_and_clear_bit_le(bit_pos + i,
|
|
&inline_dentry->dentry_bitmap);
|
|
|
|
set_page_dirty(page);
|
|
|
|
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
|
|
|
|
if (inode)
|
|
f2fs_drop_nlink(dir, inode, page);
|
|
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
bool f2fs_empty_inline_dir(struct inode *dir)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
|
|
struct page *ipage;
|
|
unsigned int bit_pos = 2;
|
|
struct f2fs_inline_dentry *dentry_blk;
|
|
|
|
ipage = get_node_page(sbi, dir->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return false;
|
|
|
|
dentry_blk = inline_data_addr(ipage);
|
|
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
|
|
NR_INLINE_DENTRY,
|
|
bit_pos);
|
|
|
|
f2fs_put_page(ipage, 1);
|
|
|
|
if (bit_pos < NR_INLINE_DENTRY)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct f2fs_inline_dentry *inline_dentry = NULL;
|
|
struct page *ipage = NULL;
|
|
struct f2fs_dentry_ptr d;
|
|
|
|
if (ctx->pos == NR_INLINE_DENTRY)
|
|
return 0;
|
|
|
|
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
|
|
if (IS_ERR(ipage))
|
|
return PTR_ERR(ipage);
|
|
|
|
inline_dentry = inline_data_addr(ipage);
|
|
|
|
make_dentry_ptr(&d, (void *)inline_dentry, 2);
|
|
|
|
if (!f2fs_fill_dentries(ctx, &d, 0))
|
|
ctx->pos = NR_INLINE_DENTRY;
|
|
|
|
f2fs_put_page(ipage, 1);
|
|
return 0;
|
|
}
|