kernel-fxtec-pro1x/dsp/audio_calibration.c
Asish Bhattacharya 5faacb3a7e ASoC: allow drivers to compile both static and dynamic
Based on where the code is synced the driver should allow
both static and dynamic linked compilation.
Also remove __exit for modules loaded from another common
init/exit functions.

Change-Id: Ib58f152002aba3af4446f9bbd9b82c279212bd0a
Signed-off-by: Asish Bhattacharya <asishb@codeaurora.org>
2017-12-07 19:57:27 +05:30

635 lines
15 KiB
C

/* Copyright (c) 2014, 2016-2017 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/mutex.h>
#include <linux/msm_ion.h>
#include <dsp/msm_audio_ion.h>
#include <dsp/audio_calibration.h>
#include <dsp/audio_cal_utils.h>
struct audio_cal_client_info {
struct list_head list;
struct audio_cal_callbacks *callbacks;
};
struct audio_cal_info {
struct mutex common_lock;
struct mutex cal_mutex[MAX_CAL_TYPES];
struct list_head client_info[MAX_CAL_TYPES];
int ref_count;
};
static struct audio_cal_info audio_cal;
static bool callbacks_are_equal(struct audio_cal_callbacks *callback1,
struct audio_cal_callbacks *callback2)
{
bool ret = true;
struct audio_cal_callbacks *call1 = callback1;
struct audio_cal_callbacks *call2 = callback2;
pr_debug("%s\n", __func__);
if ((call1 == NULL) && (call2 == NULL))
ret = true;
else if ((call1 == NULL) || (call2 == NULL))
ret = false;
else if ((call1->alloc != call2->alloc) ||
(call1->dealloc != call2->dealloc) ||
(call1->pre_cal != call2->pre_cal) ||
(call1->set_cal != call2->set_cal) ||
(call1->get_cal != call2->get_cal) ||
(call1->post_cal != call2->post_cal))
ret = false;
return ret;
}
int audio_cal_deregister(int num_cal_types,
struct audio_cal_reg *reg_data)
{
int ret = 0;
int i = 0;
struct list_head *ptr, *next;
struct audio_cal_client_info *client_info_node = NULL;
pr_debug("%s\n", __func__);
if (reg_data == NULL) {
pr_err("%s: reg_data is NULL!\n", __func__);
ret = -EINVAL;
goto done;
} else if ((num_cal_types <= 0) ||
(num_cal_types > MAX_CAL_TYPES)) {
pr_err("%s: num_cal_types of %d is Invalid!\n",
__func__, num_cal_types);
ret = -EINVAL;
goto done;
}
for (; i < num_cal_types; i++) {
if ((reg_data[i].cal_type < 0) ||
(reg_data[i].cal_type >= MAX_CAL_TYPES)) {
pr_err("%s: cal type %d at index %d is Invalid!\n",
__func__, reg_data[i].cal_type, i);
ret = -EINVAL;
continue;
}
mutex_lock(&audio_cal.cal_mutex[reg_data[i].cal_type]);
list_for_each_safe(ptr, next,
&audio_cal.client_info[reg_data[i].cal_type]) {
client_info_node = list_entry(ptr,
struct audio_cal_client_info, list);
if (callbacks_are_equal(client_info_node->callbacks,
&reg_data[i].callbacks)) {
list_del(&client_info_node->list);
kfree(client_info_node->callbacks);
client_info_node->callbacks = NULL;
kfree(client_info_node);
client_info_node = NULL;
break;
}
}
mutex_unlock(&audio_cal.cal_mutex[reg_data[i].cal_type]);
}
done:
return ret;
}
int audio_cal_register(int num_cal_types,
struct audio_cal_reg *reg_data)
{
int ret = 0;
int i = 0;
struct audio_cal_client_info *client_info_node = NULL;
struct audio_cal_callbacks *callback_node = NULL;
pr_debug("%s\n", __func__);
if (reg_data == NULL) {
pr_err("%s: callbacks are NULL!\n", __func__);
ret = -EINVAL;
goto done;
} else if ((num_cal_types <= 0) ||
(num_cal_types > MAX_CAL_TYPES)) {
pr_err("%s: num_cal_types of %d is Invalid!\n",
__func__, num_cal_types);
ret = -EINVAL;
goto done;
}
for (; i < num_cal_types; i++) {
if ((reg_data[i].cal_type < 0) ||
(reg_data[i].cal_type >= MAX_CAL_TYPES)) {
pr_err("%s: cal type %d at index %d is Invalid!\n",
__func__, reg_data[i].cal_type, i);
ret = -EINVAL;
goto err;
}
client_info_node = kmalloc(sizeof(*client_info_node),
GFP_KERNEL);
if (client_info_node == NULL) {
ret = -ENOMEM;
goto err;
}
INIT_LIST_HEAD(&client_info_node->list);
callback_node = kmalloc(sizeof(*callback_node),
GFP_KERNEL);
if (callback_node == NULL) {
ret = -ENOMEM;
goto err;
}
memcpy(callback_node, &reg_data[i].callbacks,
sizeof(*callback_node));
client_info_node->callbacks = callback_node;
mutex_lock(&audio_cal.cal_mutex[reg_data[i].cal_type]);
list_add_tail(&client_info_node->list,
&audio_cal.client_info[reg_data[i].cal_type]);
mutex_unlock(&audio_cal.cal_mutex[reg_data[i].cal_type]);
}
done:
return ret;
err:
audio_cal_deregister(num_cal_types, reg_data);
return ret;
}
static int call_allocs(int32_t cal_type,
size_t cal_type_size, void *data)
{
int ret = 0;
int ret2 = 0;
struct list_head *ptr, *next;
struct audio_cal_client_info *client_info_node = NULL;
pr_debug("%s\n", __func__);
list_for_each_safe(ptr, next,
&audio_cal.client_info[cal_type]) {
client_info_node = list_entry(ptr,
struct audio_cal_client_info, list);
if (client_info_node->callbacks->alloc == NULL)
continue;
ret2 = client_info_node->callbacks->
alloc(cal_type, cal_type_size, data);
if (ret2 < 0) {
pr_err("%s: alloc failed!\n", __func__);
ret = ret2;
}
}
return ret;
}
static int call_deallocs(int32_t cal_type,
size_t cal_type_size, void *data)
{
int ret = 0;
int ret2 = 0;
struct list_head *ptr, *next;
struct audio_cal_client_info *client_info_node = NULL;
pr_debug("%s cal type %d\n", __func__, cal_type);
list_for_each_safe(ptr, next,
&audio_cal.client_info[cal_type]) {
client_info_node = list_entry(ptr,
struct audio_cal_client_info, list);
if (client_info_node->callbacks->dealloc == NULL)
continue;
ret2 = client_info_node->callbacks->
dealloc(cal_type, cal_type_size, data);
if (ret2 < 0) {
pr_err("%s: dealloc failed!\n", __func__);
ret = ret2;
}
}
return ret;
}
static int call_pre_cals(int32_t cal_type,
size_t cal_type_size, void *data)
{
int ret = 0;
int ret2 = 0;
struct list_head *ptr, *next;
struct audio_cal_client_info *client_info_node = NULL;
pr_debug("%s cal type %d\n", __func__, cal_type);
list_for_each_safe(ptr, next,
&audio_cal.client_info[cal_type]) {
client_info_node = list_entry(ptr,
struct audio_cal_client_info, list);
if (client_info_node->callbacks->pre_cal == NULL)
continue;
ret2 = client_info_node->callbacks->
pre_cal(cal_type, cal_type_size, data);
if (ret2 < 0) {
pr_err("%s: pre_cal failed!\n", __func__);
ret = ret2;
}
}
return ret;
}
static int call_post_cals(int32_t cal_type,
size_t cal_type_size, void *data)
{
int ret = 0;
int ret2 = 0;
struct list_head *ptr, *next;
struct audio_cal_client_info *client_info_node = NULL;
pr_debug("%s cal type %d\n", __func__, cal_type);
list_for_each_safe(ptr, next,
&audio_cal.client_info[cal_type]) {
client_info_node = list_entry(ptr,
struct audio_cal_client_info, list);
if (client_info_node->callbacks->post_cal == NULL)
continue;
ret2 = client_info_node->callbacks->
post_cal(cal_type, cal_type_size, data);
if (ret2 < 0) {
pr_err("%s: post_cal failed!\n", __func__);
ret = ret2;
}
}
return ret;
}
static int call_set_cals(int32_t cal_type,
size_t cal_type_size, void *data)
{
int ret = 0;
int ret2 = 0;
struct list_head *ptr, *next;
struct audio_cal_client_info *client_info_node = NULL;
pr_debug("%s cal type %d\n", __func__, cal_type);
list_for_each_safe(ptr, next,
&audio_cal.client_info[cal_type]) {
client_info_node = list_entry(ptr,
struct audio_cal_client_info, list);
if (client_info_node->callbacks->set_cal == NULL)
continue;
ret2 = client_info_node->callbacks->
set_cal(cal_type, cal_type_size, data);
if (ret2 < 0) {
pr_err("%s: set_cal failed!\n", __func__);
ret = ret2;
}
}
return ret;
}
static int call_get_cals(int32_t cal_type,
size_t cal_type_size, void *data)
{
int ret = 0;
int ret2 = 0;
struct list_head *ptr, *next;
struct audio_cal_client_info *client_info_node = NULL;
pr_debug("%s cal type %d\n", __func__, cal_type);
list_for_each_safe(ptr, next,
&audio_cal.client_info[cal_type]) {
client_info_node = list_entry(ptr,
struct audio_cal_client_info, list);
if (client_info_node->callbacks->get_cal == NULL)
continue;
ret2 = client_info_node->callbacks->
get_cal(cal_type, cal_type_size, data);
if (ret2 < 0) {
pr_err("%s: get_cal failed!\n", __func__);
ret = ret2;
}
}
return ret;
}
static int audio_cal_open(struct inode *inode, struct file *f)
{
int ret = 0;
pr_debug("%s\n", __func__);
mutex_lock(&audio_cal.common_lock);
audio_cal.ref_count++;
mutex_unlock(&audio_cal.common_lock);
return ret;
}
static void dealloc_all_clients(void)
{
int i = 0;
struct audio_cal_type_dealloc dealloc_data;
pr_debug("%s\n", __func__);
dealloc_data.cal_hdr.version = VERSION_0_0;
dealloc_data.cal_hdr.buffer_number = ALL_CAL_BLOCKS;
dealloc_data.cal_data.mem_handle = -1;
for (; i < MAX_CAL_TYPES; i++)
call_deallocs(i, sizeof(dealloc_data), &dealloc_data);
}
static int audio_cal_release(struct inode *inode, struct file *f)
{
int ret = 0;
pr_debug("%s\n", __func__);
mutex_lock(&audio_cal.common_lock);
audio_cal.ref_count--;
if (audio_cal.ref_count <= 0) {
audio_cal.ref_count = 0;
dealloc_all_clients();
}
mutex_unlock(&audio_cal.common_lock);
return ret;
}
static long audio_cal_shared_ioctl(struct file *file, unsigned int cmd,
void __user *arg)
{
int ret = 0;
int32_t size;
struct audio_cal_basic *data = NULL;
pr_debug("%s\n", __func__);
switch (cmd) {
case AUDIO_ALLOCATE_CALIBRATION:
case AUDIO_DEALLOCATE_CALIBRATION:
case AUDIO_PREPARE_CALIBRATION:
case AUDIO_SET_CALIBRATION:
case AUDIO_GET_CALIBRATION:
case AUDIO_POST_CALIBRATION:
break;
default:
pr_err("%s: ioctl not found!\n", __func__);
ret = -EFAULT;
goto done;
}
if (copy_from_user(&size, (void *)arg, sizeof(size))) {
pr_err("%s: Could not copy size value from user\n", __func__);
ret = -EFAULT;
goto done;
} else if ((size < sizeof(struct audio_cal_basic))
|| (size > MAX_IOCTL_CMD_SIZE)) {
pr_err("%s: Invalid size sent to driver: %d, max size is %d, min size is %zd\n",
__func__, size, MAX_IOCTL_CMD_SIZE,
sizeof(struct audio_cal_basic));
ret = -EINVAL;
goto done;
}
data = kmalloc(size, GFP_KERNEL);
if (data == NULL) {
ret = -ENOMEM;
goto done;
} else if (copy_from_user(data, (void *)arg, size)) {
pr_err("%s: Could not copy data from user\n",
__func__);
ret = -EFAULT;
goto done;
} else if ((data->hdr.cal_type < 0) ||
(data->hdr.cal_type >= MAX_CAL_TYPES)) {
pr_err("%s: cal type %d is Invalid!\n",
__func__, data->hdr.cal_type);
ret = -EINVAL;
goto done;
} else if ((data->hdr.cal_type_size <
sizeof(struct audio_cal_type_basic)) ||
(data->hdr.cal_type_size >
get_user_cal_type_size(data->hdr.cal_type))) {
pr_err("%s: cal type size %d is Invalid! Max is %zd!\n",
__func__, data->hdr.cal_type_size,
get_user_cal_type_size(data->hdr.cal_type));
ret = -EINVAL;
goto done;
} else if (data->cal_type.cal_hdr.buffer_number < 0) {
pr_err("%s: cal type %d Invalid buffer number %d!\n",
__func__, data->hdr.cal_type,
data->cal_type.cal_hdr.buffer_number);
ret = -EINVAL;
goto done;
} else if ((data->hdr.cal_type_size + sizeof(data->hdr)) > size) {
pr_err("%s: cal type hdr size %zd + cal type size %d is greater than user buffer size %d\n",
__func__, sizeof(data->hdr), data->hdr.cal_type_size,
size);
ret = -EFAULT;
goto done;
}
mutex_lock(&audio_cal.cal_mutex[data->hdr.cal_type]);
switch (cmd) {
case AUDIO_ALLOCATE_CALIBRATION:
ret = call_allocs(data->hdr.cal_type,
data->hdr.cal_type_size, &data->cal_type);
break;
case AUDIO_DEALLOCATE_CALIBRATION:
ret = call_deallocs(data->hdr.cal_type,
data->hdr.cal_type_size, &data->cal_type);
break;
case AUDIO_PREPARE_CALIBRATION:
ret = call_pre_cals(data->hdr.cal_type,
data->hdr.cal_type_size, &data->cal_type);
break;
case AUDIO_SET_CALIBRATION:
ret = call_set_cals(data->hdr.cal_type,
data->hdr.cal_type_size, &data->cal_type);
break;
case AUDIO_GET_CALIBRATION:
ret = call_get_cals(data->hdr.cal_type,
data->hdr.cal_type_size, &data->cal_type);
break;
case AUDIO_POST_CALIBRATION:
ret = call_post_cals(data->hdr.cal_type,
data->hdr.cal_type_size, &data->cal_type);
break;
}
if (cmd == AUDIO_GET_CALIBRATION) {
if (data->hdr.cal_type_size == 0)
goto unlock;
if (data == NULL)
goto unlock;
if (copy_to_user(arg, data,
sizeof(data->hdr) + data->hdr.cal_type_size)) {
pr_err("%s: Could not copy cal type to user\n",
__func__);
ret = -EFAULT;
goto unlock;
}
}
unlock:
mutex_unlock(&audio_cal.cal_mutex[data->hdr.cal_type]);
done:
kfree(data);
return ret;
}
static long audio_cal_ioctl(struct file *f,
unsigned int cmd, unsigned long arg)
{
return audio_cal_shared_ioctl(f, cmd, (void __user *)arg);
}
#ifdef CONFIG_COMPAT
#define AUDIO_ALLOCATE_CALIBRATION32 _IOWR(CAL_IOCTL_MAGIC, \
200, compat_uptr_t)
#define AUDIO_DEALLOCATE_CALIBRATION32 _IOWR(CAL_IOCTL_MAGIC, \
201, compat_uptr_t)
#define AUDIO_PREPARE_CALIBRATION32 _IOWR(CAL_IOCTL_MAGIC, \
202, compat_uptr_t)
#define AUDIO_SET_CALIBRATION32 _IOWR(CAL_IOCTL_MAGIC, \
203, compat_uptr_t)
#define AUDIO_GET_CALIBRATION32 _IOWR(CAL_IOCTL_MAGIC, \
204, compat_uptr_t)
#define AUDIO_POST_CALIBRATION32 _IOWR(CAL_IOCTL_MAGIC, \
205, compat_uptr_t)
static long audio_cal_compat_ioctl(struct file *f,
unsigned int cmd, unsigned long arg)
{
unsigned int cmd64;
int ret = 0;
switch (cmd) {
case AUDIO_ALLOCATE_CALIBRATION32:
cmd64 = AUDIO_ALLOCATE_CALIBRATION;
break;
case AUDIO_DEALLOCATE_CALIBRATION32:
cmd64 = AUDIO_DEALLOCATE_CALIBRATION;
break;
case AUDIO_PREPARE_CALIBRATION32:
cmd64 = AUDIO_PREPARE_CALIBRATION;
break;
case AUDIO_SET_CALIBRATION32:
cmd64 = AUDIO_SET_CALIBRATION;
break;
case AUDIO_GET_CALIBRATION32:
cmd64 = AUDIO_GET_CALIBRATION;
break;
case AUDIO_POST_CALIBRATION32:
cmd64 = AUDIO_POST_CALIBRATION;
break;
default:
pr_err("%s: ioctl not found!\n", __func__);
ret = -EFAULT;
goto done;
}
ret = audio_cal_shared_ioctl(f, cmd64, compat_ptr(arg));
done:
return ret;
}
#endif
static const struct file_operations audio_cal_fops = {
.owner = THIS_MODULE,
.open = audio_cal_open,
.release = audio_cal_release,
.unlocked_ioctl = audio_cal_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = audio_cal_compat_ioctl,
#endif
};
struct miscdevice audio_cal_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_audio_cal",
.fops = &audio_cal_fops,
};
int __init audio_cal_init(void)
{
int i = 0;
pr_debug("%s\n", __func__);
memset(&audio_cal, 0, sizeof(audio_cal));
mutex_init(&audio_cal.common_lock);
for (; i < MAX_CAL_TYPES; i++) {
INIT_LIST_HEAD(&audio_cal.client_info[i]);
mutex_init(&audio_cal.cal_mutex[i]);
}
return misc_register(&audio_cal_misc);
}
void audio_cal_exit(void)
{
int i = 0;
struct list_head *ptr, *next;
struct audio_cal_client_info *client_info_node;
for (; i < MAX_CAL_TYPES; i++) {
list_for_each_safe(ptr, next,
&audio_cal.client_info[i]) {
client_info_node = list_entry(ptr,
struct audio_cal_client_info, list);
list_del(&client_info_node->list);
kfree(client_info_node->callbacks);
client_info_node->callbacks = NULL;
kfree(client_info_node);
client_info_node = NULL;
}
}
misc_deregister(&audio_cal_misc);
}
MODULE_DESCRIPTION("SoC QDSP6v2 Audio Calibration driver");
MODULE_LICENSE("GPL v2");