c04a588029
Highlights: - Support for Power ISA 3.0 (Power9) Radix Tree MMU from Aneesh Kumar K.V - Live patching support for ppc64le (also merged via livepatching.git) Various cleanups & minor fixes from: - Aaro Koskinen, Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Chris Smart, Daniel Axtens, Frederic Barrat, Gavin Shan, Ian Munsie, Lennart Sorensen, Madhavan Srinivasan, Mahesh Salgaonkar, Markus Elfring, Michael Ellerman, Oliver O'Halloran, Paul Gortmaker, Paul Mackerras, Rashmica Gupta, Russell Currey, Suraj Jitindar Singh, Thiago Jung Bauermann, Valentin Rothberg, Vipin K Parashar. General: - Update LMB associativity index during DLPAR add/remove from Nathan Fontenot - Fix branching to OOL handlers in relocatable kernel from Hari Bathini - Add support for userspace Power9 copy/paste from Chris Smart - Always use STRICT_MM_TYPECHECKS from Michael Ellerman - Add mask of possible MMU features from Michael Ellerman PCI: - Enable pass through of NVLink to guests from Alexey Kardashevskiy - Cleanups in preparation for powernv PCI hotplug from Gavin Shan - Don't report error in eeh_pe_reset_and_recover() from Gavin Shan - Restore initial state in eeh_pe_reset_and_recover() from Gavin Shan - Revert "powerpc/eeh: Fix crash in eeh_add_device_early() on Cell" from Guilherme G. Piccoli - Remove the dependency on EEH struct in DDW mechanism from Guilherme G. Piccoli selftests: - Test cp_abort during context switch from Chris Smart - Add several tests for transactional memory support from Rashmica Gupta perf: - Add support for sampling interrupt register state from Anju T - Add support for unwinding perf-stackdump from Chandan Kumar cxl: - Configure the PSL for two CAPI ports on POWER8NVL from Philippe Bergheaud - Allow initialization on timebase sync failures from Frederic Barrat - Increase timeout for detection of AFU mmio hang from Frederic Barrat - Handle num_of_processes larger than can fit in the SPA from Ian Munsie - Ensure PSL interrupt is configured for contexts with no AFU IRQs from Ian Munsie - Add kernel API to allow a context to operate with relocate disabled from Ian Munsie - Check periodically the coherent platform function's state from Christophe Lombard Freescale: - Updates from Scott: "Contains 86xx fixes, minor device tree fixes, an erratum workaround, and a kconfig dependency fix." -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJXPsGzAAoJEFHr6jzI4aWAVoAP/iKdrDe0eYHlVAE9SqnbsiZs lgDxdsC8P3fsmP1G9o/HkKhC82zHl/La8Ztz8dtqa+LkSzbfliWP1ztJsI7GsBFo tyCKzWnX9Rwvd3meHu/o/SQ29TNLm/PbPyyRqpj5QPbJ8XCXkAXR7ZZZqjvcMsJW /AgIr7Cgf53tl9oZzzl/c7CnNHhMq+NBdA71vhWtUx+T97wfJEGyKW6HhZyHDbEU iAki7fu77ZpEqC/Fh9swf0dCGBJ+a132NoMVo0AdV7EQLznUYlQpQEqa+1PyHZOP /ArOzf2mDg6m3PfCo1eiB07v8PnVZ3llEUbVAJNg3GUxbE4SHrqq/kwm0iElm3p/ DvFxerCwdX9vmskJX4wDs+pSZRabXYj9XVMptsgFzA4joWrqqb7mBHqaort88YcY YSljEt1bHyXmiJ+dBya40qARsWUkCVN7ZgEzdxckq0KI3w7g2tqpqIbO2lClWT6t B3GpqQ4jp34+d1M14FB91fIGK7tMvOhSInE0Mv9+tPvRsepXqiiU/SwdAtRlr3m2 zs/K+4FYcVjJ3Rmpgc+tI38PbZxHe212I35YN6L1LP+4ZfAtzz0NyKdooTIBtkbO 19pX4WbBjKq8zK+YutrySncBIrbnI6VjW51vtRhgVKZliPFO/6zKagyU6FbxM+E5 udQES+t3F/9gvtxgxtDe =YvyQ -----END PGP SIGNATURE----- Merge tag 'powerpc-4.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: "Highlights: - Support for Power ISA 3.0 (Power9) Radix Tree MMU from Aneesh Kumar K.V - Live patching support for ppc64le (also merged via livepatching.git) Various cleanups & minor fixes from: - Aaro Koskinen, Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Chris Smart, Daniel Axtens, Frederic Barrat, Gavin Shan, Ian Munsie, Lennart Sorensen, Madhavan Srinivasan, Mahesh Salgaonkar, Markus Elfring, Michael Ellerman, Oliver O'Halloran, Paul Gortmaker, Paul Mackerras, Rashmica Gupta, Russell Currey, Suraj Jitindar Singh, Thiago Jung Bauermann, Valentin Rothberg, Vipin K Parashar. General: - Update LMB associativity index during DLPAR add/remove from Nathan Fontenot - Fix branching to OOL handlers in relocatable kernel from Hari Bathini - Add support for userspace Power9 copy/paste from Chris Smart - Always use STRICT_MM_TYPECHECKS from Michael Ellerman - Add mask of possible MMU features from Michael Ellerman PCI: - Enable pass through of NVLink to guests from Alexey Kardashevskiy - Cleanups in preparation for powernv PCI hotplug from Gavin Shan - Don't report error in eeh_pe_reset_and_recover() from Gavin Shan - Restore initial state in eeh_pe_reset_and_recover() from Gavin Shan - Revert "powerpc/eeh: Fix crash in eeh_add_device_early() on Cell" from Guilherme G Piccoli - Remove the dependency on EEH struct in DDW mechanism from Guilherme G Piccoli selftests: - Test cp_abort during context switch from Chris Smart - Add several tests for transactional memory support from Rashmica Gupta perf: - Add support for sampling interrupt register state from Anju T - Add support for unwinding perf-stackdump from Chandan Kumar cxl: - Configure the PSL for two CAPI ports on POWER8NVL from Philippe Bergheaud - Allow initialization on timebase sync failures from Frederic Barrat - Increase timeout for detection of AFU mmio hang from Frederic Barrat - Handle num_of_processes larger than can fit in the SPA from Ian Munsie - Ensure PSL interrupt is configured for contexts with no AFU IRQs from Ian Munsie - Add kernel API to allow a context to operate with relocate disabled from Ian Munsie - Check periodically the coherent platform function's state from Christophe Lombard Freescale: - Updates from Scott: "Contains 86xx fixes, minor device tree fixes, an erratum workaround, and a kconfig dependency fix." * tag 'powerpc-4.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (192 commits) powerpc/86xx: Fix PCI interrupt map definition powerpc/86xx: Move pci1 definition to the include file powerpc/fsl: Fix build of the dtb embedded kernel images powerpc/fsl: Fix rcpm compatible string powerpc/fsl: Remove FSL_SOC dependency from FSL_LBC powerpc/fsl-pci: Add a workaround for PCI 5 errata powerpc/fsl: Fix SPI compatible on t208xrdb and t1040rdb powerpc/powernv/npu: Add PE to PHB's list powerpc/powernv: Fix insufficient memory allocation powerpc/iommu: Remove the dependency on EEH struct in DDW mechanism Revert "powerpc/eeh: Fix crash in eeh_add_device_early() on Cell" powerpc/eeh: Drop unnecessary label in eeh_pe_change_owner() powerpc/eeh: Ignore handlers in eeh_pe_reset_and_recover() powerpc/eeh: Restore initial state in eeh_pe_reset_and_recover() powerpc/eeh: Don't report error in eeh_pe_reset_and_recover() Revert "powerpc/powernv: Exclude root bus in pnv_pci_reset_secondary_bus()" powerpc/powernv/npu: Enable NVLink pass through powerpc/powernv/npu: Rework TCE Kill handling powerpc/powernv/npu: Add set/unset window helpers powerpc/powernv/ioda2: Export debug helper pe_level_printk() ...
1050 lines
26 KiB
C
1050 lines
26 KiB
C
/*
|
|
* PPC Huge TLB Page Support for Kernel.
|
|
*
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
* Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
|
|
*
|
|
* Based on the IA-32 version:
|
|
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/export.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/hugetlb.h>
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
|
|
#define PAGE_SHIFT_64K 16
|
|
#define PAGE_SHIFT_16M 24
|
|
#define PAGE_SHIFT_16G 34
|
|
|
|
unsigned int HPAGE_SHIFT;
|
|
|
|
/*
|
|
* Tracks gpages after the device tree is scanned and before the
|
|
* huge_boot_pages list is ready. On non-Freescale implementations, this is
|
|
* just used to track 16G pages and so is a single array. FSL-based
|
|
* implementations may have more than one gpage size, so we need multiple
|
|
* arrays
|
|
*/
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
#define MAX_NUMBER_GPAGES 128
|
|
struct psize_gpages {
|
|
u64 gpage_list[MAX_NUMBER_GPAGES];
|
|
unsigned int nr_gpages;
|
|
};
|
|
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
|
|
#else
|
|
#define MAX_NUMBER_GPAGES 1024
|
|
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
|
|
static unsigned nr_gpages;
|
|
#endif
|
|
|
|
#define hugepd_none(hpd) ((hpd).pd == 0)
|
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
/* Only called for hugetlbfs pages, hence can ignore THP */
|
|
return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
|
|
}
|
|
|
|
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
|
|
unsigned long address, unsigned pdshift, unsigned pshift)
|
|
{
|
|
struct kmem_cache *cachep;
|
|
pte_t *new;
|
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
int i;
|
|
int num_hugepd = 1 << (pshift - pdshift);
|
|
cachep = hugepte_cache;
|
|
#else
|
|
cachep = PGT_CACHE(pdshift - pshift);
|
|
#endif
|
|
|
|
new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
|
|
|
|
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
|
|
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
|
|
|
|
if (! new)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
/*
|
|
* We have multiple higher-level entries that point to the same
|
|
* actual pte location. Fill in each as we go and backtrack on error.
|
|
* We need all of these so the DTLB pgtable walk code can find the
|
|
* right higher-level entry without knowing if it's a hugepage or not.
|
|
*/
|
|
for (i = 0; i < num_hugepd; i++, hpdp++) {
|
|
if (unlikely(!hugepd_none(*hpdp)))
|
|
break;
|
|
else
|
|
/* We use the old format for PPC_FSL_BOOK3E */
|
|
hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
|
|
}
|
|
/* If we bailed from the for loop early, an error occurred, clean up */
|
|
if (i < num_hugepd) {
|
|
for (i = i - 1 ; i >= 0; i--, hpdp--)
|
|
hpdp->pd = 0;
|
|
kmem_cache_free(cachep, new);
|
|
}
|
|
#else
|
|
if (!hugepd_none(*hpdp))
|
|
kmem_cache_free(cachep, new);
|
|
else {
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2);
|
|
#else
|
|
hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
|
|
#endif
|
|
}
|
|
#endif
|
|
spin_unlock(&mm->page_table_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* These macros define how to determine which level of the page table holds
|
|
* the hpdp.
|
|
*/
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
|
|
#define HUGEPD_PUD_SHIFT PUD_SHIFT
|
|
#else
|
|
#define HUGEPD_PGD_SHIFT PUD_SHIFT
|
|
#define HUGEPD_PUD_SHIFT PMD_SHIFT
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* At this point we do the placement change only for BOOK3S 64. This would
|
|
* possibly work on other subarchs.
|
|
*/
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pg;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
hugepd_t *hpdp = NULL;
|
|
unsigned pshift = __ffs(sz);
|
|
unsigned pdshift = PGDIR_SHIFT;
|
|
|
|
addr &= ~(sz-1);
|
|
pg = pgd_offset(mm, addr);
|
|
|
|
if (pshift == PGDIR_SHIFT)
|
|
/* 16GB huge page */
|
|
return (pte_t *) pg;
|
|
else if (pshift > PUD_SHIFT)
|
|
/*
|
|
* We need to use hugepd table
|
|
*/
|
|
hpdp = (hugepd_t *)pg;
|
|
else {
|
|
pdshift = PUD_SHIFT;
|
|
pu = pud_alloc(mm, pg, addr);
|
|
if (pshift == PUD_SHIFT)
|
|
return (pte_t *)pu;
|
|
else if (pshift > PMD_SHIFT)
|
|
hpdp = (hugepd_t *)pu;
|
|
else {
|
|
pdshift = PMD_SHIFT;
|
|
pm = pmd_alloc(mm, pu, addr);
|
|
if (pshift == PMD_SHIFT)
|
|
/* 16MB hugepage */
|
|
return (pte_t *)pm;
|
|
else
|
|
hpdp = (hugepd_t *)pm;
|
|
}
|
|
}
|
|
if (!hpdp)
|
|
return NULL;
|
|
|
|
BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
|
|
|
|
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
|
|
return NULL;
|
|
|
|
return hugepte_offset(*hpdp, addr, pdshift);
|
|
}
|
|
|
|
#else
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pg;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
hugepd_t *hpdp = NULL;
|
|
unsigned pshift = __ffs(sz);
|
|
unsigned pdshift = PGDIR_SHIFT;
|
|
|
|
addr &= ~(sz-1);
|
|
|
|
pg = pgd_offset(mm, addr);
|
|
|
|
if (pshift >= HUGEPD_PGD_SHIFT) {
|
|
hpdp = (hugepd_t *)pg;
|
|
} else {
|
|
pdshift = PUD_SHIFT;
|
|
pu = pud_alloc(mm, pg, addr);
|
|
if (pshift >= HUGEPD_PUD_SHIFT) {
|
|
hpdp = (hugepd_t *)pu;
|
|
} else {
|
|
pdshift = PMD_SHIFT;
|
|
pm = pmd_alloc(mm, pu, addr);
|
|
hpdp = (hugepd_t *)pm;
|
|
}
|
|
}
|
|
|
|
if (!hpdp)
|
|
return NULL;
|
|
|
|
BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
|
|
|
|
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
|
|
return NULL;
|
|
|
|
return hugepte_offset(*hpdp, addr, pdshift);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
/* Build list of addresses of gigantic pages. This function is used in early
|
|
* boot before the buddy allocator is setup.
|
|
*/
|
|
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
|
|
{
|
|
unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
|
|
int i;
|
|
|
|
if (addr == 0)
|
|
return;
|
|
|
|
gpage_freearray[idx].nr_gpages = number_of_pages;
|
|
|
|
for (i = 0; i < number_of_pages; i++) {
|
|
gpage_freearray[idx].gpage_list[i] = addr;
|
|
addr += page_size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Moves the gigantic page addresses from the temporary list to the
|
|
* huge_boot_pages list.
|
|
*/
|
|
int alloc_bootmem_huge_page(struct hstate *hstate)
|
|
{
|
|
struct huge_bootmem_page *m;
|
|
int idx = shift_to_mmu_psize(huge_page_shift(hstate));
|
|
int nr_gpages = gpage_freearray[idx].nr_gpages;
|
|
|
|
if (nr_gpages == 0)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/*
|
|
* If gpages can be in highmem we can't use the trick of storing the
|
|
* data structure in the page; allocate space for this
|
|
*/
|
|
m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
|
|
m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
|
|
#else
|
|
m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
|
|
#endif
|
|
|
|
list_add(&m->list, &huge_boot_pages);
|
|
gpage_freearray[idx].nr_gpages = nr_gpages;
|
|
gpage_freearray[idx].gpage_list[nr_gpages] = 0;
|
|
m->hstate = hstate;
|
|
|
|
return 1;
|
|
}
|
|
/*
|
|
* Scan the command line hugepagesz= options for gigantic pages; store those in
|
|
* a list that we use to allocate the memory once all options are parsed.
|
|
*/
|
|
|
|
unsigned long gpage_npages[MMU_PAGE_COUNT];
|
|
|
|
static int __init do_gpage_early_setup(char *param, char *val,
|
|
const char *unused, void *arg)
|
|
{
|
|
static phys_addr_t size;
|
|
unsigned long npages;
|
|
|
|
/*
|
|
* The hugepagesz and hugepages cmdline options are interleaved. We
|
|
* use the size variable to keep track of whether or not this was done
|
|
* properly and skip over instances where it is incorrect. Other
|
|
* command-line parsing code will issue warnings, so we don't need to.
|
|
*
|
|
*/
|
|
if ((strcmp(param, "default_hugepagesz") == 0) ||
|
|
(strcmp(param, "hugepagesz") == 0)) {
|
|
size = memparse(val, NULL);
|
|
} else if (strcmp(param, "hugepages") == 0) {
|
|
if (size != 0) {
|
|
if (sscanf(val, "%lu", &npages) <= 0)
|
|
npages = 0;
|
|
if (npages > MAX_NUMBER_GPAGES) {
|
|
pr_warn("MMU: %lu pages requested for page "
|
|
"size %llu KB, limiting to "
|
|
__stringify(MAX_NUMBER_GPAGES) "\n",
|
|
npages, size / 1024);
|
|
npages = MAX_NUMBER_GPAGES;
|
|
}
|
|
gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
|
|
size = 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* This function allocates physical space for pages that are larger than the
|
|
* buddy allocator can handle. We want to allocate these in highmem because
|
|
* the amount of lowmem is limited. This means that this function MUST be
|
|
* called before lowmem_end_addr is set up in MMU_init() in order for the lmb
|
|
* allocate to grab highmem.
|
|
*/
|
|
void __init reserve_hugetlb_gpages(void)
|
|
{
|
|
static __initdata char cmdline[COMMAND_LINE_SIZE];
|
|
phys_addr_t size, base;
|
|
int i;
|
|
|
|
strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
|
|
parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
|
|
NULL, &do_gpage_early_setup);
|
|
|
|
/*
|
|
* Walk gpage list in reverse, allocating larger page sizes first.
|
|
* Skip over unsupported sizes, or sizes that have 0 gpages allocated.
|
|
* When we reach the point in the list where pages are no longer
|
|
* considered gpages, we're done.
|
|
*/
|
|
for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
|
|
if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
|
|
continue;
|
|
else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
|
|
break;
|
|
|
|
size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
|
|
base = memblock_alloc_base(size * gpage_npages[i], size,
|
|
MEMBLOCK_ALLOC_ANYWHERE);
|
|
add_gpage(base, size, gpage_npages[i]);
|
|
}
|
|
}
|
|
|
|
#else /* !PPC_FSL_BOOK3E */
|
|
|
|
/* Build list of addresses of gigantic pages. This function is used in early
|
|
* boot before the buddy allocator is setup.
|
|
*/
|
|
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
|
|
{
|
|
if (!addr)
|
|
return;
|
|
while (number_of_pages > 0) {
|
|
gpage_freearray[nr_gpages] = addr;
|
|
nr_gpages++;
|
|
number_of_pages--;
|
|
addr += page_size;
|
|
}
|
|
}
|
|
|
|
/* Moves the gigantic page addresses from the temporary list to the
|
|
* huge_boot_pages list.
|
|
*/
|
|
int alloc_bootmem_huge_page(struct hstate *hstate)
|
|
{
|
|
struct huge_bootmem_page *m;
|
|
if (nr_gpages == 0)
|
|
return 0;
|
|
m = phys_to_virt(gpage_freearray[--nr_gpages]);
|
|
gpage_freearray[nr_gpages] = 0;
|
|
list_add(&m->list, &huge_boot_pages);
|
|
m->hstate = hstate;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
#define HUGEPD_FREELIST_SIZE \
|
|
((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
|
|
|
|
struct hugepd_freelist {
|
|
struct rcu_head rcu;
|
|
unsigned int index;
|
|
void *ptes[0];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
|
|
|
|
static void hugepd_free_rcu_callback(struct rcu_head *head)
|
|
{
|
|
struct hugepd_freelist *batch =
|
|
container_of(head, struct hugepd_freelist, rcu);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < batch->index; i++)
|
|
kmem_cache_free(hugepte_cache, batch->ptes[i]);
|
|
|
|
free_page((unsigned long)batch);
|
|
}
|
|
|
|
static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
|
|
{
|
|
struct hugepd_freelist **batchp;
|
|
|
|
batchp = &get_cpu_var(hugepd_freelist_cur);
|
|
|
|
if (atomic_read(&tlb->mm->mm_users) < 2 ||
|
|
cpumask_equal(mm_cpumask(tlb->mm),
|
|
cpumask_of(smp_processor_id()))) {
|
|
kmem_cache_free(hugepte_cache, hugepte);
|
|
put_cpu_var(hugepd_freelist_cur);
|
|
return;
|
|
}
|
|
|
|
if (*batchp == NULL) {
|
|
*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
|
|
(*batchp)->index = 0;
|
|
}
|
|
|
|
(*batchp)->ptes[(*batchp)->index++] = hugepte;
|
|
if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
|
|
call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
|
|
*batchp = NULL;
|
|
}
|
|
put_cpu_var(hugepd_freelist_cur);
|
|
}
|
|
#endif
|
|
|
|
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pte_t *hugepte = hugepd_page(*hpdp);
|
|
int i;
|
|
|
|
unsigned long pdmask = ~((1UL << pdshift) - 1);
|
|
unsigned int num_hugepd = 1;
|
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
/* Note: On fsl the hpdp may be the first of several */
|
|
num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
|
|
#else
|
|
unsigned int shift = hugepd_shift(*hpdp);
|
|
#endif
|
|
|
|
start &= pdmask;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= pdmask;
|
|
if (! ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
for (i = 0; i < num_hugepd; i++, hpdp++)
|
|
hpdp->pd = 0;
|
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
hugepd_free(tlb, hugepte);
|
|
#else
|
|
pgtable_free_tlb(tlb, hugepte, pdshift - shift);
|
|
#endif
|
|
}
|
|
|
|
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
do {
|
|
pmd = pmd_offset(pud, addr);
|
|
next = pmd_addr_end(addr, end);
|
|
if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
|
|
/*
|
|
* if it is not hugepd pointer, we should already find
|
|
* it cleared.
|
|
*/
|
|
WARN_ON(!pmd_none_or_clear_bad(pmd));
|
|
continue;
|
|
}
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
/*
|
|
* Increment next by the size of the huge mapping since
|
|
* there may be more than one entry at this level for a
|
|
* single hugepage, but all of them point to
|
|
* the same kmem cache that holds the hugepte.
|
|
*/
|
|
next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
|
|
#endif
|
|
free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
} while (addr = next, addr != end);
|
|
|
|
start &= PUD_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PUD_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, start);
|
|
pud_clear(pud);
|
|
pmd_free_tlb(tlb, pmd, start);
|
|
mm_dec_nr_pmds(tlb->mm);
|
|
}
|
|
|
|
static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
do {
|
|
pud = pud_offset(pgd, addr);
|
|
next = pud_addr_end(addr, end);
|
|
if (!is_hugepd(__hugepd(pud_val(*pud)))) {
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
|
|
ceiling);
|
|
} else {
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
/*
|
|
* Increment next by the size of the huge mapping since
|
|
* there may be more than one entry at this level for a
|
|
* single hugepage, but all of them point to
|
|
* the same kmem cache that holds the hugepte.
|
|
*/
|
|
next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
|
|
#endif
|
|
free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
}
|
|
} while (addr = next, addr != end);
|
|
|
|
start &= PGDIR_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PGDIR_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pud = pud_offset(pgd, start);
|
|
pgd_clear(pgd);
|
|
pud_free_tlb(tlb, pud, start);
|
|
}
|
|
|
|
/*
|
|
* This function frees user-level page tables of a process.
|
|
*/
|
|
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
/*
|
|
* Because there are a number of different possible pagetable
|
|
* layouts for hugepage ranges, we limit knowledge of how
|
|
* things should be laid out to the allocation path
|
|
* (huge_pte_alloc(), above). Everything else works out the
|
|
* structure as it goes from information in the hugepd
|
|
* pointers. That means that we can't here use the
|
|
* optimization used in the normal page free_pgd_range(), of
|
|
* checking whether we're actually covering a large enough
|
|
* range to have to do anything at the top level of the walk
|
|
* instead of at the bottom.
|
|
*
|
|
* To make sense of this, you should probably go read the big
|
|
* block comment at the top of the normal free_pgd_range(),
|
|
* too.
|
|
*/
|
|
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
pgd = pgd_offset(tlb->mm, addr);
|
|
if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
|
|
} else {
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
/*
|
|
* Increment next by the size of the huge mapping since
|
|
* there may be more than one entry at the pgd level
|
|
* for a single hugepage, but all of them point to the
|
|
* same kmem cache that holds the hugepte.
|
|
*/
|
|
next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
|
|
#endif
|
|
free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
}
|
|
} while (addr = next, addr != end);
|
|
}
|
|
|
|
/*
|
|
* We are holding mmap_sem, so a parallel huge page collapse cannot run.
|
|
* To prevent hugepage split, disable irq.
|
|
*/
|
|
struct page *
|
|
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
|
|
{
|
|
bool is_thp;
|
|
pte_t *ptep, pte;
|
|
unsigned shift;
|
|
unsigned long mask, flags;
|
|
struct page *page = ERR_PTR(-EINVAL);
|
|
|
|
local_irq_save(flags);
|
|
ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
|
|
if (!ptep)
|
|
goto no_page;
|
|
pte = READ_ONCE(*ptep);
|
|
/*
|
|
* Verify it is a huge page else bail.
|
|
* Transparent hugepages are handled by generic code. We can skip them
|
|
* here.
|
|
*/
|
|
if (!shift || is_thp)
|
|
goto no_page;
|
|
|
|
if (!pte_present(pte)) {
|
|
page = NULL;
|
|
goto no_page;
|
|
}
|
|
mask = (1UL << shift) - 1;
|
|
page = pte_page(pte);
|
|
if (page)
|
|
page += (address & mask) / PAGE_SIZE;
|
|
|
|
no_page:
|
|
local_irq_restore(flags);
|
|
return page;
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
|
pmd_t *pmd, int write)
|
|
{
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_pud(struct mm_struct *mm, unsigned long address,
|
|
pud_t *pud, int write)
|
|
{
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
|
|
unsigned long sz)
|
|
{
|
|
unsigned long __boundary = (addr + sz) & ~(sz-1);
|
|
return (__boundary - 1 < end - 1) ? __boundary : end;
|
|
}
|
|
|
|
int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long sz = 1UL << hugepd_shift(hugepd);
|
|
unsigned long next;
|
|
|
|
ptep = hugepte_offset(hugepd, addr, pdshift);
|
|
do {
|
|
next = hugepte_addr_end(addr, end, sz);
|
|
if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
|
|
return 0;
|
|
} while (ptep++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_MM_SLICES
|
|
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct hstate *hstate = hstate_file(file);
|
|
int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
|
|
|
|
if (radix_enabled())
|
|
return radix__hugetlb_get_unmapped_area(file, addr, len,
|
|
pgoff, flags);
|
|
return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
|
|
}
|
|
#endif
|
|
|
|
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
|
|
{
|
|
#ifdef CONFIG_PPC_MM_SLICES
|
|
unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
|
|
/* With radix we don't use slice, so derive it from vma*/
|
|
if (!radix_enabled())
|
|
return 1UL << mmu_psize_to_shift(psize);
|
|
#endif
|
|
if (!is_vm_hugetlb_page(vma))
|
|
return PAGE_SIZE;
|
|
|
|
return huge_page_size(hstate_vma(vma));
|
|
}
|
|
|
|
static inline bool is_power_of_4(unsigned long x)
|
|
{
|
|
if (is_power_of_2(x))
|
|
return (__ilog2(x) % 2) ? false : true;
|
|
return false;
|
|
}
|
|
|
|
static int __init add_huge_page_size(unsigned long long size)
|
|
{
|
|
int shift = __ffs(size);
|
|
int mmu_psize;
|
|
|
|
/* Check that it is a page size supported by the hardware and
|
|
* that it fits within pagetable and slice limits. */
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
if ((size < PAGE_SIZE) || !is_power_of_4(size))
|
|
return -EINVAL;
|
|
#else
|
|
if (!is_power_of_2(size)
|
|
|| (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
|
|
return -EINVAL;
|
|
|
|
BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
|
|
|
|
/* Return if huge page size has already been setup */
|
|
if (size_to_hstate(size))
|
|
return 0;
|
|
|
|
hugetlb_add_hstate(shift - PAGE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init hugepage_setup_sz(char *str)
|
|
{
|
|
unsigned long long size;
|
|
|
|
size = memparse(str, &str);
|
|
|
|
if (add_huge_page_size(size) != 0) {
|
|
hugetlb_bad_size();
|
|
pr_err("Invalid huge page size specified(%llu)\n", size);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
__setup("hugepagesz=", hugepage_setup_sz);
|
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
struct kmem_cache *hugepte_cache;
|
|
static int __init hugetlbpage_init(void)
|
|
{
|
|
int psize;
|
|
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
unsigned shift;
|
|
|
|
if (!mmu_psize_defs[psize].shift)
|
|
continue;
|
|
|
|
shift = mmu_psize_to_shift(psize);
|
|
|
|
/* Don't treat normal page sizes as huge... */
|
|
if (shift != PAGE_SHIFT)
|
|
if (add_huge_page_size(1ULL << shift) < 0)
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Create a kmem cache for hugeptes. The bottom bits in the pte have
|
|
* size information encoded in them, so align them to allow this
|
|
*/
|
|
hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
|
|
HUGEPD_SHIFT_MASK + 1, 0, NULL);
|
|
if (hugepte_cache == NULL)
|
|
panic("%s: Unable to create kmem cache for hugeptes\n",
|
|
__func__);
|
|
|
|
/* Default hpage size = 4M */
|
|
if (mmu_psize_defs[MMU_PAGE_4M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
|
|
else
|
|
panic("%s: Unable to set default huge page size\n", __func__);
|
|
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int __init hugetlbpage_init(void)
|
|
{
|
|
int psize;
|
|
|
|
if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
|
|
return -ENODEV;
|
|
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
unsigned shift;
|
|
unsigned pdshift;
|
|
|
|
if (!mmu_psize_defs[psize].shift)
|
|
continue;
|
|
|
|
shift = mmu_psize_to_shift(psize);
|
|
|
|
if (add_huge_page_size(1ULL << shift) < 0)
|
|
continue;
|
|
|
|
if (shift < PMD_SHIFT)
|
|
pdshift = PMD_SHIFT;
|
|
else if (shift < PUD_SHIFT)
|
|
pdshift = PUD_SHIFT;
|
|
else
|
|
pdshift = PGDIR_SHIFT;
|
|
/*
|
|
* if we have pdshift and shift value same, we don't
|
|
* use pgt cache for hugepd.
|
|
*/
|
|
if (pdshift != shift) {
|
|
pgtable_cache_add(pdshift - shift, NULL);
|
|
if (!PGT_CACHE(pdshift - shift))
|
|
panic("hugetlbpage_init(): could not create "
|
|
"pgtable cache for %d bit pagesize\n", shift);
|
|
}
|
|
}
|
|
|
|
/* Set default large page size. Currently, we pick 16M or 1M
|
|
* depending on what is available
|
|
*/
|
|
if (mmu_psize_defs[MMU_PAGE_16M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
|
|
else if (mmu_psize_defs[MMU_PAGE_1M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
|
|
else if (mmu_psize_defs[MMU_PAGE_2M].shift)
|
|
HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
|
|
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
arch_initcall(hugetlbpage_init);
|
|
|
|
void flush_dcache_icache_hugepage(struct page *page)
|
|
{
|
|
int i;
|
|
void *start;
|
|
|
|
BUG_ON(!PageCompound(page));
|
|
|
|
for (i = 0; i < (1UL << compound_order(page)); i++) {
|
|
if (!PageHighMem(page)) {
|
|
__flush_dcache_icache(page_address(page+i));
|
|
} else {
|
|
start = kmap_atomic(page+i);
|
|
__flush_dcache_icache(start);
|
|
kunmap_atomic(start);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
/*
|
|
* We have 4 cases for pgds and pmds:
|
|
* (1) invalid (all zeroes)
|
|
* (2) pointer to next table, as normal; bottom 6 bits == 0
|
|
* (3) leaf pte for huge page _PAGE_PTE set
|
|
* (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
|
|
*
|
|
* So long as we atomically load page table pointers we are safe against teardown,
|
|
* we can follow the address down to the the page and take a ref on it.
|
|
* This function need to be called with interrupts disabled. We use this variant
|
|
* when we have MSR[EE] = 0 but the paca->soft_enabled = 1
|
|
*/
|
|
|
|
pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
|
|
bool *is_thp, unsigned *shift)
|
|
{
|
|
pgd_t pgd, *pgdp;
|
|
pud_t pud, *pudp;
|
|
pmd_t pmd, *pmdp;
|
|
pte_t *ret_pte;
|
|
hugepd_t *hpdp = NULL;
|
|
unsigned pdshift = PGDIR_SHIFT;
|
|
|
|
if (shift)
|
|
*shift = 0;
|
|
|
|
if (is_thp)
|
|
*is_thp = false;
|
|
|
|
pgdp = pgdir + pgd_index(ea);
|
|
pgd = READ_ONCE(*pgdp);
|
|
/*
|
|
* Always operate on the local stack value. This make sure the
|
|
* value don't get updated by a parallel THP split/collapse,
|
|
* page fault or a page unmap. The return pte_t * is still not
|
|
* stable. So should be checked there for above conditions.
|
|
*/
|
|
if (pgd_none(pgd))
|
|
return NULL;
|
|
else if (pgd_huge(pgd)) {
|
|
ret_pte = (pte_t *) pgdp;
|
|
goto out;
|
|
} else if (is_hugepd(__hugepd(pgd_val(pgd))))
|
|
hpdp = (hugepd_t *)&pgd;
|
|
else {
|
|
/*
|
|
* Even if we end up with an unmap, the pgtable will not
|
|
* be freed, because we do an rcu free and here we are
|
|
* irq disabled
|
|
*/
|
|
pdshift = PUD_SHIFT;
|
|
pudp = pud_offset(&pgd, ea);
|
|
pud = READ_ONCE(*pudp);
|
|
|
|
if (pud_none(pud))
|
|
return NULL;
|
|
else if (pud_huge(pud)) {
|
|
ret_pte = (pte_t *) pudp;
|
|
goto out;
|
|
} else if (is_hugepd(__hugepd(pud_val(pud))))
|
|
hpdp = (hugepd_t *)&pud;
|
|
else {
|
|
pdshift = PMD_SHIFT;
|
|
pmdp = pmd_offset(&pud, ea);
|
|
pmd = READ_ONCE(*pmdp);
|
|
/*
|
|
* A hugepage collapse is captured by pmd_none, because
|
|
* it mark the pmd none and do a hpte invalidate.
|
|
*/
|
|
if (pmd_none(pmd))
|
|
return NULL;
|
|
|
|
if (pmd_trans_huge(pmd)) {
|
|
if (is_thp)
|
|
*is_thp = true;
|
|
ret_pte = (pte_t *) pmdp;
|
|
goto out;
|
|
}
|
|
|
|
if (pmd_huge(pmd)) {
|
|
ret_pte = (pte_t *) pmdp;
|
|
goto out;
|
|
} else if (is_hugepd(__hugepd(pmd_val(pmd))))
|
|
hpdp = (hugepd_t *)&pmd;
|
|
else
|
|
return pte_offset_kernel(&pmd, ea);
|
|
}
|
|
}
|
|
if (!hpdp)
|
|
return NULL;
|
|
|
|
ret_pte = hugepte_offset(*hpdp, ea, pdshift);
|
|
pdshift = hugepd_shift(*hpdp);
|
|
out:
|
|
if (shift)
|
|
*shift = pdshift;
|
|
return ret_pte;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
|
|
|
|
int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long mask;
|
|
unsigned long pte_end;
|
|
struct page *head, *page;
|
|
pte_t pte;
|
|
int refs;
|
|
|
|
pte_end = (addr + sz) & ~(sz-1);
|
|
if (pte_end < end)
|
|
end = pte_end;
|
|
|
|
pte = READ_ONCE(*ptep);
|
|
mask = _PAGE_PRESENT | _PAGE_READ;
|
|
if (write)
|
|
mask |= _PAGE_WRITE;
|
|
|
|
if ((pte_val(pte) & mask) != mask)
|
|
return 0;
|
|
|
|
/* hugepages are never "special" */
|
|
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
|
|
refs = 0;
|
|
head = pte_page(pte);
|
|
|
|
page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
|
|
do {
|
|
VM_BUG_ON(compound_head(page) != head);
|
|
pages[*nr] = page;
|
|
(*nr)++;
|
|
page++;
|
|
refs++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
|
|
if (!page_cache_add_speculative(head, refs)) {
|
|
*nr -= refs;
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
|
|
/* Could be optimized better */
|
|
*nr -= refs;
|
|
while (refs--)
|
|
put_page(head);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|