kernel-fxtec-pro1x/drivers/net/r8169.c
Francois Romieu 61a4dcc2f9 r8169: enable wake on lan
Similar to 8139cp code but more inspired/lucky.

Signed-off-by: Francois Romieu <romieu@fr.zoreil.com>
2006-02-23 23:06:48 +01:00

2830 lines
70 KiB
C

/*
=========================================================================
r8169.c: A RealTek RTL-8169 Gigabit Ethernet driver for Linux kernel 2.4.x.
--------------------------------------------------------------------
History:
Feb 4 2002 - created initially by ShuChen <shuchen@realtek.com.tw>.
May 20 2002 - Add link status force-mode and TBI mode support.
2004 - Massive updates. See kernel SCM system for details.
=========================================================================
1. [DEPRECATED: use ethtool instead] The media can be forced in 5 modes.
Command: 'insmod r8169 media = SET_MEDIA'
Ex: 'insmod r8169 media = 0x04' will force PHY to operate in 100Mpbs Half-duplex.
SET_MEDIA can be:
_10_Half = 0x01
_10_Full = 0x02
_100_Half = 0x04
_100_Full = 0x08
_1000_Full = 0x10
2. Support TBI mode.
=========================================================================
VERSION 1.1 <2002/10/4>
The bit4:0 of MII register 4 is called "selector field", and have to be
00001b to indicate support of IEEE std 802.3 during NWay process of
exchanging Link Code Word (FLP).
VERSION 1.2 <2002/11/30>
- Large style cleanup
- Use ether_crc in stock kernel (linux/crc32.h)
- Copy mc_filter setup code from 8139cp
(includes an optimization, and avoids set_bit use)
VERSION 1.6LK <2004/04/14>
- Merge of Realtek's version 1.6
- Conversion to DMA API
- Suspend/resume
- Endianness
- Misc Rx/Tx bugs
VERSION 2.2LK <2005/01/25>
- RX csum, TX csum/SG, TSO
- VLAN
- baby (< 7200) Jumbo frames support
- Merge of Realtek's version 2.2 (new phy)
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <asm/io.h>
#include <asm/irq.h>
#ifdef CONFIG_R8169_NAPI
#define NAPI_SUFFIX "-NAPI"
#else
#define NAPI_SUFFIX ""
#endif
#define RTL8169_VERSION "2.2LK" NAPI_SUFFIX
#define MODULENAME "r8169"
#define PFX MODULENAME ": "
#ifdef RTL8169_DEBUG
#define assert(expr) \
if(!(expr)) { \
printk( "Assertion failed! %s,%s,%s,line=%d\n", \
#expr,__FILE__,__FUNCTION__,__LINE__); \
}
#define dprintk(fmt, args...) do { printk(PFX fmt, ## args); } while (0)
#else
#define assert(expr) do {} while (0)
#define dprintk(fmt, args...) do {} while (0)
#endif /* RTL8169_DEBUG */
#define R8169_MSG_DEFAULT \
(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN)
#define TX_BUFFS_AVAIL(tp) \
(tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1)
#ifdef CONFIG_R8169_NAPI
#define rtl8169_rx_skb netif_receive_skb
#define rtl8169_rx_hwaccel_skb vlan_hwaccel_receive_skb
#define rtl8169_rx_quota(count, quota) min(count, quota)
#else
#define rtl8169_rx_skb netif_rx
#define rtl8169_rx_hwaccel_skb vlan_hwaccel_rx
#define rtl8169_rx_quota(count, quota) count
#endif
/* media options */
#define MAX_UNITS 8
static int media[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
static int num_media = 0;
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 20;
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
The RTL chips use a 64 element hash table based on the Ethernet CRC. */
static int multicast_filter_limit = 32;
/* MAC address length */
#define MAC_ADDR_LEN 6
#define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */
#define RX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
#define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
#define EarlyTxThld 0x3F /* 0x3F means NO early transmit */
#define RxPacketMaxSize 0x3FE8 /* 16K - 1 - ETH_HLEN - VLAN - CRC... */
#define SafeMtu 0x1c20 /* ... actually life sucks beyond ~7k */
#define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */
#define R8169_REGS_SIZE 256
#define R8169_NAPI_WEIGHT 64
#define NUM_TX_DESC 64 /* Number of Tx descriptor registers */
#define NUM_RX_DESC 256 /* Number of Rx descriptor registers */
#define RX_BUF_SIZE 1536 /* Rx Buffer size */
#define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc))
#define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc))
#define RTL8169_TX_TIMEOUT (6*HZ)
#define RTL8169_PHY_TIMEOUT (10*HZ)
/* write/read MMIO register */
#define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg))
#define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg))
#define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg))
#define RTL_R8(reg) readb (ioaddr + (reg))
#define RTL_R16(reg) readw (ioaddr + (reg))
#define RTL_R32(reg) ((unsigned long) readl (ioaddr + (reg)))
enum mac_version {
RTL_GIGA_MAC_VER_B = 0x00,
/* RTL_GIGA_MAC_VER_C = 0x03, */
RTL_GIGA_MAC_VER_D = 0x01,
RTL_GIGA_MAC_VER_E = 0x02,
RTL_GIGA_MAC_VER_X = 0x04 /* Greater than RTL_GIGA_MAC_VER_E */
};
enum phy_version {
RTL_GIGA_PHY_VER_C = 0x03, /* PHY Reg 0x03 bit0-3 == 0x0000 */
RTL_GIGA_PHY_VER_D = 0x04, /* PHY Reg 0x03 bit0-3 == 0x0000 */
RTL_GIGA_PHY_VER_E = 0x05, /* PHY Reg 0x03 bit0-3 == 0x0000 */
RTL_GIGA_PHY_VER_F = 0x06, /* PHY Reg 0x03 bit0-3 == 0x0001 */
RTL_GIGA_PHY_VER_G = 0x07, /* PHY Reg 0x03 bit0-3 == 0x0002 */
RTL_GIGA_PHY_VER_H = 0x08, /* PHY Reg 0x03 bit0-3 == 0x0003 */
};
#define _R(NAME,MAC,MASK) \
{ .name = NAME, .mac_version = MAC, .RxConfigMask = MASK }
static const struct {
const char *name;
u8 mac_version;
u32 RxConfigMask; /* Clears the bits supported by this chip */
} rtl_chip_info[] = {
_R("RTL8169", RTL_GIGA_MAC_VER_B, 0xff7e1880),
_R("RTL8169s/8110s", RTL_GIGA_MAC_VER_D, 0xff7e1880),
_R("RTL8169s/8110s", RTL_GIGA_MAC_VER_E, 0xff7e1880),
_R("RTL8169s/8110s", RTL_GIGA_MAC_VER_X, 0xff7e1880),
};
#undef _R
static struct pci_device_id rtl8169_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4300), },
{ PCI_DEVICE(0x16ec, 0x0116), },
{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024, },
{0,},
};
MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl);
static int rx_copybreak = 200;
static int use_dac;
static struct {
u32 msg_enable;
} debug = { -1 };
enum RTL8169_registers {
MAC0 = 0, /* Ethernet hardware address. */
MAR0 = 8, /* Multicast filter. */
CounterAddrLow = 0x10,
CounterAddrHigh = 0x14,
TxDescStartAddrLow = 0x20,
TxDescStartAddrHigh = 0x24,
TxHDescStartAddrLow = 0x28,
TxHDescStartAddrHigh = 0x2c,
FLASH = 0x30,
ERSR = 0x36,
ChipCmd = 0x37,
TxPoll = 0x38,
IntrMask = 0x3C,
IntrStatus = 0x3E,
TxConfig = 0x40,
RxConfig = 0x44,
RxMissed = 0x4C,
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
Config2 = 0x53,
Config3 = 0x54,
Config4 = 0x55,
Config5 = 0x56,
MultiIntr = 0x5C,
PHYAR = 0x60,
TBICSR = 0x64,
TBI_ANAR = 0x68,
TBI_LPAR = 0x6A,
PHYstatus = 0x6C,
RxMaxSize = 0xDA,
CPlusCmd = 0xE0,
IntrMitigate = 0xE2,
RxDescAddrLow = 0xE4,
RxDescAddrHigh = 0xE8,
EarlyTxThres = 0xEC,
FuncEvent = 0xF0,
FuncEventMask = 0xF4,
FuncPresetState = 0xF8,
FuncForceEvent = 0xFC,
};
enum RTL8169_register_content {
/* InterruptStatusBits */
SYSErr = 0x8000,
PCSTimeout = 0x4000,
SWInt = 0x0100,
TxDescUnavail = 0x80,
RxFIFOOver = 0x40,
LinkChg = 0x20,
RxOverflow = 0x10,
TxErr = 0x08,
TxOK = 0x04,
RxErr = 0x02,
RxOK = 0x01,
/* RxStatusDesc */
RxRES = 0x00200000,
RxCRC = 0x00080000,
RxRUNT = 0x00100000,
RxRWT = 0x00400000,
/* ChipCmdBits */
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
/* Cfg9346Bits */
Cfg9346_Lock = 0x00,
Cfg9346_Unlock = 0xC0,
/* rx_mode_bits */
AcceptErr = 0x20,
AcceptRunt = 0x10,
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
/* RxConfigBits */
RxCfgFIFOShift = 13,
RxCfgDMAShift = 8,
/* TxConfigBits */
TxInterFrameGapShift = 24,
TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
/* Config1 register p.24 */
PMEnable = (1 << 0), /* Power Management Enable */
/* Config3 register p.25 */
MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
/* Config5 register p.27 */
BWF = (1 << 6), /* Accept Broadcast wakeup frame */
MWF = (1 << 5), /* Accept Multicast wakeup frame */
UWF = (1 << 4), /* Accept Unicast wakeup frame */
LanWake = (1 << 1), /* LanWake enable/disable */
PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
/* TBICSR p.28 */
TBIReset = 0x80000000,
TBILoopback = 0x40000000,
TBINwEnable = 0x20000000,
TBINwRestart = 0x10000000,
TBILinkOk = 0x02000000,
TBINwComplete = 0x01000000,
/* CPlusCmd p.31 */
RxVlan = (1 << 6),
RxChkSum = (1 << 5),
PCIDAC = (1 << 4),
PCIMulRW = (1 << 3),
/* rtl8169_PHYstatus */
TBI_Enable = 0x80,
TxFlowCtrl = 0x40,
RxFlowCtrl = 0x20,
_1000bpsF = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LinkStatus = 0x02,
FullDup = 0x01,
/* GIGABIT_PHY_registers */
PHY_CTRL_REG = 0,
PHY_STAT_REG = 1,
PHY_AUTO_NEGO_REG = 4,
PHY_1000_CTRL_REG = 9,
/* GIGABIT_PHY_REG_BIT */
PHY_Restart_Auto_Nego = 0x0200,
PHY_Enable_Auto_Nego = 0x1000,
/* PHY_STAT_REG = 1 */
PHY_Auto_Neco_Comp = 0x0020,
/* PHY_AUTO_NEGO_REG = 4 */
PHY_Cap_10_Half = 0x0020,
PHY_Cap_10_Full = 0x0040,
PHY_Cap_100_Half = 0x0080,
PHY_Cap_100_Full = 0x0100,
/* PHY_1000_CTRL_REG = 9 */
PHY_Cap_1000_Full = 0x0200,
PHY_Cap_Null = 0x0,
/* _MediaType */
_10_Half = 0x01,
_10_Full = 0x02,
_100_Half = 0x04,
_100_Full = 0x08,
_1000_Full = 0x10,
/* _TBICSRBit */
TBILinkOK = 0x02000000,
/* DumpCounterCommand */
CounterDump = 0x8,
};
enum _DescStatusBit {
DescOwn = (1 << 31), /* Descriptor is owned by NIC */
RingEnd = (1 << 30), /* End of descriptor ring */
FirstFrag = (1 << 29), /* First segment of a packet */
LastFrag = (1 << 28), /* Final segment of a packet */
/* Tx private */
LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
MSSShift = 16, /* MSS value position */
MSSMask = 0xfff, /* MSS value + LargeSend bit: 12 bits */
IPCS = (1 << 18), /* Calculate IP checksum */
UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
TxVlanTag = (1 << 17), /* Add VLAN tag */
/* Rx private */
PID1 = (1 << 18), /* Protocol ID bit 1/2 */
PID0 = (1 << 17), /* Protocol ID bit 2/2 */
#define RxProtoUDP (PID1)
#define RxProtoTCP (PID0)
#define RxProtoIP (PID1 | PID0)
#define RxProtoMask RxProtoIP
IPFail = (1 << 16), /* IP checksum failed */
UDPFail = (1 << 15), /* UDP/IP checksum failed */
TCPFail = (1 << 14), /* TCP/IP checksum failed */
RxVlanTag = (1 << 16), /* VLAN tag available */
};
#define RsvdMask 0x3fffc000
struct TxDesc {
u32 opts1;
u32 opts2;
u64 addr;
};
struct RxDesc {
u32 opts1;
u32 opts2;
u64 addr;
};
struct ring_info {
struct sk_buff *skb;
u32 len;
u8 __pad[sizeof(void *) - sizeof(u32)];
};
struct rtl8169_private {
void __iomem *mmio_addr; /* memory map physical address */
struct pci_dev *pci_dev; /* Index of PCI device */
struct net_device_stats stats; /* statistics of net device */
spinlock_t lock; /* spin lock flag */
u32 msg_enable;
int chipset;
int mac_version;
int phy_version;
u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
u32 dirty_rx;
u32 dirty_tx;
struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */
struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */
dma_addr_t TxPhyAddr;
dma_addr_t RxPhyAddr;
struct sk_buff *Rx_skbuff[NUM_RX_DESC]; /* Rx data buffers */
struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */
unsigned rx_buf_sz;
struct timer_list timer;
u16 cp_cmd;
u16 intr_mask;
int phy_auto_nego_reg;
int phy_1000_ctrl_reg;
#ifdef CONFIG_R8169_VLAN
struct vlan_group *vlgrp;
#endif
int (*set_speed)(struct net_device *, u8 autoneg, u16 speed, u8 duplex);
void (*get_settings)(struct net_device *, struct ethtool_cmd *);
void (*phy_reset_enable)(void __iomem *);
unsigned int (*phy_reset_pending)(void __iomem *);
unsigned int (*link_ok)(void __iomem *);
struct work_struct task;
unsigned wol_enabled : 1;
};
MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>");
MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver");
module_param_array(media, int, &num_media, 0);
MODULE_PARM_DESC(media, "force phy operation. Deprecated by ethtool (8).");
module_param(rx_copybreak, int, 0);
MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
module_param(use_dac, int, 0);
MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot.");
module_param_named(debug, debug.msg_enable, int, 0);
MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)");
MODULE_LICENSE("GPL");
MODULE_VERSION(RTL8169_VERSION);
static int rtl8169_open(struct net_device *dev);
static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance,
struct pt_regs *regs);
static int rtl8169_init_ring(struct net_device *dev);
static void rtl8169_hw_start(struct net_device *dev);
static int rtl8169_close(struct net_device *dev);
static void rtl8169_set_rx_mode(struct net_device *dev);
static void rtl8169_tx_timeout(struct net_device *dev);
static struct net_device_stats *rtl8169_get_stats(struct net_device *dev);
static int rtl8169_rx_interrupt(struct net_device *, struct rtl8169_private *,
void __iomem *);
static int rtl8169_change_mtu(struct net_device *dev, int new_mtu);
static void rtl8169_down(struct net_device *dev);
#ifdef CONFIG_R8169_NAPI
static int rtl8169_poll(struct net_device *dev, int *budget);
#endif
static const u16 rtl8169_intr_mask =
SYSErr | LinkChg | RxOverflow | RxFIFOOver | TxErr | TxOK | RxErr | RxOK;
static const u16 rtl8169_napi_event =
RxOK | RxOverflow | RxFIFOOver | TxOK | TxErr;
static const unsigned int rtl8169_rx_config =
(RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift);
#define PHY_Cap_10_Half_Or_Less PHY_Cap_10_Half
#define PHY_Cap_10_Full_Or_Less PHY_Cap_10_Full | PHY_Cap_10_Half_Or_Less
#define PHY_Cap_100_Half_Or_Less PHY_Cap_100_Half | PHY_Cap_10_Full_Or_Less
#define PHY_Cap_100_Full_Or_Less PHY_Cap_100_Full | PHY_Cap_100_Half_Or_Less
static void mdio_write(void __iomem *ioaddr, int RegAddr, int value)
{
int i;
RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value);
for (i = 20; i > 0; i--) {
/* Check if the RTL8169 has completed writing to the specified MII register */
if (!(RTL_R32(PHYAR) & 0x80000000))
break;
udelay(25);
}
}
static int mdio_read(void __iomem *ioaddr, int RegAddr)
{
int i, value = -1;
RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16);
for (i = 20; i > 0; i--) {
/* Check if the RTL8169 has completed retrieving data from the specified MII register */
if (RTL_R32(PHYAR) & 0x80000000) {
value = (int) (RTL_R32(PHYAR) & 0xFFFF);
break;
}
udelay(25);
}
return value;
}
static void rtl8169_irq_mask_and_ack(void __iomem *ioaddr)
{
RTL_W16(IntrMask, 0x0000);
RTL_W16(IntrStatus, 0xffff);
}
static void rtl8169_asic_down(void __iomem *ioaddr)
{
RTL_W8(ChipCmd, 0x00);
rtl8169_irq_mask_and_ack(ioaddr);
RTL_R16(CPlusCmd);
}
static unsigned int rtl8169_tbi_reset_pending(void __iomem *ioaddr)
{
return RTL_R32(TBICSR) & TBIReset;
}
static unsigned int rtl8169_xmii_reset_pending(void __iomem *ioaddr)
{
return mdio_read(ioaddr, 0) & 0x8000;
}
static unsigned int rtl8169_tbi_link_ok(void __iomem *ioaddr)
{
return RTL_R32(TBICSR) & TBILinkOk;
}
static unsigned int rtl8169_xmii_link_ok(void __iomem *ioaddr)
{
return RTL_R8(PHYstatus) & LinkStatus;
}
static void rtl8169_tbi_reset_enable(void __iomem *ioaddr)
{
RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset);
}
static void rtl8169_xmii_reset_enable(void __iomem *ioaddr)
{
unsigned int val;
val = (mdio_read(ioaddr, PHY_CTRL_REG) | 0x8000) & 0xffff;
mdio_write(ioaddr, PHY_CTRL_REG, val);
}
static void rtl8169_check_link_status(struct net_device *dev,
struct rtl8169_private *tp, void __iomem *ioaddr)
{
unsigned long flags;
spin_lock_irqsave(&tp->lock, flags);
if (tp->link_ok(ioaddr)) {
netif_carrier_on(dev);
if (netif_msg_ifup(tp))
printk(KERN_INFO PFX "%s: link up\n", dev->name);
} else {
if (netif_msg_ifdown(tp))
printk(KERN_INFO PFX "%s: link down\n", dev->name);
netif_carrier_off(dev);
}
spin_unlock_irqrestore(&tp->lock, flags);
}
static void rtl8169_link_option(int idx, u8 *autoneg, u16 *speed, u8 *duplex)
{
struct {
u16 speed;
u8 duplex;
u8 autoneg;
u8 media;
} link_settings[] = {
{ SPEED_10, DUPLEX_HALF, AUTONEG_DISABLE, _10_Half },
{ SPEED_10, DUPLEX_FULL, AUTONEG_DISABLE, _10_Full },
{ SPEED_100, DUPLEX_HALF, AUTONEG_DISABLE, _100_Half },
{ SPEED_100, DUPLEX_FULL, AUTONEG_DISABLE, _100_Full },
{ SPEED_1000, DUPLEX_FULL, AUTONEG_DISABLE, _1000_Full },
/* Make TBI happy */
{ SPEED_1000, DUPLEX_FULL, AUTONEG_ENABLE, 0xff }
}, *p;
unsigned char option;
option = ((idx < MAX_UNITS) && (idx >= 0)) ? media[idx] : 0xff;
if ((option != 0xff) && !idx && netif_msg_drv(&debug))
printk(KERN_WARNING PFX "media option is deprecated.\n");
for (p = link_settings; p->media != 0xff; p++) {
if (p->media == option)
break;
}
*autoneg = p->autoneg;
*speed = p->speed;
*duplex = p->duplex;
}
static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u8 options;
wol->wolopts = 0;
#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
wol->supported = WAKE_ANY;
spin_lock_irq(&tp->lock);
options = RTL_R8(Config1);
if (!(options & PMEnable))
goto out_unlock;
options = RTL_R8(Config3);
if (options & LinkUp)
wol->wolopts |= WAKE_PHY;
if (options & MagicPacket)
wol->wolopts |= WAKE_MAGIC;
options = RTL_R8(Config5);
if (options & UWF)
wol->wolopts |= WAKE_UCAST;
if (options & BWF)
wol->wolopts |= WAKE_BCAST;
if (options & MWF)
wol->wolopts |= WAKE_MCAST;
out_unlock:
spin_unlock_irq(&tp->lock);
}
static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
int i;
static struct {
u32 opt;
u16 reg;
u8 mask;
} cfg[] = {
{ WAKE_ANY, Config1, PMEnable },
{ WAKE_PHY, Config3, LinkUp },
{ WAKE_MAGIC, Config3, MagicPacket },
{ WAKE_UCAST, Config5, UWF },
{ WAKE_BCAST, Config5, BWF },
{ WAKE_MCAST, Config5, MWF },
{ WAKE_ANY, Config5, LanWake }
};
spin_lock_irq(&tp->lock);
RTL_W8(Cfg9346, Cfg9346_Unlock);
for (i = 0; i < ARRAY_SIZE(cfg); i++) {
u8 options = RTL_R8(cfg[i].reg) & ~cfg[i].mask;
if (wol->wolopts & cfg[i].opt)
options |= cfg[i].mask;
RTL_W8(cfg[i].reg, options);
}
RTL_W8(Cfg9346, Cfg9346_Lock);
tp->wol_enabled = (wol->wolopts) ? 1 : 0;
spin_unlock_irq(&tp->lock);
return 0;
}
static void rtl8169_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct rtl8169_private *tp = netdev_priv(dev);
strcpy(info->driver, MODULENAME);
strcpy(info->version, RTL8169_VERSION);
strcpy(info->bus_info, pci_name(tp->pci_dev));
}
static int rtl8169_get_regs_len(struct net_device *dev)
{
return R8169_REGS_SIZE;
}
static int rtl8169_set_speed_tbi(struct net_device *dev,
u8 autoneg, u16 speed, u8 duplex)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
int ret = 0;
u32 reg;
reg = RTL_R32(TBICSR);
if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) &&
(duplex == DUPLEX_FULL)) {
RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart));
} else if (autoneg == AUTONEG_ENABLE)
RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart);
else {
if (netif_msg_link(tp)) {
printk(KERN_WARNING "%s: "
"incorrect speed setting refused in TBI mode\n",
dev->name);
}
ret = -EOPNOTSUPP;
}
return ret;
}
static int rtl8169_set_speed_xmii(struct net_device *dev,
u8 autoneg, u16 speed, u8 duplex)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
int auto_nego, giga_ctrl;
auto_nego = mdio_read(ioaddr, PHY_AUTO_NEGO_REG);
auto_nego &= ~(PHY_Cap_10_Half | PHY_Cap_10_Full |
PHY_Cap_100_Half | PHY_Cap_100_Full);
giga_ctrl = mdio_read(ioaddr, PHY_1000_CTRL_REG);
giga_ctrl &= ~(PHY_Cap_1000_Full | PHY_Cap_Null);
if (autoneg == AUTONEG_ENABLE) {
auto_nego |= (PHY_Cap_10_Half | PHY_Cap_10_Full |
PHY_Cap_100_Half | PHY_Cap_100_Full);
giga_ctrl |= PHY_Cap_1000_Full;
} else {
if (speed == SPEED_10)
auto_nego |= PHY_Cap_10_Half | PHY_Cap_10_Full;
else if (speed == SPEED_100)
auto_nego |= PHY_Cap_100_Half | PHY_Cap_100_Full;
else if (speed == SPEED_1000)
giga_ctrl |= PHY_Cap_1000_Full;
if (duplex == DUPLEX_HALF)
auto_nego &= ~(PHY_Cap_10_Full | PHY_Cap_100_Full);
if (duplex == DUPLEX_FULL)
auto_nego &= ~(PHY_Cap_10_Half | PHY_Cap_100_Half);
}
tp->phy_auto_nego_reg = auto_nego;
tp->phy_1000_ctrl_reg = giga_ctrl;
mdio_write(ioaddr, PHY_AUTO_NEGO_REG, auto_nego);
mdio_write(ioaddr, PHY_1000_CTRL_REG, giga_ctrl);
mdio_write(ioaddr, PHY_CTRL_REG, PHY_Enable_Auto_Nego |
PHY_Restart_Auto_Nego);
return 0;
}
static int rtl8169_set_speed(struct net_device *dev,
u8 autoneg, u16 speed, u8 duplex)
{
struct rtl8169_private *tp = netdev_priv(dev);
int ret;
ret = tp->set_speed(dev, autoneg, speed, duplex);
if (netif_running(dev) && (tp->phy_1000_ctrl_reg & PHY_Cap_1000_Full))
mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT);
return ret;
}
static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
unsigned long flags;
int ret;
spin_lock_irqsave(&tp->lock, flags);
ret = rtl8169_set_speed(dev, cmd->autoneg, cmd->speed, cmd->duplex);
spin_unlock_irqrestore(&tp->lock, flags);
return ret;
}
static u32 rtl8169_get_rx_csum(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
return tp->cp_cmd & RxChkSum;
}
static int rtl8169_set_rx_csum(struct net_device *dev, u32 data)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
unsigned long flags;
spin_lock_irqsave(&tp->lock, flags);
if (data)
tp->cp_cmd |= RxChkSum;
else
tp->cp_cmd &= ~RxChkSum;
RTL_W16(CPlusCmd, tp->cp_cmd);
RTL_R16(CPlusCmd);
spin_unlock_irqrestore(&tp->lock, flags);
return 0;
}
#ifdef CONFIG_R8169_VLAN
static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp,
struct sk_buff *skb)
{
return (tp->vlgrp && vlan_tx_tag_present(skb)) ?
TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
}
static void rtl8169_vlan_rx_register(struct net_device *dev,
struct vlan_group *grp)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
unsigned long flags;
spin_lock_irqsave(&tp->lock, flags);
tp->vlgrp = grp;
if (tp->vlgrp)
tp->cp_cmd |= RxVlan;
else
tp->cp_cmd &= ~RxVlan;
RTL_W16(CPlusCmd, tp->cp_cmd);
RTL_R16(CPlusCmd);
spin_unlock_irqrestore(&tp->lock, flags);
}
static void rtl8169_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
struct rtl8169_private *tp = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&tp->lock, flags);
if (tp->vlgrp)
tp->vlgrp->vlan_devices[vid] = NULL;
spin_unlock_irqrestore(&tp->lock, flags);
}
static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc,
struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
int ret;
if (tp->vlgrp && (opts2 & RxVlanTag)) {
rtl8169_rx_hwaccel_skb(skb, tp->vlgrp,
swab16(opts2 & 0xffff));
ret = 0;
} else
ret = -1;
desc->opts2 = 0;
return ret;
}
#else /* !CONFIG_R8169_VLAN */
static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp,
struct sk_buff *skb)
{
return 0;
}
static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc,
struct sk_buff *skb)
{
return -1;
}
#endif
static void rtl8169_gset_tbi(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u32 status;
cmd->supported =
SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE;
cmd->port = PORT_FIBRE;
cmd->transceiver = XCVR_INTERNAL;
status = RTL_R32(TBICSR);
cmd->advertising = (status & TBINwEnable) ? ADVERTISED_Autoneg : 0;
cmd->autoneg = !!(status & TBINwEnable);
cmd->speed = SPEED_1000;
cmd->duplex = DUPLEX_FULL; /* Always set */
}
static void rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u8 status;
cmd->supported = SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP;
cmd->autoneg = 1;
cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
if (tp->phy_auto_nego_reg & PHY_Cap_10_Half)
cmd->advertising |= ADVERTISED_10baseT_Half;
if (tp->phy_auto_nego_reg & PHY_Cap_10_Full)
cmd->advertising |= ADVERTISED_10baseT_Full;
if (tp->phy_auto_nego_reg & PHY_Cap_100_Half)
cmd->advertising |= ADVERTISED_100baseT_Half;
if (tp->phy_auto_nego_reg & PHY_Cap_100_Full)
cmd->advertising |= ADVERTISED_100baseT_Full;
if (tp->phy_1000_ctrl_reg & PHY_Cap_1000_Full)
cmd->advertising |= ADVERTISED_1000baseT_Full;
status = RTL_R8(PHYstatus);
if (status & _1000bpsF)
cmd->speed = SPEED_1000;
else if (status & _100bps)
cmd->speed = SPEED_100;
else if (status & _10bps)
cmd->speed = SPEED_10;
cmd->duplex = ((status & _1000bpsF) || (status & FullDup)) ?
DUPLEX_FULL : DUPLEX_HALF;
}
static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&tp->lock, flags);
tp->get_settings(dev, cmd);
spin_unlock_irqrestore(&tp->lock, flags);
return 0;
}
static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct rtl8169_private *tp = netdev_priv(dev);
unsigned long flags;
if (regs->len > R8169_REGS_SIZE)
regs->len = R8169_REGS_SIZE;
spin_lock_irqsave(&tp->lock, flags);
memcpy_fromio(p, tp->mmio_addr, regs->len);
spin_unlock_irqrestore(&tp->lock, flags);
}
static u32 rtl8169_get_msglevel(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void rtl8169_set_msglevel(struct net_device *dev, u32 value)
{
struct rtl8169_private *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = {
"tx_packets",
"rx_packets",
"tx_errors",
"rx_errors",
"rx_missed",
"align_errors",
"tx_single_collisions",
"tx_multi_collisions",
"unicast",
"broadcast",
"multicast",
"tx_aborted",
"tx_underrun",
};
struct rtl8169_counters {
u64 tx_packets;
u64 rx_packets;
u64 tx_errors;
u32 rx_errors;
u16 rx_missed;
u16 align_errors;
u32 tx_one_collision;
u32 tx_multi_collision;
u64 rx_unicast;
u64 rx_broadcast;
u32 rx_multicast;
u16 tx_aborted;
u16 tx_underun;
};
static int rtl8169_get_stats_count(struct net_device *dev)
{
return ARRAY_SIZE(rtl8169_gstrings);
}
static void rtl8169_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
struct rtl8169_counters *counters;
dma_addr_t paddr;
u32 cmd;
ASSERT_RTNL();
counters = pci_alloc_consistent(tp->pci_dev, sizeof(*counters), &paddr);
if (!counters)
return;
RTL_W32(CounterAddrHigh, (u64)paddr >> 32);
cmd = (u64)paddr & DMA_32BIT_MASK;
RTL_W32(CounterAddrLow, cmd);
RTL_W32(CounterAddrLow, cmd | CounterDump);
while (RTL_R32(CounterAddrLow) & CounterDump) {
if (msleep_interruptible(1))
break;
}
RTL_W32(CounterAddrLow, 0);
RTL_W32(CounterAddrHigh, 0);
data[0] = le64_to_cpu(counters->tx_packets);
data[1] = le64_to_cpu(counters->rx_packets);
data[2] = le64_to_cpu(counters->tx_errors);
data[3] = le32_to_cpu(counters->rx_errors);
data[4] = le16_to_cpu(counters->rx_missed);
data[5] = le16_to_cpu(counters->align_errors);
data[6] = le32_to_cpu(counters->tx_one_collision);
data[7] = le32_to_cpu(counters->tx_multi_collision);
data[8] = le64_to_cpu(counters->rx_unicast);
data[9] = le64_to_cpu(counters->rx_broadcast);
data[10] = le32_to_cpu(counters->rx_multicast);
data[11] = le16_to_cpu(counters->tx_aborted);
data[12] = le16_to_cpu(counters->tx_underun);
pci_free_consistent(tp->pci_dev, sizeof(*counters), counters, paddr);
}
static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
switch(stringset) {
case ETH_SS_STATS:
memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings));
break;
}
}
static struct ethtool_ops rtl8169_ethtool_ops = {
.get_drvinfo = rtl8169_get_drvinfo,
.get_regs_len = rtl8169_get_regs_len,
.get_link = ethtool_op_get_link,
.get_settings = rtl8169_get_settings,
.set_settings = rtl8169_set_settings,
.get_msglevel = rtl8169_get_msglevel,
.set_msglevel = rtl8169_set_msglevel,
.get_rx_csum = rtl8169_get_rx_csum,
.set_rx_csum = rtl8169_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_tso = ethtool_op_get_tso,
.set_tso = ethtool_op_set_tso,
.get_regs = rtl8169_get_regs,
.get_wol = rtl8169_get_wol,
.set_wol = rtl8169_set_wol,
.get_strings = rtl8169_get_strings,
.get_stats_count = rtl8169_get_stats_count,
.get_ethtool_stats = rtl8169_get_ethtool_stats,
.get_perm_addr = ethtool_op_get_perm_addr,
};
static void rtl8169_write_gmii_reg_bit(void __iomem *ioaddr, int reg, int bitnum,
int bitval)
{
int val;
val = mdio_read(ioaddr, reg);
val = (bitval == 1) ?
val | (bitval << bitnum) : val & ~(0x0001 << bitnum);
mdio_write(ioaddr, reg, val & 0xffff);
}
static void rtl8169_get_mac_version(struct rtl8169_private *tp, void __iomem *ioaddr)
{
const struct {
u32 mask;
int mac_version;
} mac_info[] = {
{ 0x1 << 28, RTL_GIGA_MAC_VER_X },
{ 0x1 << 26, RTL_GIGA_MAC_VER_E },
{ 0x1 << 23, RTL_GIGA_MAC_VER_D },
{ 0x00000000, RTL_GIGA_MAC_VER_B } /* Catch-all */
}, *p = mac_info;
u32 reg;
reg = RTL_R32(TxConfig) & 0x7c800000;
while ((reg & p->mask) != p->mask)
p++;
tp->mac_version = p->mac_version;
}
static void rtl8169_print_mac_version(struct rtl8169_private *tp)
{
struct {
int version;
char *msg;
} mac_print[] = {
{ RTL_GIGA_MAC_VER_E, "RTL_GIGA_MAC_VER_E" },
{ RTL_GIGA_MAC_VER_D, "RTL_GIGA_MAC_VER_D" },
{ RTL_GIGA_MAC_VER_B, "RTL_GIGA_MAC_VER_B" },
{ 0, NULL }
}, *p;
for (p = mac_print; p->msg; p++) {
if (tp->mac_version == p->version) {
dprintk("mac_version == %s (%04d)\n", p->msg,
p->version);
return;
}
}
dprintk("mac_version == Unknown\n");
}
static void rtl8169_get_phy_version(struct rtl8169_private *tp, void __iomem *ioaddr)
{
const struct {
u16 mask;
u16 set;
int phy_version;
} phy_info[] = {
{ 0x000f, 0x0002, RTL_GIGA_PHY_VER_G },
{ 0x000f, 0x0001, RTL_GIGA_PHY_VER_F },
{ 0x000f, 0x0000, RTL_GIGA_PHY_VER_E },
{ 0x0000, 0x0000, RTL_GIGA_PHY_VER_D } /* Catch-all */
}, *p = phy_info;
u16 reg;
reg = mdio_read(ioaddr, 3) & 0xffff;
while ((reg & p->mask) != p->set)
p++;
tp->phy_version = p->phy_version;
}
static void rtl8169_print_phy_version(struct rtl8169_private *tp)
{
struct {
int version;
char *msg;
u32 reg;
} phy_print[] = {
{ RTL_GIGA_PHY_VER_G, "RTL_GIGA_PHY_VER_G", 0x0002 },
{ RTL_GIGA_PHY_VER_F, "RTL_GIGA_PHY_VER_F", 0x0001 },
{ RTL_GIGA_PHY_VER_E, "RTL_GIGA_PHY_VER_E", 0x0000 },
{ RTL_GIGA_PHY_VER_D, "RTL_GIGA_PHY_VER_D", 0x0000 },
{ 0, NULL, 0x0000 }
}, *p;
for (p = phy_print; p->msg; p++) {
if (tp->phy_version == p->version) {
dprintk("phy_version == %s (%04x)\n", p->msg, p->reg);
return;
}
}
dprintk("phy_version == Unknown\n");
}
static void rtl8169_hw_phy_config(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
struct {
u16 regs[5]; /* Beware of bit-sign propagation */
} phy_magic[5] = { {
{ 0x0000, //w 4 15 12 0
0x00a1, //w 3 15 0 00a1
0x0008, //w 2 15 0 0008
0x1020, //w 1 15 0 1020
0x1000 } },{ //w 0 15 0 1000
{ 0x7000, //w 4 15 12 7
0xff41, //w 3 15 0 ff41
0xde60, //w 2 15 0 de60
0x0140, //w 1 15 0 0140
0x0077 } },{ //w 0 15 0 0077
{ 0xa000, //w 4 15 12 a
0xdf01, //w 3 15 0 df01
0xdf20, //w 2 15 0 df20
0xff95, //w 1 15 0 ff95
0xfa00 } },{ //w 0 15 0 fa00
{ 0xb000, //w 4 15 12 b
0xff41, //w 3 15 0 ff41
0xde20, //w 2 15 0 de20
0x0140, //w 1 15 0 0140
0x00bb } },{ //w 0 15 0 00bb
{ 0xf000, //w 4 15 12 f
0xdf01, //w 3 15 0 df01
0xdf20, //w 2 15 0 df20
0xff95, //w 1 15 0 ff95
0xbf00 } //w 0 15 0 bf00
}
}, *p = phy_magic;
int i;
rtl8169_print_mac_version(tp);
rtl8169_print_phy_version(tp);
if (tp->mac_version <= RTL_GIGA_MAC_VER_B)
return;
if (tp->phy_version >= RTL_GIGA_PHY_VER_H)
return;
dprintk("MAC version != 0 && PHY version == 0 or 1\n");
dprintk("Do final_reg2.cfg\n");
/* Shazam ! */
if (tp->mac_version == RTL_GIGA_MAC_VER_X) {
mdio_write(ioaddr, 31, 0x0001);
mdio_write(ioaddr, 9, 0x273a);
mdio_write(ioaddr, 14, 0x7bfb);
mdio_write(ioaddr, 27, 0x841e);
mdio_write(ioaddr, 31, 0x0002);
mdio_write(ioaddr, 1, 0x90d0);
mdio_write(ioaddr, 31, 0x0000);
return;
}
/* phy config for RTL8169s mac_version C chip */
mdio_write(ioaddr, 31, 0x0001); //w 31 2 0 1
mdio_write(ioaddr, 21, 0x1000); //w 21 15 0 1000
mdio_write(ioaddr, 24, 0x65c7); //w 24 15 0 65c7
rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0); //w 4 11 11 0
for (i = 0; i < ARRAY_SIZE(phy_magic); i++, p++) {
int val, pos = 4;
val = (mdio_read(ioaddr, pos) & 0x0fff) | (p->regs[0] & 0xffff);
mdio_write(ioaddr, pos, val);
while (--pos >= 0)
mdio_write(ioaddr, pos, p->regs[4 - pos] & 0xffff);
rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 1); //w 4 11 11 1
rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0); //w 4 11 11 0
}
mdio_write(ioaddr, 31, 0x0000); //w 31 2 0 0
}
static void rtl8169_phy_timer(unsigned long __opaque)
{
struct net_device *dev = (struct net_device *)__opaque;
struct rtl8169_private *tp = netdev_priv(dev);
struct timer_list *timer = &tp->timer;
void __iomem *ioaddr = tp->mmio_addr;
unsigned long timeout = RTL8169_PHY_TIMEOUT;
assert(tp->mac_version > RTL_GIGA_MAC_VER_B);
assert(tp->phy_version < RTL_GIGA_PHY_VER_H);
if (!(tp->phy_1000_ctrl_reg & PHY_Cap_1000_Full))
return;
spin_lock_irq(&tp->lock);
if (tp->phy_reset_pending(ioaddr)) {
/*
* A busy loop could burn quite a few cycles on nowadays CPU.
* Let's delay the execution of the timer for a few ticks.
*/
timeout = HZ/10;
goto out_mod_timer;
}
if (tp->link_ok(ioaddr))
goto out_unlock;
if (netif_msg_link(tp))
printk(KERN_WARNING "%s: PHY reset until link up\n", dev->name);
tp->phy_reset_enable(ioaddr);
out_mod_timer:
mod_timer(timer, jiffies + timeout);
out_unlock:
spin_unlock_irq(&tp->lock);
}
static inline void rtl8169_delete_timer(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct timer_list *timer = &tp->timer;
if ((tp->mac_version <= RTL_GIGA_MAC_VER_B) ||
(tp->phy_version >= RTL_GIGA_PHY_VER_H))
return;
del_timer_sync(timer);
}
static inline void rtl8169_request_timer(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct timer_list *timer = &tp->timer;
if ((tp->mac_version <= RTL_GIGA_MAC_VER_B) ||
(tp->phy_version >= RTL_GIGA_PHY_VER_H))
return;
init_timer(timer);
timer->expires = jiffies + RTL8169_PHY_TIMEOUT;
timer->data = (unsigned long)(dev);
timer->function = rtl8169_phy_timer;
add_timer(timer);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void rtl8169_netpoll(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
disable_irq(pdev->irq);
rtl8169_interrupt(pdev->irq, dev, NULL);
enable_irq(pdev->irq);
}
#endif
static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev,
void __iomem *ioaddr)
{
iounmap(ioaddr);
pci_release_regions(pdev);
pci_disable_device(pdev);
free_netdev(dev);
}
static int __devinit
rtl8169_init_board(struct pci_dev *pdev, struct net_device **dev_out,
void __iomem **ioaddr_out)
{
void __iomem *ioaddr;
struct net_device *dev;
struct rtl8169_private *tp;
int rc = -ENOMEM, i, acpi_idle_state = 0, pm_cap;
assert(ioaddr_out != NULL);
/* dev zeroed in alloc_etherdev */
dev = alloc_etherdev(sizeof (*tp));
if (dev == NULL) {
if (netif_msg_drv(&debug))
printk(KERN_ERR PFX "unable to alloc new ethernet\n");
goto err_out;
}
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
tp = netdev_priv(dev);
tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT);
/* enable device (incl. PCI PM wakeup and hotplug setup) */
rc = pci_enable_device(pdev);
if (rc < 0) {
if (netif_msg_probe(tp)) {
printk(KERN_ERR PFX "%s: enable failure\n",
pci_name(pdev));
}
goto err_out_free_dev;
}
rc = pci_set_mwi(pdev);
if (rc < 0)
goto err_out_disable;
/* save power state before pci_enable_device overwrites it */
pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (pm_cap) {
u16 pwr_command;
pci_read_config_word(pdev, pm_cap + PCI_PM_CTRL, &pwr_command);
acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
} else {
if (netif_msg_probe(tp)) {
printk(KERN_ERR PFX
"PowerManagement capability not found.\n");
}
}
/* make sure PCI base addr 1 is MMIO */
if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
if (netif_msg_probe(tp)) {
printk(KERN_ERR PFX
"region #1 not an MMIO resource, aborting\n");
}
rc = -ENODEV;
goto err_out_mwi;
}
/* check for weird/broken PCI region reporting */
if (pci_resource_len(pdev, 1) < R8169_REGS_SIZE) {
if (netif_msg_probe(tp)) {
printk(KERN_ERR PFX
"Invalid PCI region size(s), aborting\n");
}
rc = -ENODEV;
goto err_out_mwi;
}
rc = pci_request_regions(pdev, MODULENAME);
if (rc < 0) {
if (netif_msg_probe(tp)) {
printk(KERN_ERR PFX "%s: could not request regions.\n",
pci_name(pdev));
}
goto err_out_mwi;
}
tp->cp_cmd = PCIMulRW | RxChkSum;
if ((sizeof(dma_addr_t) > 4) &&
!pci_set_dma_mask(pdev, DMA_64BIT_MASK) && use_dac) {
tp->cp_cmd |= PCIDAC;
dev->features |= NETIF_F_HIGHDMA;
} else {
rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (rc < 0) {
if (netif_msg_probe(tp)) {
printk(KERN_ERR PFX
"DMA configuration failed.\n");
}
goto err_out_free_res;
}
}
pci_set_master(pdev);
/* ioremap MMIO region */
ioaddr = ioremap(pci_resource_start(pdev, 1), R8169_REGS_SIZE);
if (ioaddr == NULL) {
if (netif_msg_probe(tp))
printk(KERN_ERR PFX "cannot remap MMIO, aborting\n");
rc = -EIO;
goto err_out_free_res;
}
/* Unneeded ? Don't mess with Mrs. Murphy. */
rtl8169_irq_mask_and_ack(ioaddr);
/* Soft reset the chip. */
RTL_W8(ChipCmd, CmdReset);
/* Check that the chip has finished the reset. */
for (i = 1000; i > 0; i--) {
if ((RTL_R8(ChipCmd) & CmdReset) == 0)
break;
udelay(10);
}
/* Identify chip attached to board */
rtl8169_get_mac_version(tp, ioaddr);
rtl8169_get_phy_version(tp, ioaddr);
rtl8169_print_mac_version(tp);
rtl8169_print_phy_version(tp);
for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--) {
if (tp->mac_version == rtl_chip_info[i].mac_version)
break;
}
if (i < 0) {
/* Unknown chip: assume array element #0, original RTL-8169 */
if (netif_msg_probe(tp)) {
printk(KERN_DEBUG PFX "PCI device %s: "
"unknown chip version, assuming %s\n",
pci_name(pdev), rtl_chip_info[0].name);
}
i++;
}
tp->chipset = i;
RTL_W8(Cfg9346, Cfg9346_Unlock);
RTL_W8(Config1, RTL_R8(Config1) | PMEnable);
RTL_W8(Config5, RTL_R8(Config5) & PMEStatus);
RTL_W8(Cfg9346, Cfg9346_Lock);
*ioaddr_out = ioaddr;
*dev_out = dev;
out:
return rc;
err_out_free_res:
pci_release_regions(pdev);
err_out_mwi:
pci_clear_mwi(pdev);
err_out_disable:
pci_disable_device(pdev);
err_out_free_dev:
free_netdev(dev);
err_out:
*ioaddr_out = NULL;
*dev_out = NULL;
goto out;
}
static int __devinit
rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *dev = NULL;
struct rtl8169_private *tp;
void __iomem *ioaddr = NULL;
static int board_idx = -1;
u8 autoneg, duplex;
u16 speed;
int i, rc;
assert(pdev != NULL);
assert(ent != NULL);
board_idx++;
if (netif_msg_drv(&debug)) {
printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n",
MODULENAME, RTL8169_VERSION);
}
rc = rtl8169_init_board(pdev, &dev, &ioaddr);
if (rc)
return rc;
tp = netdev_priv(dev);
assert(ioaddr != NULL);
if (RTL_R8(PHYstatus) & TBI_Enable) {
tp->set_speed = rtl8169_set_speed_tbi;
tp->get_settings = rtl8169_gset_tbi;
tp->phy_reset_enable = rtl8169_tbi_reset_enable;
tp->phy_reset_pending = rtl8169_tbi_reset_pending;
tp->link_ok = rtl8169_tbi_link_ok;
tp->phy_1000_ctrl_reg = PHY_Cap_1000_Full; /* Implied by TBI */
} else {
tp->set_speed = rtl8169_set_speed_xmii;
tp->get_settings = rtl8169_gset_xmii;
tp->phy_reset_enable = rtl8169_xmii_reset_enable;
tp->phy_reset_pending = rtl8169_xmii_reset_pending;
tp->link_ok = rtl8169_xmii_link_ok;
}
/* Get MAC address. FIXME: read EEPROM */
for (i = 0; i < MAC_ADDR_LEN; i++)
dev->dev_addr[i] = RTL_R8(MAC0 + i);
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
dev->open = rtl8169_open;
dev->hard_start_xmit = rtl8169_start_xmit;
dev->get_stats = rtl8169_get_stats;
SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops);
dev->stop = rtl8169_close;
dev->tx_timeout = rtl8169_tx_timeout;
dev->set_multicast_list = rtl8169_set_rx_mode;
dev->watchdog_timeo = RTL8169_TX_TIMEOUT;
dev->irq = pdev->irq;
dev->base_addr = (unsigned long) ioaddr;
dev->change_mtu = rtl8169_change_mtu;
#ifdef CONFIG_R8169_NAPI
dev->poll = rtl8169_poll;
dev->weight = R8169_NAPI_WEIGHT;
#endif
#ifdef CONFIG_R8169_VLAN
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
dev->vlan_rx_register = rtl8169_vlan_rx_register;
dev->vlan_rx_kill_vid = rtl8169_vlan_rx_kill_vid;
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = rtl8169_netpoll;
#endif
tp->intr_mask = 0xffff;
tp->pci_dev = pdev;
tp->mmio_addr = ioaddr;
spin_lock_init(&tp->lock);
rc = register_netdev(dev);
if (rc) {
rtl8169_release_board(pdev, dev, ioaddr);
return rc;
}
if (netif_msg_probe(tp)) {
printk(KERN_DEBUG "%s: Identified chip type is '%s'.\n",
dev->name, rtl_chip_info[tp->chipset].name);
}
pci_set_drvdata(pdev, dev);
if (netif_msg_probe(tp)) {
printk(KERN_INFO "%s: %s at 0x%lx, "
"%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, "
"IRQ %d\n",
dev->name,
rtl_chip_info[ent->driver_data].name,
dev->base_addr,
dev->dev_addr[0], dev->dev_addr[1],
dev->dev_addr[2], dev->dev_addr[3],
dev->dev_addr[4], dev->dev_addr[5], dev->irq);
}
rtl8169_hw_phy_config(dev);
dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(0x82, 0x01);
if (tp->mac_version < RTL_GIGA_MAC_VER_E) {
dprintk("Set PCI Latency=0x40\n");
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x40);
}
if (tp->mac_version == RTL_GIGA_MAC_VER_D) {
dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(0x82, 0x01);
dprintk("Set PHY Reg 0x0bh = 0x00h\n");
mdio_write(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0
}
rtl8169_link_option(board_idx, &autoneg, &speed, &duplex);
rtl8169_set_speed(dev, autoneg, speed, duplex);
if ((RTL_R8(PHYstatus) & TBI_Enable) && netif_msg_link(tp))
printk(KERN_INFO PFX "%s: TBI auto-negotiating\n", dev->name);
return 0;
}
static void __devexit
rtl8169_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
assert(dev != NULL);
assert(tp != NULL);
unregister_netdev(dev);
rtl8169_release_board(pdev, dev, tp->mmio_addr);
pci_set_drvdata(pdev, NULL);
}
static void rtl8169_set_rxbufsize(struct rtl8169_private *tp,
struct net_device *dev)
{
unsigned int mtu = dev->mtu;
tp->rx_buf_sz = (mtu > RX_BUF_SIZE) ? mtu + ETH_HLEN + 8 : RX_BUF_SIZE;
}
static int rtl8169_open(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
int retval;
rtl8169_set_rxbufsize(tp, dev);
retval =
request_irq(dev->irq, rtl8169_interrupt, SA_SHIRQ, dev->name, dev);
if (retval < 0)
goto out;
retval = -ENOMEM;
/*
* Rx and Tx desscriptors needs 256 bytes alignment.
* pci_alloc_consistent provides more.
*/
tp->TxDescArray = pci_alloc_consistent(pdev, R8169_TX_RING_BYTES,
&tp->TxPhyAddr);
if (!tp->TxDescArray)
goto err_free_irq;
tp->RxDescArray = pci_alloc_consistent(pdev, R8169_RX_RING_BYTES,
&tp->RxPhyAddr);
if (!tp->RxDescArray)
goto err_free_tx;
retval = rtl8169_init_ring(dev);
if (retval < 0)
goto err_free_rx;
INIT_WORK(&tp->task, NULL, dev);
rtl8169_hw_start(dev);
rtl8169_request_timer(dev);
rtl8169_check_link_status(dev, tp, tp->mmio_addr);
out:
return retval;
err_free_rx:
pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
err_free_tx:
pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
err_free_irq:
free_irq(dev->irq, dev);
goto out;
}
static void rtl8169_hw_reset(void __iomem *ioaddr)
{
/* Disable interrupts */
rtl8169_irq_mask_and_ack(ioaddr);
/* Reset the chipset */
RTL_W8(ChipCmd, CmdReset);
/* PCI commit */
RTL_R8(ChipCmd);
}
static void
rtl8169_hw_start(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u32 i;
/* Soft reset the chip. */
RTL_W8(ChipCmd, CmdReset);
/* Check that the chip has finished the reset. */
for (i = 1000; i > 0; i--) {
if ((RTL_R8(ChipCmd) & CmdReset) == 0)
break;
udelay(10);
}
RTL_W8(Cfg9346, Cfg9346_Unlock);
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
RTL_W8(EarlyTxThres, EarlyTxThld);
/* Low hurts. Let's disable the filtering. */
RTL_W16(RxMaxSize, 16383);
/* Set Rx Config register */
i = rtl8169_rx_config |
(RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
RTL_W32(RxConfig, i);
/* Set DMA burst size and Interframe Gap Time */
RTL_W32(TxConfig,
(TX_DMA_BURST << TxDMAShift) | (InterFrameGap <<
TxInterFrameGapShift));
tp->cp_cmd |= RTL_R16(CPlusCmd);
RTL_W16(CPlusCmd, tp->cp_cmd);
if ((tp->mac_version == RTL_GIGA_MAC_VER_D) ||
(tp->mac_version == RTL_GIGA_MAC_VER_E)) {
dprintk(KERN_INFO PFX "Set MAC Reg C+CR Offset 0xE0. "
"Bit-3 and bit-14 MUST be 1\n");
tp->cp_cmd |= (1 << 14) | PCIMulRW;
RTL_W16(CPlusCmd, tp->cp_cmd);
}
/*
* Undocumented corner. Supposedly:
* (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets
*/
RTL_W16(IntrMitigate, 0x0000);
RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr & DMA_32BIT_MASK));
RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr >> 32));
RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr & DMA_32BIT_MASK));
RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr >> 32));
RTL_W8(Cfg9346, Cfg9346_Lock);
udelay(10);
RTL_W32(RxMissed, 0);
rtl8169_set_rx_mode(dev);
/* no early-rx interrupts */
RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
/* Enable all known interrupts by setting the interrupt mask. */
RTL_W16(IntrMask, rtl8169_intr_mask);
netif_start_queue(dev);
}
static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
{
struct rtl8169_private *tp = netdev_priv(dev);
int ret = 0;
if (new_mtu < ETH_ZLEN || new_mtu > SafeMtu)
return -EINVAL;
dev->mtu = new_mtu;
if (!netif_running(dev))
goto out;
rtl8169_down(dev);
rtl8169_set_rxbufsize(tp, dev);
ret = rtl8169_init_ring(dev);
if (ret < 0)
goto out;
netif_poll_enable(dev);
rtl8169_hw_start(dev);
rtl8169_request_timer(dev);
out:
return ret;
}
static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc)
{
desc->addr = 0x0badbadbadbadbadull;
desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask);
}
static void rtl8169_free_rx_skb(struct rtl8169_private *tp,
struct sk_buff **sk_buff, struct RxDesc *desc)
{
struct pci_dev *pdev = tp->pci_dev;
pci_unmap_single(pdev, le64_to_cpu(desc->addr), tp->rx_buf_sz,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(*sk_buff);
*sk_buff = NULL;
rtl8169_make_unusable_by_asic(desc);
}
static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz)
{
u32 eor = le32_to_cpu(desc->opts1) & RingEnd;
desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz);
}
static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping,
u32 rx_buf_sz)
{
desc->addr = cpu_to_le64(mapping);
wmb();
rtl8169_mark_to_asic(desc, rx_buf_sz);
}
static int rtl8169_alloc_rx_skb(struct pci_dev *pdev, struct sk_buff **sk_buff,
struct RxDesc *desc, int rx_buf_sz)
{
struct sk_buff *skb;
dma_addr_t mapping;
int ret = 0;
skb = dev_alloc_skb(rx_buf_sz + NET_IP_ALIGN);
if (!skb)
goto err_out;
skb_reserve(skb, NET_IP_ALIGN);
*sk_buff = skb;
mapping = pci_map_single(pdev, skb->data, rx_buf_sz,
PCI_DMA_FROMDEVICE);
rtl8169_map_to_asic(desc, mapping, rx_buf_sz);
out:
return ret;
err_out:
ret = -ENOMEM;
rtl8169_make_unusable_by_asic(desc);
goto out;
}
static void rtl8169_rx_clear(struct rtl8169_private *tp)
{
int i;
for (i = 0; i < NUM_RX_DESC; i++) {
if (tp->Rx_skbuff[i]) {
rtl8169_free_rx_skb(tp, tp->Rx_skbuff + i,
tp->RxDescArray + i);
}
}
}
static u32 rtl8169_rx_fill(struct rtl8169_private *tp, struct net_device *dev,
u32 start, u32 end)
{
u32 cur;
for (cur = start; end - cur > 0; cur++) {
int ret, i = cur % NUM_RX_DESC;
if (tp->Rx_skbuff[i])
continue;
ret = rtl8169_alloc_rx_skb(tp->pci_dev, tp->Rx_skbuff + i,
tp->RxDescArray + i, tp->rx_buf_sz);
if (ret < 0)
break;
}
return cur - start;
}
static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc)
{
desc->opts1 |= cpu_to_le32(RingEnd);
}
static void rtl8169_init_ring_indexes(struct rtl8169_private *tp)
{
tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0;
}
static int rtl8169_init_ring(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_init_ring_indexes(tp);
memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info));
memset(tp->Rx_skbuff, 0x0, NUM_RX_DESC * sizeof(struct sk_buff *));
if (rtl8169_rx_fill(tp, dev, 0, NUM_RX_DESC) != NUM_RX_DESC)
goto err_out;
rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1);
return 0;
err_out:
rtl8169_rx_clear(tp);
return -ENOMEM;
}
static void rtl8169_unmap_tx_skb(struct pci_dev *pdev, struct ring_info *tx_skb,
struct TxDesc *desc)
{
unsigned int len = tx_skb->len;
pci_unmap_single(pdev, le64_to_cpu(desc->addr), len, PCI_DMA_TODEVICE);
desc->opts1 = 0x00;
desc->opts2 = 0x00;
desc->addr = 0x00;
tx_skb->len = 0;
}
static void rtl8169_tx_clear(struct rtl8169_private *tp)
{
unsigned int i;
for (i = tp->dirty_tx; i < tp->dirty_tx + NUM_TX_DESC; i++) {
unsigned int entry = i % NUM_TX_DESC;
struct ring_info *tx_skb = tp->tx_skb + entry;
unsigned int len = tx_skb->len;
if (len) {
struct sk_buff *skb = tx_skb->skb;
rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb,
tp->TxDescArray + entry);
if (skb) {
dev_kfree_skb(skb);
tx_skb->skb = NULL;
}
tp->stats.tx_dropped++;
}
}
tp->cur_tx = tp->dirty_tx = 0;
}
static void rtl8169_schedule_work(struct net_device *dev, void (*task)(void *))
{
struct rtl8169_private *tp = netdev_priv(dev);
PREPARE_WORK(&tp->task, task, dev);
schedule_delayed_work(&tp->task, 4);
}
static void rtl8169_wait_for_quiescence(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
synchronize_irq(dev->irq);
/* Wait for any pending NAPI task to complete */
netif_poll_disable(dev);
rtl8169_irq_mask_and_ack(ioaddr);
netif_poll_enable(dev);
}
static void rtl8169_reinit_task(void *_data)
{
struct net_device *dev = _data;
int ret;
if (netif_running(dev)) {
rtl8169_wait_for_quiescence(dev);
rtl8169_close(dev);
}
ret = rtl8169_open(dev);
if (unlikely(ret < 0)) {
if (net_ratelimit()) {
struct rtl8169_private *tp = netdev_priv(dev);
if (netif_msg_drv(tp)) {
printk(PFX KERN_ERR
"%s: reinit failure (status = %d)."
" Rescheduling.\n", dev->name, ret);
}
}
rtl8169_schedule_work(dev, rtl8169_reinit_task);
}
}
static void rtl8169_reset_task(void *_data)
{
struct net_device *dev = _data;
struct rtl8169_private *tp = netdev_priv(dev);
if (!netif_running(dev))
return;
rtl8169_wait_for_quiescence(dev);
rtl8169_rx_interrupt(dev, tp, tp->mmio_addr);
rtl8169_tx_clear(tp);
if (tp->dirty_rx == tp->cur_rx) {
rtl8169_init_ring_indexes(tp);
rtl8169_hw_start(dev);
netif_wake_queue(dev);
} else {
if (net_ratelimit()) {
struct rtl8169_private *tp = netdev_priv(dev);
if (netif_msg_intr(tp)) {
printk(PFX KERN_EMERG
"%s: Rx buffers shortage\n", dev->name);
}
}
rtl8169_schedule_work(dev, rtl8169_reset_task);
}
}
static void rtl8169_tx_timeout(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_hw_reset(tp->mmio_addr);
/* Let's wait a bit while any (async) irq lands on */
rtl8169_schedule_work(dev, rtl8169_reset_task);
}
static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb,
u32 opts1)
{
struct skb_shared_info *info = skb_shinfo(skb);
unsigned int cur_frag, entry;
struct TxDesc *txd;
entry = tp->cur_tx;
for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) {
skb_frag_t *frag = info->frags + cur_frag;
dma_addr_t mapping;
u32 status, len;
void *addr;
entry = (entry + 1) % NUM_TX_DESC;
txd = tp->TxDescArray + entry;
len = frag->size;
addr = ((void *) page_address(frag->page)) + frag->page_offset;
mapping = pci_map_single(tp->pci_dev, addr, len, PCI_DMA_TODEVICE);
/* anti gcc 2.95.3 bugware (sic) */
status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));
txd->opts1 = cpu_to_le32(status);
txd->addr = cpu_to_le64(mapping);
tp->tx_skb[entry].len = len;
}
if (cur_frag) {
tp->tx_skb[entry].skb = skb;
txd->opts1 |= cpu_to_le32(LastFrag);
}
return cur_frag;
}
static inline u32 rtl8169_tso_csum(struct sk_buff *skb, struct net_device *dev)
{
if (dev->features & NETIF_F_TSO) {
u32 mss = skb_shinfo(skb)->tso_size;
if (mss)
return LargeSend | ((mss & MSSMask) << MSSShift);
}
if (skb->ip_summed == CHECKSUM_HW) {
const struct iphdr *ip = skb->nh.iph;
if (ip->protocol == IPPROTO_TCP)
return IPCS | TCPCS;
else if (ip->protocol == IPPROTO_UDP)
return IPCS | UDPCS;
WARN_ON(1); /* we need a WARN() */
}
return 0;
}
static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
unsigned int frags, entry = tp->cur_tx % NUM_TX_DESC;
struct TxDesc *txd = tp->TxDescArray + entry;
void __iomem *ioaddr = tp->mmio_addr;
dma_addr_t mapping;
u32 status, len;
u32 opts1;
int ret = 0;
if (unlikely(TX_BUFFS_AVAIL(tp) < skb_shinfo(skb)->nr_frags)) {
if (netif_msg_drv(tp)) {
printk(KERN_ERR
"%s: BUG! Tx Ring full when queue awake!\n",
dev->name);
}
goto err_stop;
}
if (unlikely(le32_to_cpu(txd->opts1) & DescOwn))
goto err_stop;
opts1 = DescOwn | rtl8169_tso_csum(skb, dev);
frags = rtl8169_xmit_frags(tp, skb, opts1);
if (frags) {
len = skb_headlen(skb);
opts1 |= FirstFrag;
} else {
len = skb->len;
if (unlikely(len < ETH_ZLEN)) {
skb = skb_padto(skb, ETH_ZLEN);
if (!skb)
goto err_update_stats;
len = ETH_ZLEN;
}
opts1 |= FirstFrag | LastFrag;
tp->tx_skb[entry].skb = skb;
}
mapping = pci_map_single(tp->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
tp->tx_skb[entry].len = len;
txd->addr = cpu_to_le64(mapping);
txd->opts2 = cpu_to_le32(rtl8169_tx_vlan_tag(tp, skb));
wmb();
/* anti gcc 2.95.3 bugware (sic) */
status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));
txd->opts1 = cpu_to_le32(status);
dev->trans_start = jiffies;
tp->cur_tx += frags + 1;
smp_wmb();
RTL_W8(TxPoll, 0x40); /* set polling bit */
if (TX_BUFFS_AVAIL(tp) < MAX_SKB_FRAGS) {
netif_stop_queue(dev);
smp_rmb();
if (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)
netif_wake_queue(dev);
}
out:
return ret;
err_stop:
netif_stop_queue(dev);
ret = 1;
err_update_stats:
tp->stats.tx_dropped++;
goto out;
}
static void rtl8169_pcierr_interrupt(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
void __iomem *ioaddr = tp->mmio_addr;
u16 pci_status, pci_cmd;
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
pci_read_config_word(pdev, PCI_STATUS, &pci_status);
if (netif_msg_intr(tp)) {
printk(KERN_ERR
"%s: PCI error (cmd = 0x%04x, status = 0x%04x).\n",
dev->name, pci_cmd, pci_status);
}
/*
* The recovery sequence below admits a very elaborated explanation:
* - it seems to work;
* - I did not see what else could be done.
*
* Feel free to adjust to your needs.
*/
pci_write_config_word(pdev, PCI_COMMAND,
pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
pci_write_config_word(pdev, PCI_STATUS,
pci_status & (PCI_STATUS_DETECTED_PARITY |
PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT));
/* The infamous DAC f*ckup only happens at boot time */
if ((tp->cp_cmd & PCIDAC) && !tp->dirty_rx && !tp->cur_rx) {
if (netif_msg_intr(tp))
printk(KERN_INFO "%s: disabling PCI DAC.\n", dev->name);
tp->cp_cmd &= ~PCIDAC;
RTL_W16(CPlusCmd, tp->cp_cmd);
dev->features &= ~NETIF_F_HIGHDMA;
rtl8169_schedule_work(dev, rtl8169_reinit_task);
}
rtl8169_hw_reset(ioaddr);
}
static void
rtl8169_tx_interrupt(struct net_device *dev, struct rtl8169_private *tp,
void __iomem *ioaddr)
{
unsigned int dirty_tx, tx_left;
assert(dev != NULL);
assert(tp != NULL);
assert(ioaddr != NULL);
dirty_tx = tp->dirty_tx;
smp_rmb();
tx_left = tp->cur_tx - dirty_tx;
while (tx_left > 0) {
unsigned int entry = dirty_tx % NUM_TX_DESC;
struct ring_info *tx_skb = tp->tx_skb + entry;
u32 len = tx_skb->len;
u32 status;
rmb();
status = le32_to_cpu(tp->TxDescArray[entry].opts1);
if (status & DescOwn)
break;
tp->stats.tx_bytes += len;
tp->stats.tx_packets++;
rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry);
if (status & LastFrag) {
dev_kfree_skb_irq(tx_skb->skb);
tx_skb->skb = NULL;
}
dirty_tx++;
tx_left--;
}
if (tp->dirty_tx != dirty_tx) {
tp->dirty_tx = dirty_tx;
smp_wmb();
if (netif_queue_stopped(dev) &&
(TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)) {
netif_wake_queue(dev);
}
}
}
static inline int rtl8169_fragmented_frame(u32 status)
{
return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag);
}
static inline void rtl8169_rx_csum(struct sk_buff *skb, struct RxDesc *desc)
{
u32 opts1 = le32_to_cpu(desc->opts1);
u32 status = opts1 & RxProtoMask;
if (((status == RxProtoTCP) && !(opts1 & TCPFail)) ||
((status == RxProtoUDP) && !(opts1 & UDPFail)) ||
((status == RxProtoIP) && !(opts1 & IPFail)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
static inline int rtl8169_try_rx_copy(struct sk_buff **sk_buff, int pkt_size,
struct RxDesc *desc, int rx_buf_sz)
{
int ret = -1;
if (pkt_size < rx_copybreak) {
struct sk_buff *skb;
skb = dev_alloc_skb(pkt_size + NET_IP_ALIGN);
if (skb) {
skb_reserve(skb, NET_IP_ALIGN);
eth_copy_and_sum(skb, sk_buff[0]->data, pkt_size, 0);
*sk_buff = skb;
rtl8169_mark_to_asic(desc, rx_buf_sz);
ret = 0;
}
}
return ret;
}
static int
rtl8169_rx_interrupt(struct net_device *dev, struct rtl8169_private *tp,
void __iomem *ioaddr)
{
unsigned int cur_rx, rx_left;
unsigned int delta, count;
assert(dev != NULL);
assert(tp != NULL);
assert(ioaddr != NULL);
cur_rx = tp->cur_rx;
rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx;
rx_left = rtl8169_rx_quota(rx_left, (u32) dev->quota);
for (; rx_left > 0; rx_left--, cur_rx++) {
unsigned int entry = cur_rx % NUM_RX_DESC;
struct RxDesc *desc = tp->RxDescArray + entry;
u32 status;
rmb();
status = le32_to_cpu(desc->opts1);
if (status & DescOwn)
break;
if (unlikely(status & RxRES)) {
if (netif_msg_rx_err(tp)) {
printk(KERN_INFO
"%s: Rx ERROR. status = %08x\n",
dev->name, status);
}
tp->stats.rx_errors++;
if (status & (RxRWT | RxRUNT))
tp->stats.rx_length_errors++;
if (status & RxCRC)
tp->stats.rx_crc_errors++;
rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
} else {
struct sk_buff *skb = tp->Rx_skbuff[entry];
int pkt_size = (status & 0x00001FFF) - 4;
void (*pci_action)(struct pci_dev *, dma_addr_t,
size_t, int) = pci_dma_sync_single_for_device;
/*
* The driver does not support incoming fragmented
* frames. They are seen as a symptom of over-mtu
* sized frames.
*/
if (unlikely(rtl8169_fragmented_frame(status))) {
tp->stats.rx_dropped++;
tp->stats.rx_length_errors++;
rtl8169_mark_to_asic(desc, tp->rx_buf_sz);
continue;
}
rtl8169_rx_csum(skb, desc);
pci_dma_sync_single_for_cpu(tp->pci_dev,
le64_to_cpu(desc->addr), tp->rx_buf_sz,
PCI_DMA_FROMDEVICE);
if (rtl8169_try_rx_copy(&skb, pkt_size, desc,
tp->rx_buf_sz)) {
pci_action = pci_unmap_single;
tp->Rx_skbuff[entry] = NULL;
}
pci_action(tp->pci_dev, le64_to_cpu(desc->addr),
tp->rx_buf_sz, PCI_DMA_FROMDEVICE);
skb->dev = dev;
skb_put(skb, pkt_size);
skb->protocol = eth_type_trans(skb, dev);
if (rtl8169_rx_vlan_skb(tp, desc, skb) < 0)
rtl8169_rx_skb(skb);
dev->last_rx = jiffies;
tp->stats.rx_bytes += pkt_size;
tp->stats.rx_packets++;
}
}
count = cur_rx - tp->cur_rx;
tp->cur_rx = cur_rx;
delta = rtl8169_rx_fill(tp, dev, tp->dirty_rx, tp->cur_rx);
if (!delta && count && netif_msg_intr(tp))
printk(KERN_INFO "%s: no Rx buffer allocated\n", dev->name);
tp->dirty_rx += delta;
/*
* FIXME: until there is periodic timer to try and refill the ring,
* a temporary shortage may definitely kill the Rx process.
* - disable the asic to try and avoid an overflow and kick it again
* after refill ?
* - how do others driver handle this condition (Uh oh...).
*/
if ((tp->dirty_rx + NUM_RX_DESC == tp->cur_rx) && netif_msg_intr(tp))
printk(KERN_EMERG "%s: Rx buffers exhausted\n", dev->name);
return count;
}
/* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */
static irqreturn_t
rtl8169_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_instance;
struct rtl8169_private *tp = netdev_priv(dev);
int boguscnt = max_interrupt_work;
void __iomem *ioaddr = tp->mmio_addr;
int status;
int handled = 0;
do {
status = RTL_R16(IntrStatus);
/* hotplug/major error/no more work/shared irq */
if ((status == 0xFFFF) || !status)
break;
handled = 1;
if (unlikely(!netif_running(dev))) {
rtl8169_asic_down(ioaddr);
goto out;
}
status &= tp->intr_mask;
RTL_W16(IntrStatus,
(status & RxFIFOOver) ? (status | RxOverflow) : status);
if (!(status & rtl8169_intr_mask))
break;
if (unlikely(status & SYSErr)) {
rtl8169_pcierr_interrupt(dev);
break;
}
if (status & LinkChg)
rtl8169_check_link_status(dev, tp, ioaddr);
#ifdef CONFIG_R8169_NAPI
RTL_W16(IntrMask, rtl8169_intr_mask & ~rtl8169_napi_event);
tp->intr_mask = ~rtl8169_napi_event;
if (likely(netif_rx_schedule_prep(dev)))
__netif_rx_schedule(dev);
else if (netif_msg_intr(tp)) {
printk(KERN_INFO "%s: interrupt %04x taken in poll\n",
dev->name, status);
}
break;
#else
/* Rx interrupt */
if (status & (RxOK | RxOverflow | RxFIFOOver)) {
rtl8169_rx_interrupt(dev, tp, ioaddr);
}
/* Tx interrupt */
if (status & (TxOK | TxErr))
rtl8169_tx_interrupt(dev, tp, ioaddr);
#endif
boguscnt--;
} while (boguscnt > 0);
if (boguscnt <= 0) {
if (netif_msg_intr(tp) && net_ratelimit() ) {
printk(KERN_WARNING
"%s: Too much work at interrupt!\n", dev->name);
}
/* Clear all interrupt sources. */
RTL_W16(IntrStatus, 0xffff);
}
out:
return IRQ_RETVAL(handled);
}
#ifdef CONFIG_R8169_NAPI
static int rtl8169_poll(struct net_device *dev, int *budget)
{
unsigned int work_done, work_to_do = min(*budget, dev->quota);
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
work_done = rtl8169_rx_interrupt(dev, tp, ioaddr);
rtl8169_tx_interrupt(dev, tp, ioaddr);
*budget -= work_done;
dev->quota -= work_done;
if (work_done < work_to_do) {
netif_rx_complete(dev);
tp->intr_mask = 0xffff;
/*
* 20040426: the barrier is not strictly required but the
* behavior of the irq handler could be less predictable
* without it. Btw, the lack of flush for the posted pci
* write is safe - FR
*/
smp_wmb();
RTL_W16(IntrMask, rtl8169_intr_mask);
}
return (work_done >= work_to_do);
}
#endif
static void rtl8169_down(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
unsigned int poll_locked = 0;
rtl8169_delete_timer(dev);
netif_stop_queue(dev);
flush_scheduled_work();
core_down:
spin_lock_irq(&tp->lock);
rtl8169_asic_down(ioaddr);
/* Update the error counts. */
tp->stats.rx_missed_errors += RTL_R32(RxMissed);
RTL_W32(RxMissed, 0);
spin_unlock_irq(&tp->lock);
synchronize_irq(dev->irq);
if (!poll_locked) {
netif_poll_disable(dev);
poll_locked++;
}
/* Give a racing hard_start_xmit a few cycles to complete. */
synchronize_sched(); /* FIXME: should this be synchronize_irq()? */
/*
* And now for the 50k$ question: are IRQ disabled or not ?
*
* Two paths lead here:
* 1) dev->close
* -> netif_running() is available to sync the current code and the
* IRQ handler. See rtl8169_interrupt for details.
* 2) dev->change_mtu
* -> rtl8169_poll can not be issued again and re-enable the
* interruptions. Let's simply issue the IRQ down sequence again.
*/
if (RTL_R16(IntrMask))
goto core_down;
rtl8169_tx_clear(tp);
rtl8169_rx_clear(tp);
}
static int rtl8169_close(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
rtl8169_down(dev);
free_irq(dev->irq, dev);
netif_poll_enable(dev);
pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
tp->TxDescArray = NULL;
tp->RxDescArray = NULL;
return 0;
}
static void
rtl8169_set_rx_mode(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
unsigned long flags;
u32 mc_filter[2]; /* Multicast hash filter */
int i, rx_mode;
u32 tmp = 0;
if (dev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
if (netif_msg_link(tp)) {
printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
dev->name);
}
rx_mode =
AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
AcceptAllPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else if ((dev->mc_count > multicast_filter_limit)
|| (dev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else {
struct dev_mc_list *mclist;
rx_mode = AcceptBroadcast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0;
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist = mclist->next) {
int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
rx_mode |= AcceptMulticast;
}
}
spin_lock_irqsave(&tp->lock, flags);
tmp = rtl8169_rx_config | rx_mode |
(RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
RTL_W32(RxConfig, tmp);
RTL_W32(MAR0 + 0, mc_filter[0]);
RTL_W32(MAR0 + 4, mc_filter[1]);
spin_unlock_irqrestore(&tp->lock, flags);
}
/**
* rtl8169_get_stats - Get rtl8169 read/write statistics
* @dev: The Ethernet Device to get statistics for
*
* Get TX/RX statistics for rtl8169
*/
static struct net_device_stats *rtl8169_get_stats(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
unsigned long flags;
if (netif_running(dev)) {
spin_lock_irqsave(&tp->lock, flags);
tp->stats.rx_missed_errors += RTL_R32(RxMissed);
RTL_W32(RxMissed, 0);
spin_unlock_irqrestore(&tp->lock, flags);
}
return &tp->stats;
}
#ifdef CONFIG_PM
static int rtl8169_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
if (!netif_running(dev))
goto out;
netif_device_detach(dev);
netif_stop_queue(dev);
spin_lock_irq(&tp->lock);
rtl8169_asic_down(ioaddr);
tp->stats.rx_missed_errors += RTL_R32(RxMissed);
RTL_W32(RxMissed, 0);
spin_unlock_irq(&tp->lock);
pci_save_state(pdev);
pci_enable_wake(pdev, pci_choose_state(pdev, state), tp->wol_enabled);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
out:
return 0;
}
static int rtl8169_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (!netif_running(dev))
goto out;
netif_device_attach(dev);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_enable_wake(pdev, PCI_D0, 0);
rtl8169_schedule_work(dev, rtl8169_reset_task);
out:
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver rtl8169_pci_driver = {
.name = MODULENAME,
.id_table = rtl8169_pci_tbl,
.probe = rtl8169_init_one,
.remove = __devexit_p(rtl8169_remove_one),
#ifdef CONFIG_PM
.suspend = rtl8169_suspend,
.resume = rtl8169_resume,
#endif
};
static int __init
rtl8169_init_module(void)
{
return pci_module_init(&rtl8169_pci_driver);
}
static void __exit
rtl8169_cleanup_module(void)
{
pci_unregister_driver(&rtl8169_pci_driver);
}
module_init(rtl8169_init_module);
module_exit(rtl8169_cleanup_module);