kernel-fxtec-pro1x/init/do_mounts_rd.c
Thomas Petazzoni 2d6ffcca62 inflate: refactor inflate malloc code
Inflate requires some dynamic memory allocation very early in the boot
process and this is provided with a set of four functions:
malloc/free/gzip_mark/gzip_release.

The old inflate code used a mark/release strategy rather than implement
free.  This new version instead keeps a count on the number of outstanding
allocations and when it hits zero, it resets the malloc arena.

This allows removing all the mark and release implementations and unifying
all the malloc/free implementations.

The architecture-dependent code must define two addresses:
 - free_mem_ptr, the address of the beginning of the area in which
   allocations should be made
 - free_mem_end_ptr, the address of the end of the area in which
   allocations should be made. If set to 0, then no check is made on
   the number of allocations, it just grows as much as needed

The architecture-dependent code can also provide an arch_decomp_wdog()
function call.  This function will be called several times during the
decompression process, and allow to notify the watchdog that the system is
still running.  If an architecture provides such a call, then it must
define ARCH_HAS_DECOMP_WDOG so that the generic inflate code calls
arch_decomp_wdog().

Work initially done by Matt Mackall, updated to a recent version of the
kernel and improved by me.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Mikael Starvik <mikael.starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 10:53:28 -07:00

396 lines
9.4 KiB
C

#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/minix_fs.h>
#include <linux/ext2_fs.h>
#include <linux/romfs_fs.h>
#include <linux/cramfs_fs.h>
#include <linux/initrd.h>
#include <linux/string.h>
#include "do_mounts.h"
int __initdata rd_prompt = 1;/* 1 = prompt for RAM disk, 0 = don't prompt */
static int __init prompt_ramdisk(char *str)
{
rd_prompt = simple_strtol(str,NULL,0) & 1;
return 1;
}
__setup("prompt_ramdisk=", prompt_ramdisk);
int __initdata rd_image_start; /* starting block # of image */
static int __init ramdisk_start_setup(char *str)
{
rd_image_start = simple_strtol(str,NULL,0);
return 1;
}
__setup("ramdisk_start=", ramdisk_start_setup);
static int __init crd_load(int in_fd, int out_fd);
/*
* This routine tries to find a RAM disk image to load, and returns the
* number of blocks to read for a non-compressed image, 0 if the image
* is a compressed image, and -1 if an image with the right magic
* numbers could not be found.
*
* We currently check for the following magic numbers:
* minix
* ext2
* romfs
* cramfs
* gzip
*/
static int __init
identify_ramdisk_image(int fd, int start_block)
{
const int size = 512;
struct minix_super_block *minixsb;
struct ext2_super_block *ext2sb;
struct romfs_super_block *romfsb;
struct cramfs_super *cramfsb;
int nblocks = -1;
unsigned char *buf;
buf = kmalloc(size, GFP_KERNEL);
if (!buf)
return -1;
minixsb = (struct minix_super_block *) buf;
ext2sb = (struct ext2_super_block *) buf;
romfsb = (struct romfs_super_block *) buf;
cramfsb = (struct cramfs_super *) buf;
memset(buf, 0xe5, size);
/*
* Read block 0 to test for gzipped kernel
*/
sys_lseek(fd, start_block * BLOCK_SIZE, 0);
sys_read(fd, buf, size);
/*
* If it matches the gzip magic numbers, return -1
*/
if (buf[0] == 037 && ((buf[1] == 0213) || (buf[1] == 0236))) {
printk(KERN_NOTICE
"RAMDISK: Compressed image found at block %d\n",
start_block);
nblocks = 0;
goto done;
}
/* romfs is at block zero too */
if (romfsb->word0 == ROMSB_WORD0 &&
romfsb->word1 == ROMSB_WORD1) {
printk(KERN_NOTICE
"RAMDISK: romfs filesystem found at block %d\n",
start_block);
nblocks = (ntohl(romfsb->size)+BLOCK_SIZE-1)>>BLOCK_SIZE_BITS;
goto done;
}
if (cramfsb->magic == CRAMFS_MAGIC) {
printk(KERN_NOTICE
"RAMDISK: cramfs filesystem found at block %d\n",
start_block);
nblocks = (cramfsb->size + BLOCK_SIZE - 1) >> BLOCK_SIZE_BITS;
goto done;
}
/*
* Read block 1 to test for minix and ext2 superblock
*/
sys_lseek(fd, (start_block+1) * BLOCK_SIZE, 0);
sys_read(fd, buf, size);
/* Try minix */
if (minixsb->s_magic == MINIX_SUPER_MAGIC ||
minixsb->s_magic == MINIX_SUPER_MAGIC2) {
printk(KERN_NOTICE
"RAMDISK: Minix filesystem found at block %d\n",
start_block);
nblocks = minixsb->s_nzones << minixsb->s_log_zone_size;
goto done;
}
/* Try ext2 */
if (ext2sb->s_magic == cpu_to_le16(EXT2_SUPER_MAGIC)) {
printk(KERN_NOTICE
"RAMDISK: ext2 filesystem found at block %d\n",
start_block);
nblocks = le32_to_cpu(ext2sb->s_blocks_count) <<
le32_to_cpu(ext2sb->s_log_block_size);
goto done;
}
printk(KERN_NOTICE
"RAMDISK: Couldn't find valid RAM disk image starting at %d.\n",
start_block);
done:
sys_lseek(fd, start_block * BLOCK_SIZE, 0);
kfree(buf);
return nblocks;
}
int __init rd_load_image(char *from)
{
int res = 0;
int in_fd, out_fd;
unsigned long rd_blocks, devblocks;
int nblocks, i, disk;
char *buf = NULL;
unsigned short rotate = 0;
#if !defined(CONFIG_S390) && !defined(CONFIG_PPC_ISERIES)
char rotator[4] = { '|' , '/' , '-' , '\\' };
#endif
out_fd = sys_open("/dev/ram", O_RDWR, 0);
if (out_fd < 0)
goto out;
in_fd = sys_open(from, O_RDONLY, 0);
if (in_fd < 0)
goto noclose_input;
nblocks = identify_ramdisk_image(in_fd, rd_image_start);
if (nblocks < 0)
goto done;
if (nblocks == 0) {
if (crd_load(in_fd, out_fd) == 0)
goto successful_load;
goto done;
}
/*
* NOTE NOTE: nblocks is not actually blocks but
* the number of kibibytes of data to load into a ramdisk.
* So any ramdisk block size that is a multiple of 1KiB should
* work when the appropriate ramdisk_blocksize is specified
* on the command line.
*
* The default ramdisk_blocksize is 1KiB and it is generally
* silly to use anything else, so make sure to use 1KiB
* blocksize while generating ext2fs ramdisk-images.
*/
if (sys_ioctl(out_fd, BLKGETSIZE, (unsigned long)&rd_blocks) < 0)
rd_blocks = 0;
else
rd_blocks >>= 1;
if (nblocks > rd_blocks) {
printk("RAMDISK: image too big! (%dKiB/%ldKiB)\n",
nblocks, rd_blocks);
goto done;
}
/*
* OK, time to copy in the data
*/
if (sys_ioctl(in_fd, BLKGETSIZE, (unsigned long)&devblocks) < 0)
devblocks = 0;
else
devblocks >>= 1;
if (strcmp(from, "/initrd.image") == 0)
devblocks = nblocks;
if (devblocks == 0) {
printk(KERN_ERR "RAMDISK: could not determine device size\n");
goto done;
}
buf = kmalloc(BLOCK_SIZE, GFP_KERNEL);
if (!buf) {
printk(KERN_ERR "RAMDISK: could not allocate buffer\n");
goto done;
}
printk(KERN_NOTICE "RAMDISK: Loading %dKiB [%ld disk%s] into ram disk... ",
nblocks, ((nblocks-1)/devblocks)+1, nblocks>devblocks ? "s" : "");
for (i = 0, disk = 1; i < nblocks; i++) {
if (i && (i % devblocks == 0)) {
printk("done disk #%d.\n", disk++);
rotate = 0;
if (sys_close(in_fd)) {
printk("Error closing the disk.\n");
goto noclose_input;
}
change_floppy("disk #%d", disk);
in_fd = sys_open(from, O_RDONLY, 0);
if (in_fd < 0) {
printk("Error opening disk.\n");
goto noclose_input;
}
printk("Loading disk #%d... ", disk);
}
sys_read(in_fd, buf, BLOCK_SIZE);
sys_write(out_fd, buf, BLOCK_SIZE);
#if !defined(CONFIG_S390) && !defined(CONFIG_PPC_ISERIES)
if (!(i % 16)) {
printk("%c\b", rotator[rotate & 0x3]);
rotate++;
}
#endif
}
printk("done.\n");
successful_load:
res = 1;
done:
sys_close(in_fd);
noclose_input:
sys_close(out_fd);
out:
kfree(buf);
sys_unlink("/dev/ram");
return res;
}
int __init rd_load_disk(int n)
{
if (rd_prompt)
change_floppy("root floppy disk to be loaded into RAM disk");
create_dev("/dev/root", ROOT_DEV);
create_dev("/dev/ram", MKDEV(RAMDISK_MAJOR, n));
return rd_load_image("/dev/root");
}
/*
* gzip declarations
*/
#define OF(args) args
#ifndef memzero
#define memzero(s, n) memset ((s), 0, (n))
#endif
typedef unsigned char uch;
typedef unsigned short ush;
typedef unsigned long ulg;
#define INBUFSIZ 4096
#define WSIZE 0x8000 /* window size--must be a power of two, and */
/* at least 32K for zip's deflate method */
static uch *inbuf;
static uch *window;
static unsigned insize; /* valid bytes in inbuf */
static unsigned inptr; /* index of next byte to be processed in inbuf */
static unsigned outcnt; /* bytes in output buffer */
static int exit_code;
static int unzip_error;
static long bytes_out;
static int crd_infd, crd_outfd;
#define get_byte() (inptr < insize ? inbuf[inptr++] : fill_inbuf())
/* Diagnostic functions (stubbed out) */
#define Assert(cond,msg)
#define Trace(x)
#define Tracev(x)
#define Tracevv(x)
#define Tracec(c,x)
#define Tracecv(c,x)
#define STATIC static
#define INIT __init
static int __init fill_inbuf(void);
static void __init flush_window(void);
static void __init error(char *m);
#define NO_INFLATE_MALLOC
#include "../lib/inflate.c"
/* ===========================================================================
* Fill the input buffer. This is called only when the buffer is empty
* and at least one byte is really needed.
* Returning -1 does not guarantee that gunzip() will ever return.
*/
static int __init fill_inbuf(void)
{
if (exit_code) return -1;
insize = sys_read(crd_infd, inbuf, INBUFSIZ);
if (insize == 0) {
error("RAMDISK: ran out of compressed data");
return -1;
}
inptr = 1;
return inbuf[0];
}
/* ===========================================================================
* Write the output window window[0..outcnt-1] and update crc and bytes_out.
* (Used for the decompressed data only.)
*/
static void __init flush_window(void)
{
ulg c = crc; /* temporary variable */
unsigned n, written;
uch *in, ch;
written = sys_write(crd_outfd, window, outcnt);
if (written != outcnt && unzip_error == 0) {
printk(KERN_ERR "RAMDISK: incomplete write (%d != %d) %ld\n",
written, outcnt, bytes_out);
unzip_error = 1;
}
in = window;
for (n = 0; n < outcnt; n++) {
ch = *in++;
c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8);
}
crc = c;
bytes_out += (ulg)outcnt;
outcnt = 0;
}
static void __init error(char *x)
{
printk(KERN_ERR "%s\n", x);
exit_code = 1;
unzip_error = 1;
}
static int __init crd_load(int in_fd, int out_fd)
{
int result;
insize = 0; /* valid bytes in inbuf */
inptr = 0; /* index of next byte to be processed in inbuf */
outcnt = 0; /* bytes in output buffer */
exit_code = 0;
bytes_out = 0;
crc = (ulg)0xffffffffL; /* shift register contents */
crd_infd = in_fd;
crd_outfd = out_fd;
inbuf = kmalloc(INBUFSIZ, GFP_KERNEL);
if (!inbuf) {
printk(KERN_ERR "RAMDISK: Couldn't allocate gzip buffer\n");
return -1;
}
window = kmalloc(WSIZE, GFP_KERNEL);
if (!window) {
printk(KERN_ERR "RAMDISK: Couldn't allocate gzip window\n");
kfree(inbuf);
return -1;
}
makecrc();
result = gunzip();
if (unzip_error)
result = 1;
kfree(inbuf);
kfree(window);
return result;
}