7d82db8316
The f2fs_balance_fs() is to check the number of free sections and decide whether it needs to conduct cleaning or not. If there are not enough free sections, the cleaning job should be started. In order to control an amount of free sections even under high utilization, f2fs should call f2fs_balance_fs at all the VFS interfaces that are able to produce dirty pages. This patch adds the function calls in the missing interfaces as follows. 1. f2fs_setxattr() The f2fs_setxattr() produces dirty node pages so that we should call f2fs_balance_fs() either likewise doing in other VFS interfaces such as f2fs_lookup(), f2fs_mkdir(), and so on. 2. f2fs_sync_file() We should guarantee serving free sections for syncing metadata during fsync. Previously, there is no space check before triggering checkpoint and sync_node_pages. Therefore, if a bunch of fsync calls are triggered under 100% of FS utilization, f2fs is able to be faced with no free sections, resulting in BUG_ON(). 3. f2fs_sync_fs() Before calling write_checkpoint(), we should guarantee that there are minimum free sections. 4. f2fs_write_inode() f2fs_write_inode() is also able to produce dirty node pages. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
443 lines
11 KiB
C
443 lines
11 KiB
C
/*
|
|
* fs/f2fs/xattr.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* Portions of this code from linux/fs/ext2/xattr.c
|
|
*
|
|
* Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
|
|
*
|
|
* Fix by Harrison Xing <harrison@mountainviewdata.com>.
|
|
* Extended attributes for symlinks and special files added per
|
|
* suggestion of Luka Renko <luka.renko@hermes.si>.
|
|
* xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
|
|
* Red Hat Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/rwsem.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include "f2fs.h"
|
|
#include "xattr.h"
|
|
|
|
static size_t f2fs_xattr_generic_list(struct dentry *dentry, char *list,
|
|
size_t list_size, const char *name, size_t name_len, int type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
|
|
int total_len, prefix_len = 0;
|
|
const char *prefix = NULL;
|
|
|
|
switch (type) {
|
|
case F2FS_XATTR_INDEX_USER:
|
|
if (!test_opt(sbi, XATTR_USER))
|
|
return -EOPNOTSUPP;
|
|
prefix = XATTR_USER_PREFIX;
|
|
prefix_len = XATTR_USER_PREFIX_LEN;
|
|
break;
|
|
case F2FS_XATTR_INDEX_TRUSTED:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
prefix = XATTR_TRUSTED_PREFIX;
|
|
prefix_len = XATTR_TRUSTED_PREFIX_LEN;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
total_len = prefix_len + name_len + 1;
|
|
if (list && total_len <= list_size) {
|
|
memcpy(list, prefix, prefix_len);
|
|
memcpy(list+prefix_len, name, name_len);
|
|
list[prefix_len + name_len] = '\0';
|
|
}
|
|
return total_len;
|
|
}
|
|
|
|
static int f2fs_xattr_generic_get(struct dentry *dentry, const char *name,
|
|
void *buffer, size_t size, int type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
|
|
|
|
switch (type) {
|
|
case F2FS_XATTR_INDEX_USER:
|
|
if (!test_opt(sbi, XATTR_USER))
|
|
return -EOPNOTSUPP;
|
|
break;
|
|
case F2FS_XATTR_INDEX_TRUSTED:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (strcmp(name, "") == 0)
|
|
return -EINVAL;
|
|
return f2fs_getxattr(dentry->d_inode, type, name,
|
|
buffer, size);
|
|
}
|
|
|
|
static int f2fs_xattr_generic_set(struct dentry *dentry, const char *name,
|
|
const void *value, size_t size, int flags, int type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
|
|
|
|
switch (type) {
|
|
case F2FS_XATTR_INDEX_USER:
|
|
if (!test_opt(sbi, XATTR_USER))
|
|
return -EOPNOTSUPP;
|
|
break;
|
|
case F2FS_XATTR_INDEX_TRUSTED:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (strcmp(name, "") == 0)
|
|
return -EINVAL;
|
|
|
|
return f2fs_setxattr(dentry->d_inode, type, name, value, size);
|
|
}
|
|
|
|
static size_t f2fs_xattr_advise_list(struct dentry *dentry, char *list,
|
|
size_t list_size, const char *name, size_t name_len, int type)
|
|
{
|
|
const char *xname = F2FS_SYSTEM_ADVISE_PREFIX;
|
|
size_t size;
|
|
|
|
if (type != F2FS_XATTR_INDEX_ADVISE)
|
|
return 0;
|
|
|
|
size = strlen(xname) + 1;
|
|
if (list && size <= list_size)
|
|
memcpy(list, xname, size);
|
|
return size;
|
|
}
|
|
|
|
static int f2fs_xattr_advise_get(struct dentry *dentry, const char *name,
|
|
void *buffer, size_t size, int type)
|
|
{
|
|
struct inode *inode = dentry->d_inode;
|
|
|
|
if (strcmp(name, "") != 0)
|
|
return -EINVAL;
|
|
|
|
*((char *)buffer) = F2FS_I(inode)->i_advise;
|
|
return sizeof(char);
|
|
}
|
|
|
|
static int f2fs_xattr_advise_set(struct dentry *dentry, const char *name,
|
|
const void *value, size_t size, int flags, int type)
|
|
{
|
|
struct inode *inode = dentry->d_inode;
|
|
|
|
if (strcmp(name, "") != 0)
|
|
return -EINVAL;
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
if (value == NULL)
|
|
return -EINVAL;
|
|
|
|
F2FS_I(inode)->i_advise |= *(char *)value;
|
|
return 0;
|
|
}
|
|
|
|
const struct xattr_handler f2fs_xattr_user_handler = {
|
|
.prefix = XATTR_USER_PREFIX,
|
|
.flags = F2FS_XATTR_INDEX_USER,
|
|
.list = f2fs_xattr_generic_list,
|
|
.get = f2fs_xattr_generic_get,
|
|
.set = f2fs_xattr_generic_set,
|
|
};
|
|
|
|
const struct xattr_handler f2fs_xattr_trusted_handler = {
|
|
.prefix = XATTR_TRUSTED_PREFIX,
|
|
.flags = F2FS_XATTR_INDEX_TRUSTED,
|
|
.list = f2fs_xattr_generic_list,
|
|
.get = f2fs_xattr_generic_get,
|
|
.set = f2fs_xattr_generic_set,
|
|
};
|
|
|
|
const struct xattr_handler f2fs_xattr_advise_handler = {
|
|
.prefix = F2FS_SYSTEM_ADVISE_PREFIX,
|
|
.flags = F2FS_XATTR_INDEX_ADVISE,
|
|
.list = f2fs_xattr_advise_list,
|
|
.get = f2fs_xattr_advise_get,
|
|
.set = f2fs_xattr_advise_set,
|
|
};
|
|
|
|
static const struct xattr_handler *f2fs_xattr_handler_map[] = {
|
|
[F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
[F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &f2fs_xattr_acl_access_handler,
|
|
[F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &f2fs_xattr_acl_default_handler,
|
|
#endif
|
|
[F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
|
|
[F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
|
|
};
|
|
|
|
const struct xattr_handler *f2fs_xattr_handlers[] = {
|
|
&f2fs_xattr_user_handler,
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
&f2fs_xattr_acl_access_handler,
|
|
&f2fs_xattr_acl_default_handler,
|
|
#endif
|
|
&f2fs_xattr_trusted_handler,
|
|
&f2fs_xattr_advise_handler,
|
|
NULL,
|
|
};
|
|
|
|
static inline const struct xattr_handler *f2fs_xattr_handler(int name_index)
|
|
{
|
|
const struct xattr_handler *handler = NULL;
|
|
|
|
if (name_index > 0 && name_index < ARRAY_SIZE(f2fs_xattr_handler_map))
|
|
handler = f2fs_xattr_handler_map[name_index];
|
|
return handler;
|
|
}
|
|
|
|
int f2fs_getxattr(struct inode *inode, int name_index, const char *name,
|
|
void *buffer, size_t buffer_size)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct f2fs_xattr_entry *entry;
|
|
struct page *page;
|
|
void *base_addr;
|
|
int error = 0, found = 0;
|
|
size_t value_len, name_len;
|
|
|
|
if (name == NULL)
|
|
return -EINVAL;
|
|
name_len = strlen(name);
|
|
|
|
if (!fi->i_xattr_nid)
|
|
return -ENODATA;
|
|
|
|
page = get_node_page(sbi, fi->i_xattr_nid);
|
|
base_addr = page_address(page);
|
|
|
|
list_for_each_xattr(entry, base_addr) {
|
|
if (entry->e_name_index != name_index)
|
|
continue;
|
|
if (entry->e_name_len != name_len)
|
|
continue;
|
|
if (!memcmp(entry->e_name, name, name_len)) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
error = -ENODATA;
|
|
goto cleanup;
|
|
}
|
|
|
|
value_len = le16_to_cpu(entry->e_value_size);
|
|
|
|
if (buffer && value_len > buffer_size) {
|
|
error = -ERANGE;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (buffer) {
|
|
char *pval = entry->e_name + entry->e_name_len;
|
|
memcpy(buffer, pval, value_len);
|
|
}
|
|
error = value_len;
|
|
|
|
cleanup:
|
|
f2fs_put_page(page, 1);
|
|
return error;
|
|
}
|
|
|
|
ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
|
|
{
|
|
struct inode *inode = dentry->d_inode;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct f2fs_xattr_entry *entry;
|
|
struct page *page;
|
|
void *base_addr;
|
|
int error = 0;
|
|
size_t rest = buffer_size;
|
|
|
|
if (!fi->i_xattr_nid)
|
|
return 0;
|
|
|
|
page = get_node_page(sbi, fi->i_xattr_nid);
|
|
base_addr = page_address(page);
|
|
|
|
list_for_each_xattr(entry, base_addr) {
|
|
const struct xattr_handler *handler =
|
|
f2fs_xattr_handler(entry->e_name_index);
|
|
size_t size;
|
|
|
|
if (!handler)
|
|
continue;
|
|
|
|
size = handler->list(dentry, buffer, rest, entry->e_name,
|
|
entry->e_name_len, handler->flags);
|
|
if (buffer && size > rest) {
|
|
error = -ERANGE;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (buffer)
|
|
buffer += size;
|
|
rest -= size;
|
|
}
|
|
error = buffer_size - rest;
|
|
cleanup:
|
|
f2fs_put_page(page, 1);
|
|
return error;
|
|
}
|
|
|
|
int f2fs_setxattr(struct inode *inode, int name_index, const char *name,
|
|
const void *value, size_t value_len)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct f2fs_xattr_header *header = NULL;
|
|
struct f2fs_xattr_entry *here, *last;
|
|
struct page *page;
|
|
void *base_addr;
|
|
int error, found, free, newsize;
|
|
size_t name_len;
|
|
char *pval;
|
|
|
|
if (name == NULL)
|
|
return -EINVAL;
|
|
name_len = strlen(name);
|
|
|
|
if (value == NULL)
|
|
value_len = 0;
|
|
|
|
if (name_len > 255 || value_len > MAX_VALUE_LEN)
|
|
return -ERANGE;
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
mutex_lock_op(sbi, NODE_NEW);
|
|
if (!fi->i_xattr_nid) {
|
|
/* Allocate new attribute block */
|
|
struct dnode_of_data dn;
|
|
|
|
if (!alloc_nid(sbi, &fi->i_xattr_nid)) {
|
|
mutex_unlock_op(sbi, NODE_NEW);
|
|
return -ENOSPC;
|
|
}
|
|
set_new_dnode(&dn, inode, NULL, NULL, fi->i_xattr_nid);
|
|
mark_inode_dirty(inode);
|
|
|
|
page = new_node_page(&dn, XATTR_NODE_OFFSET);
|
|
if (IS_ERR(page)) {
|
|
alloc_nid_failed(sbi, fi->i_xattr_nid);
|
|
fi->i_xattr_nid = 0;
|
|
mutex_unlock_op(sbi, NODE_NEW);
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
alloc_nid_done(sbi, fi->i_xattr_nid);
|
|
base_addr = page_address(page);
|
|
header = XATTR_HDR(base_addr);
|
|
header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
|
|
header->h_refcount = cpu_to_le32(1);
|
|
} else {
|
|
/* The inode already has an extended attribute block. */
|
|
page = get_node_page(sbi, fi->i_xattr_nid);
|
|
if (IS_ERR(page)) {
|
|
mutex_unlock_op(sbi, NODE_NEW);
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
base_addr = page_address(page);
|
|
header = XATTR_HDR(base_addr);
|
|
}
|
|
|
|
if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
|
|
error = -EIO;
|
|
goto cleanup;
|
|
}
|
|
|
|
/* find entry with wanted name. */
|
|
found = 0;
|
|
list_for_each_xattr(here, base_addr) {
|
|
if (here->e_name_index != name_index)
|
|
continue;
|
|
if (here->e_name_len != name_len)
|
|
continue;
|
|
if (!memcmp(here->e_name, name, name_len)) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
last = here;
|
|
|
|
while (!IS_XATTR_LAST_ENTRY(last))
|
|
last = XATTR_NEXT_ENTRY(last);
|
|
|
|
newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) +
|
|
name_len + value_len);
|
|
|
|
/* 1. Check space */
|
|
if (value) {
|
|
/* If value is NULL, it is remove operation.
|
|
* In case of update operation, we caculate free.
|
|
*/
|
|
free = MIN_OFFSET - ((char *)last - (char *)header);
|
|
if (found)
|
|
free = free - ENTRY_SIZE(here);
|
|
|
|
if (free < newsize) {
|
|
error = -ENOSPC;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
/* 2. Remove old entry */
|
|
if (found) {
|
|
/* If entry is found, remove old entry.
|
|
* If not found, remove operation is not needed.
|
|
*/
|
|
struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
|
|
int oldsize = ENTRY_SIZE(here);
|
|
|
|
memmove(here, next, (char *)last - (char *)next);
|
|
last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
|
|
memset(last, 0, oldsize);
|
|
}
|
|
|
|
/* 3. Write new entry */
|
|
if (value) {
|
|
/* Before we come here, old entry is removed.
|
|
* We just write new entry. */
|
|
memset(last, 0, newsize);
|
|
last->e_name_index = name_index;
|
|
last->e_name_len = name_len;
|
|
memcpy(last->e_name, name, name_len);
|
|
pval = last->e_name + name_len;
|
|
memcpy(pval, value, value_len);
|
|
last->e_value_size = cpu_to_le16(value_len);
|
|
}
|
|
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
|
|
if (is_inode_flag_set(fi, FI_ACL_MODE)) {
|
|
inode->i_mode = fi->i_acl_mode;
|
|
inode->i_ctime = CURRENT_TIME;
|
|
clear_inode_flag(fi, FI_ACL_MODE);
|
|
}
|
|
f2fs_write_inode(inode, NULL);
|
|
mutex_unlock_op(sbi, NODE_NEW);
|
|
|
|
return 0;
|
|
cleanup:
|
|
f2fs_put_page(page, 1);
|
|
mutex_unlock_op(sbi, NODE_NEW);
|
|
return error;
|
|
}
|