kernel-fxtec-pro1x/fs/btrfs/extent-tree.c
Linus Torvalds 3615db41c4 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "We've had a busy two weeks of bug fixing.  The biggest patches in here
  are some long standing early-enospc problems (Josef) and a very old
  race where compression and mmap combine forces to lose writes (me).
  I'm fairly sure the mmap bug goes all the way back to the introduction
  of the compression code, which is proof that fsx doesn't trigger every
  possible mmap corner after all.

  I'm sure you'll notice one of these is from this morning, it's a small
  and isolated use-after-free fix in our scrub error reporting.  I
  double checked it here."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: don't drop path when printing out tree errors in scrub
  Btrfs: fix wrong return value of btrfs_lookup_csum()
  Btrfs: fix wrong reservation of csums
  Btrfs: fix double free in the btrfs_qgroup_account_ref()
  Btrfs: limit the global reserve to 512mb
  Btrfs: hold the ordered operations mutex when waiting on ordered extents
  Btrfs: fix space accounting for unlink and rename
  Btrfs: fix space leak when we fail to reserve metadata space
  Btrfs: fix EIO from btrfs send in is_extent_unchanged for punched holes
  Btrfs: fix race between mmap writes and compression
  Btrfs: fix memory leak in btrfs_create_tree()
  Btrfs: fix locking on ROOT_REPLACE operations in tree mod log
  Btrfs: fix missing qgroup reservation before fallocating
  Btrfs: handle a bogus chunk tree nicely
  Btrfs: update to use fs_state bit
2013-03-29 11:13:25 -07:00

8438 lines
224 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/sort.h>
#include <linux/rcupdate.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include "compat.h"
#include "hash.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "transaction.h"
#include "volumes.h"
#include "raid56.h"
#include "locking.h"
#include "free-space-cache.h"
#include "math.h"
#undef SCRAMBLE_DELAYED_REFS
/*
* control flags for do_chunk_alloc's force field
* CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
* if we really need one.
*
* CHUNK_ALLOC_LIMITED means to only try and allocate one
* if we have very few chunks already allocated. This is
* used as part of the clustering code to help make sure
* we have a good pool of storage to cluster in, without
* filling the FS with empty chunks
*
* CHUNK_ALLOC_FORCE means it must try to allocate one
*
*/
enum {
CHUNK_ALLOC_NO_FORCE = 0,
CHUNK_ALLOC_LIMITED = 1,
CHUNK_ALLOC_FORCE = 2,
};
/*
* Control how reservations are dealt with.
*
* RESERVE_FREE - freeing a reservation.
* RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
* ENOSPC accounting
* RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
* bytes_may_use as the ENOSPC accounting is done elsewhere
*/
enum {
RESERVE_FREE = 0,
RESERVE_ALLOC = 1,
RESERVE_ALLOC_NO_ACCOUNT = 2,
};
static int update_block_group(struct btrfs_root *root,
u64 bytenr, u64 num_bytes, int alloc);
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner_objectid,
u64 owner_offset, int refs_to_drop,
struct btrfs_delayed_extent_op *extra_op);
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
struct extent_buffer *leaf,
struct btrfs_extent_item *ei);
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 parent, u64 root_objectid,
u64 flags, u64 owner, u64 offset,
struct btrfs_key *ins, int ref_mod);
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 parent, u64 root_objectid,
u64 flags, struct btrfs_disk_key *key,
int level, struct btrfs_key *ins);
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root, u64 flags,
int force);
static int find_next_key(struct btrfs_path *path, int level,
struct btrfs_key *key);
static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
int dump_block_groups);
static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
u64 num_bytes, int reserve);
static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
u64 num_bytes);
static noinline int
block_group_cache_done(struct btrfs_block_group_cache *cache)
{
smp_mb();
return cache->cached == BTRFS_CACHE_FINISHED;
}
static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
{
return (cache->flags & bits) == bits;
}
static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
{
atomic_inc(&cache->count);
}
void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
{
if (atomic_dec_and_test(&cache->count)) {
WARN_ON(cache->pinned > 0);
WARN_ON(cache->reserved > 0);
kfree(cache->free_space_ctl);
kfree(cache);
}
}
/*
* this adds the block group to the fs_info rb tree for the block group
* cache
*/
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
struct btrfs_block_group_cache *block_group)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct btrfs_block_group_cache *cache;
spin_lock(&info->block_group_cache_lock);
p = &info->block_group_cache_tree.rb_node;
while (*p) {
parent = *p;
cache = rb_entry(parent, struct btrfs_block_group_cache,
cache_node);
if (block_group->key.objectid < cache->key.objectid) {
p = &(*p)->rb_left;
} else if (block_group->key.objectid > cache->key.objectid) {
p = &(*p)->rb_right;
} else {
spin_unlock(&info->block_group_cache_lock);
return -EEXIST;
}
}
rb_link_node(&block_group->cache_node, parent, p);
rb_insert_color(&block_group->cache_node,
&info->block_group_cache_tree);
if (info->first_logical_byte > block_group->key.objectid)
info->first_logical_byte = block_group->key.objectid;
spin_unlock(&info->block_group_cache_lock);
return 0;
}
/*
* This will return the block group at or after bytenr if contains is 0, else
* it will return the block group that contains the bytenr
*/
static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
int contains)
{
struct btrfs_block_group_cache *cache, *ret = NULL;
struct rb_node *n;
u64 end, start;
spin_lock(&info->block_group_cache_lock);
n = info->block_group_cache_tree.rb_node;
while (n) {
cache = rb_entry(n, struct btrfs_block_group_cache,
cache_node);
end = cache->key.objectid + cache->key.offset - 1;
start = cache->key.objectid;
if (bytenr < start) {
if (!contains && (!ret || start < ret->key.objectid))
ret = cache;
n = n->rb_left;
} else if (bytenr > start) {
if (contains && bytenr <= end) {
ret = cache;
break;
}
n = n->rb_right;
} else {
ret = cache;
break;
}
}
if (ret) {
btrfs_get_block_group(ret);
if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
info->first_logical_byte = ret->key.objectid;
}
spin_unlock(&info->block_group_cache_lock);
return ret;
}
static int add_excluded_extent(struct btrfs_root *root,
u64 start, u64 num_bytes)
{
u64 end = start + num_bytes - 1;
set_extent_bits(&root->fs_info->freed_extents[0],
start, end, EXTENT_UPTODATE, GFP_NOFS);
set_extent_bits(&root->fs_info->freed_extents[1],
start, end, EXTENT_UPTODATE, GFP_NOFS);
return 0;
}
static void free_excluded_extents(struct btrfs_root *root,
struct btrfs_block_group_cache *cache)
{
u64 start, end;
start = cache->key.objectid;
end = start + cache->key.offset - 1;
clear_extent_bits(&root->fs_info->freed_extents[0],
start, end, EXTENT_UPTODATE, GFP_NOFS);
clear_extent_bits(&root->fs_info->freed_extents[1],
start, end, EXTENT_UPTODATE, GFP_NOFS);
}
static int exclude_super_stripes(struct btrfs_root *root,
struct btrfs_block_group_cache *cache)
{
u64 bytenr;
u64 *logical;
int stripe_len;
int i, nr, ret;
if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
cache->bytes_super += stripe_len;
ret = add_excluded_extent(root, cache->key.objectid,
stripe_len);
if (ret)
return ret;
}
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
cache->key.objectid, bytenr,
0, &logical, &nr, &stripe_len);
if (ret)
return ret;
while (nr--) {
cache->bytes_super += stripe_len;
ret = add_excluded_extent(root, logical[nr],
stripe_len);
if (ret) {
kfree(logical);
return ret;
}
}
kfree(logical);
}
return 0;
}
static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache *cache)
{
struct btrfs_caching_control *ctl;
spin_lock(&cache->lock);
if (cache->cached != BTRFS_CACHE_STARTED) {
spin_unlock(&cache->lock);
return NULL;
}
/* We're loading it the fast way, so we don't have a caching_ctl. */
if (!cache->caching_ctl) {
spin_unlock(&cache->lock);
return NULL;
}
ctl = cache->caching_ctl;
atomic_inc(&ctl->count);
spin_unlock(&cache->lock);
return ctl;
}
static void put_caching_control(struct btrfs_caching_control *ctl)
{
if (atomic_dec_and_test(&ctl->count))
kfree(ctl);
}
/*
* this is only called by cache_block_group, since we could have freed extents
* we need to check the pinned_extents for any extents that can't be used yet
* since their free space will be released as soon as the transaction commits.
*/
static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
struct btrfs_fs_info *info, u64 start, u64 end)
{
u64 extent_start, extent_end, size, total_added = 0;
int ret;
while (start < end) {
ret = find_first_extent_bit(info->pinned_extents, start,
&extent_start, &extent_end,
EXTENT_DIRTY | EXTENT_UPTODATE,
NULL);
if (ret)
break;
if (extent_start <= start) {
start = extent_end + 1;
} else if (extent_start > start && extent_start < end) {
size = extent_start - start;
total_added += size;
ret = btrfs_add_free_space(block_group, start,
size);
BUG_ON(ret); /* -ENOMEM or logic error */
start = extent_end + 1;
} else {
break;
}
}
if (start < end) {
size = end - start;
total_added += size;
ret = btrfs_add_free_space(block_group, start, size);
BUG_ON(ret); /* -ENOMEM or logic error */
}
return total_added;
}
static noinline void caching_thread(struct btrfs_work *work)
{
struct btrfs_block_group_cache *block_group;
struct btrfs_fs_info *fs_info;
struct btrfs_caching_control *caching_ctl;
struct btrfs_root *extent_root;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key key;
u64 total_found = 0;
u64 last = 0;
u32 nritems;
int ret = 0;
caching_ctl = container_of(work, struct btrfs_caching_control, work);
block_group = caching_ctl->block_group;
fs_info = block_group->fs_info;
extent_root = fs_info->extent_root;
path = btrfs_alloc_path();
if (!path)
goto out;
last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
/*
* We don't want to deadlock with somebody trying to allocate a new
* extent for the extent root while also trying to search the extent
* root to add free space. So we skip locking and search the commit
* root, since its read-only
*/
path->skip_locking = 1;
path->search_commit_root = 1;
path->reada = 1;
key.objectid = last;
key.offset = 0;
key.type = BTRFS_EXTENT_ITEM_KEY;
again:
mutex_lock(&caching_ctl->mutex);
/* need to make sure the commit_root doesn't disappear */
down_read(&fs_info->extent_commit_sem);
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0)
goto err;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
while (1) {
if (btrfs_fs_closing(fs_info) > 1) {
last = (u64)-1;
break;
}
if (path->slots[0] < nritems) {
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
} else {
ret = find_next_key(path, 0, &key);
if (ret)
break;
if (need_resched() ||
btrfs_next_leaf(extent_root, path)) {
caching_ctl->progress = last;
btrfs_release_path(path);
up_read(&fs_info->extent_commit_sem);
mutex_unlock(&caching_ctl->mutex);
cond_resched();
goto again;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
continue;
}
if (key.objectid < block_group->key.objectid) {
path->slots[0]++;
continue;
}
if (key.objectid >= block_group->key.objectid +
block_group->key.offset)
break;
if (key.type == BTRFS_EXTENT_ITEM_KEY) {
total_found += add_new_free_space(block_group,
fs_info, last,
key.objectid);
last = key.objectid + key.offset;
if (total_found > (1024 * 1024 * 2)) {
total_found = 0;
wake_up(&caching_ctl->wait);
}
}
path->slots[0]++;
}
ret = 0;
total_found += add_new_free_space(block_group, fs_info, last,
block_group->key.objectid +
block_group->key.offset);
caching_ctl->progress = (u64)-1;
spin_lock(&block_group->lock);
block_group->caching_ctl = NULL;
block_group->cached = BTRFS_CACHE_FINISHED;
spin_unlock(&block_group->lock);
err:
btrfs_free_path(path);
up_read(&fs_info->extent_commit_sem);
free_excluded_extents(extent_root, block_group);
mutex_unlock(&caching_ctl->mutex);
out:
wake_up(&caching_ctl->wait);
put_caching_control(caching_ctl);
btrfs_put_block_group(block_group);
}
static int cache_block_group(struct btrfs_block_group_cache *cache,
int load_cache_only)
{
DEFINE_WAIT(wait);
struct btrfs_fs_info *fs_info = cache->fs_info;
struct btrfs_caching_control *caching_ctl;
int ret = 0;
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
if (!caching_ctl)
return -ENOMEM;
INIT_LIST_HEAD(&caching_ctl->list);
mutex_init(&caching_ctl->mutex);
init_waitqueue_head(&caching_ctl->wait);
caching_ctl->block_group = cache;
caching_ctl->progress = cache->key.objectid;
atomic_set(&caching_ctl->count, 1);
caching_ctl->work.func = caching_thread;
spin_lock(&cache->lock);
/*
* This should be a rare occasion, but this could happen I think in the
* case where one thread starts to load the space cache info, and then
* some other thread starts a transaction commit which tries to do an
* allocation while the other thread is still loading the space cache
* info. The previous loop should have kept us from choosing this block
* group, but if we've moved to the state where we will wait on caching
* block groups we need to first check if we're doing a fast load here,
* so we can wait for it to finish, otherwise we could end up allocating
* from a block group who's cache gets evicted for one reason or
* another.
*/
while (cache->cached == BTRFS_CACHE_FAST) {
struct btrfs_caching_control *ctl;
ctl = cache->caching_ctl;
atomic_inc(&ctl->count);
prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock(&cache->lock);
schedule();
finish_wait(&ctl->wait, &wait);
put_caching_control(ctl);
spin_lock(&cache->lock);
}
if (cache->cached != BTRFS_CACHE_NO) {
spin_unlock(&cache->lock);
kfree(caching_ctl);
return 0;
}
WARN_ON(cache->caching_ctl);
cache->caching_ctl = caching_ctl;
cache->cached = BTRFS_CACHE_FAST;
spin_unlock(&cache->lock);
if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
ret = load_free_space_cache(fs_info, cache);
spin_lock(&cache->lock);
if (ret == 1) {
cache->caching_ctl = NULL;
cache->cached = BTRFS_CACHE_FINISHED;
cache->last_byte_to_unpin = (u64)-1;
} else {
if (load_cache_only) {
cache->caching_ctl = NULL;
cache->cached = BTRFS_CACHE_NO;
} else {
cache->cached = BTRFS_CACHE_STARTED;
}
}
spin_unlock(&cache->lock);
wake_up(&caching_ctl->wait);
if (ret == 1) {
put_caching_control(caching_ctl);
free_excluded_extents(fs_info->extent_root, cache);
return 0;
}
} else {
/*
* We are not going to do the fast caching, set cached to the
* appropriate value and wakeup any waiters.
*/
spin_lock(&cache->lock);
if (load_cache_only) {
cache->caching_ctl = NULL;
cache->cached = BTRFS_CACHE_NO;
} else {
cache->cached = BTRFS_CACHE_STARTED;
}
spin_unlock(&cache->lock);
wake_up(&caching_ctl->wait);
}
if (load_cache_only) {
put_caching_control(caching_ctl);
return 0;
}
down_write(&fs_info->extent_commit_sem);
atomic_inc(&caching_ctl->count);
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
up_write(&fs_info->extent_commit_sem);
btrfs_get_block_group(cache);
btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
return ret;
}
/*
* return the block group that starts at or after bytenr
*/
static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
{
struct btrfs_block_group_cache *cache;
cache = block_group_cache_tree_search(info, bytenr, 0);
return cache;
}
/*
* return the block group that contains the given bytenr
*/
struct btrfs_block_group_cache *btrfs_lookup_block_group(
struct btrfs_fs_info *info,
u64 bytenr)
{
struct btrfs_block_group_cache *cache;
cache = block_group_cache_tree_search(info, bytenr, 1);
return cache;
}
static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
u64 flags)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list) {
if (found->flags & flags) {
rcu_read_unlock();
return found;
}
}
rcu_read_unlock();
return NULL;
}
/*
* after adding space to the filesystem, we need to clear the full flags
* on all the space infos.
*/
void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list)
found->full = 0;
rcu_read_unlock();
}
u64 btrfs_find_block_group(struct btrfs_root *root,
u64 search_start, u64 search_hint, int owner)
{
struct btrfs_block_group_cache *cache;
u64 used;
u64 last = max(search_hint, search_start);
u64 group_start = 0;
int full_search = 0;
int factor = 9;
int wrapped = 0;
again:
while (1) {
cache = btrfs_lookup_first_block_group(root->fs_info, last);
if (!cache)
break;
spin_lock(&cache->lock);
last = cache->key.objectid + cache->key.offset;
used = btrfs_block_group_used(&cache->item);
if ((full_search || !cache->ro) &&
block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
if (used + cache->pinned + cache->reserved <
div_factor(cache->key.offset, factor)) {
group_start = cache->key.objectid;
spin_unlock(&cache->lock);
btrfs_put_block_group(cache);
goto found;
}
}
spin_unlock(&cache->lock);
btrfs_put_block_group(cache);
cond_resched();
}
if (!wrapped) {
last = search_start;
wrapped = 1;
goto again;
}
if (!full_search && factor < 10) {
last = search_start;
full_search = 1;
factor = 10;
goto again;
}
found:
return group_start;
}
/* simple helper to search for an existing extent at a given offset */
int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
{
int ret;
struct btrfs_key key;
struct btrfs_path *path;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = start;
key.offset = len;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
0, 0);
btrfs_free_path(path);
return ret;
}
/*
* helper function to lookup reference count and flags of extent.
*
* the head node for delayed ref is used to store the sum of all the
* reference count modifications queued up in the rbtree. the head
* node may also store the extent flags to set. This way you can check
* to see what the reference count and extent flags would be if all of
* the delayed refs are not processed.
*/
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr,
u64 num_bytes, u64 *refs, u64 *flags)
{
struct btrfs_delayed_ref_head *head;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_path *path;
struct btrfs_extent_item *ei;
struct extent_buffer *leaf;
struct btrfs_key key;
u32 item_size;
u64 num_refs;
u64 extent_flags;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = num_bytes;
if (!trans) {
path->skip_locking = 1;
path->search_commit_root = 1;
}
again:
ret = btrfs_search_slot(trans, root->fs_info->extent_root,
&key, path, 0, 0);
if (ret < 0)
goto out_free;
if (ret == 0) {
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
if (item_size >= sizeof(*ei)) {
ei = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item);
num_refs = btrfs_extent_refs(leaf, ei);
extent_flags = btrfs_extent_flags(leaf, ei);
} else {
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
struct btrfs_extent_item_v0 *ei0;
BUG_ON(item_size != sizeof(*ei0));
ei0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item_v0);
num_refs = btrfs_extent_refs_v0(leaf, ei0);
/* FIXME: this isn't correct for data */
extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
#else
BUG();
#endif
}
BUG_ON(num_refs == 0);
} else {
num_refs = 0;
extent_flags = 0;
ret = 0;
}
if (!trans)
goto out;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
head = btrfs_find_delayed_ref_head(trans, bytenr);
if (head) {
if (!mutex_trylock(&head->mutex)) {
atomic_inc(&head->node.refs);
spin_unlock(&delayed_refs->lock);
btrfs_release_path(path);
/*
* Mutex was contended, block until it's released and try
* again
*/
mutex_lock(&head->mutex);
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(&head->node);
goto again;
}
if (head->extent_op && head->extent_op->update_flags)
extent_flags |= head->extent_op->flags_to_set;
else
BUG_ON(num_refs == 0);
num_refs += head->node.ref_mod;
mutex_unlock(&head->mutex);
}
spin_unlock(&delayed_refs->lock);
out:
WARN_ON(num_refs == 0);
if (refs)
*refs = num_refs;
if (flags)
*flags = extent_flags;
out_free:
btrfs_free_path(path);
return ret;
}
/*
* Back reference rules. Back refs have three main goals:
*
* 1) differentiate between all holders of references to an extent so that
* when a reference is dropped we can make sure it was a valid reference
* before freeing the extent.
*
* 2) Provide enough information to quickly find the holders of an extent
* if we notice a given block is corrupted or bad.
*
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
* maintenance. This is actually the same as #2, but with a slightly
* different use case.
*
* There are two kinds of back refs. The implicit back refs is optimized
* for pointers in non-shared tree blocks. For a given pointer in a block,
* back refs of this kind provide information about the block's owner tree
* and the pointer's key. These information allow us to find the block by
* b-tree searching. The full back refs is for pointers in tree blocks not
* referenced by their owner trees. The location of tree block is recorded
* in the back refs. Actually the full back refs is generic, and can be
* used in all cases the implicit back refs is used. The major shortcoming
* of the full back refs is its overhead. Every time a tree block gets
* COWed, we have to update back refs entry for all pointers in it.
*
* For a newly allocated tree block, we use implicit back refs for
* pointers in it. This means most tree related operations only involve
* implicit back refs. For a tree block created in old transaction, the
* only way to drop a reference to it is COW it. So we can detect the
* event that tree block loses its owner tree's reference and do the
* back refs conversion.
*
* When a tree block is COW'd through a tree, there are four cases:
*
* The reference count of the block is one and the tree is the block's
* owner tree. Nothing to do in this case.
*
* The reference count of the block is one and the tree is not the
* block's owner tree. In this case, full back refs is used for pointers
* in the block. Remove these full back refs, add implicit back refs for
* every pointers in the new block.
*
* The reference count of the block is greater than one and the tree is
* the block's owner tree. In this case, implicit back refs is used for
* pointers in the block. Add full back refs for every pointers in the
* block, increase lower level extents' reference counts. The original
* implicit back refs are entailed to the new block.
*
* The reference count of the block is greater than one and the tree is
* not the block's owner tree. Add implicit back refs for every pointer in
* the new block, increase lower level extents' reference count.
*
* Back Reference Key composing:
*
* The key objectid corresponds to the first byte in the extent,
* The key type is used to differentiate between types of back refs.
* There are different meanings of the key offset for different types
* of back refs.
*
* File extents can be referenced by:
*
* - multiple snapshots, subvolumes, or different generations in one subvol
* - different files inside a single subvolume
* - different offsets inside a file (bookend extents in file.c)
*
* The extent ref structure for the implicit back refs has fields for:
*
* - Objectid of the subvolume root
* - objectid of the file holding the reference
* - original offset in the file
* - how many bookend extents
*
* The key offset for the implicit back refs is hash of the first
* three fields.
*
* The extent ref structure for the full back refs has field for:
*
* - number of pointers in the tree leaf
*
* The key offset for the implicit back refs is the first byte of
* the tree leaf
*
* When a file extent is allocated, The implicit back refs is used.
* the fields are filled in:
*
* (root_key.objectid, inode objectid, offset in file, 1)
*
* When a file extent is removed file truncation, we find the
* corresponding implicit back refs and check the following fields:
*
* (btrfs_header_owner(leaf), inode objectid, offset in file)
*
* Btree extents can be referenced by:
*
* - Different subvolumes
*
* Both the implicit back refs and the full back refs for tree blocks
* only consist of key. The key offset for the implicit back refs is
* objectid of block's owner tree. The key offset for the full back refs
* is the first byte of parent block.
*
* When implicit back refs is used, information about the lowest key and
* level of the tree block are required. These information are stored in
* tree block info structure.
*/
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 owner, u32 extra_size)
{
struct btrfs_extent_item *item;
struct btrfs_extent_item_v0 *ei0;
struct btrfs_extent_ref_v0 *ref0;
struct btrfs_tree_block_info *bi;
struct extent_buffer *leaf;
struct btrfs_key key;
struct btrfs_key found_key;
u32 new_size = sizeof(*item);
u64 refs;
int ret;
leaf = path->nodes[0];
BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ei0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item_v0);
refs = btrfs_extent_refs_v0(leaf, ei0);
if (owner == (u64)-1) {
while (1) {
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
return ret;
BUG_ON(ret > 0); /* Corruption */
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &found_key,
path->slots[0]);
BUG_ON(key.objectid != found_key.objectid);
if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
path->slots[0]++;
continue;
}
ref0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref_v0);
owner = btrfs_ref_objectid_v0(leaf, ref0);
break;
}
}
btrfs_release_path(path);
if (owner < BTRFS_FIRST_FREE_OBJECTID)
new_size += sizeof(*bi);
new_size -= sizeof(*ei0);
ret = btrfs_search_slot(trans, root, &key, path,
new_size + extra_size, 1);
if (ret < 0)
return ret;
BUG_ON(ret); /* Corruption */
btrfs_extend_item(trans, root, path, new_size);
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
btrfs_set_extent_refs(leaf, item, refs);
/* FIXME: get real generation */
btrfs_set_extent_generation(leaf, item, 0);
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
btrfs_set_extent_flags(leaf, item,
BTRFS_EXTENT_FLAG_TREE_BLOCK |
BTRFS_BLOCK_FLAG_FULL_BACKREF);
bi = (struct btrfs_tree_block_info *)(item + 1);
/* FIXME: get first key of the block */
memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
btrfs_set_tree_block_level(leaf, bi, (int)owner);
} else {
btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
}
btrfs_mark_buffer_dirty(leaf);
return 0;
}
#endif
static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
{
u32 high_crc = ~(u32)0;
u32 low_crc = ~(u32)0;
__le64 lenum;
lenum = cpu_to_le64(root_objectid);
high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
lenum = cpu_to_le64(owner);
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
lenum = cpu_to_le64(offset);
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
return ((u64)high_crc << 31) ^ (u64)low_crc;
}
static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
struct btrfs_extent_data_ref *ref)
{
return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
btrfs_extent_data_ref_objectid(leaf, ref),
btrfs_extent_data_ref_offset(leaf, ref));
}
static int match_extent_data_ref(struct extent_buffer *leaf,
struct btrfs_extent_data_ref *ref,
u64 root_objectid, u64 owner, u64 offset)
{
if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
btrfs_extent_data_ref_offset(leaf, ref) != offset)
return 0;
return 1;
}
static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid,
u64 owner, u64 offset)
{
struct btrfs_key key;
struct btrfs_extent_data_ref *ref;
struct extent_buffer *leaf;
u32 nritems;
int ret;
int recow;
int err = -ENOENT;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_DATA_REF_KEY;
key.offset = parent;
} else {
key.type = BTRFS_EXTENT_DATA_REF_KEY;
key.offset = hash_extent_data_ref(root_objectid,
owner, offset);
}
again:
recow = 0;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0) {
err = ret;
goto fail;
}
if (parent) {
if (!ret)
return 0;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
key.type = BTRFS_EXTENT_REF_V0_KEY;
btrfs_release_path(path);
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0) {
err = ret;
goto fail;
}
if (!ret)
return 0;
#endif
goto fail;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
while (1) {
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
err = ret;
if (ret)
goto fail;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
recow = 1;
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != bytenr ||
key.type != BTRFS_EXTENT_DATA_REF_KEY)
goto fail;
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
if (match_extent_data_ref(leaf, ref, root_objectid,
owner, offset)) {
if (recow) {
btrfs_release_path(path);
goto again;
}
err = 0;
break;
}
path->slots[0]++;
}
fail:
return err;
}
static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid, u64 owner,
u64 offset, int refs_to_add)
{
struct btrfs_key key;
struct extent_buffer *leaf;
u32 size;
u32 num_refs;
int ret;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_DATA_REF_KEY;
key.offset = parent;
size = sizeof(struct btrfs_shared_data_ref);
} else {
key.type = BTRFS_EXTENT_DATA_REF_KEY;
key.offset = hash_extent_data_ref(root_objectid,
owner, offset);
size = sizeof(struct btrfs_extent_data_ref);
}
ret = btrfs_insert_empty_item(trans, root, path, &key, size);
if (ret && ret != -EEXIST)
goto fail;
leaf = path->nodes[0];
if (parent) {
struct btrfs_shared_data_ref *ref;
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_shared_data_ref);
if (ret == 0) {
btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
} else {
num_refs = btrfs_shared_data_ref_count(leaf, ref);
num_refs += refs_to_add;
btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
}
} else {
struct btrfs_extent_data_ref *ref;
while (ret == -EEXIST) {
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
if (match_extent_data_ref(leaf, ref, root_objectid,
owner, offset))
break;
btrfs_release_path(path);
key.offset++;
ret = btrfs_insert_empty_item(trans, root, path, &key,
size);
if (ret && ret != -EEXIST)
goto fail;
leaf = path->nodes[0];
}
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
if (ret == 0) {
btrfs_set_extent_data_ref_root(leaf, ref,
root_objectid);
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
} else {
num_refs = btrfs_extent_data_ref_count(leaf, ref);
num_refs += refs_to_add;
btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
}
}
btrfs_mark_buffer_dirty(leaf);
ret = 0;
fail:
btrfs_release_path(path);
return ret;
}
static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
int refs_to_drop)
{
struct btrfs_key key;
struct btrfs_extent_data_ref *ref1 = NULL;
struct btrfs_shared_data_ref *ref2 = NULL;
struct extent_buffer *leaf;
u32 num_refs = 0;
int ret = 0;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
ref1 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
ref2 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_shared_data_ref);
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
struct btrfs_extent_ref_v0 *ref0;
ref0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref_v0);
num_refs = btrfs_ref_count_v0(leaf, ref0);
#endif
} else {
BUG();
}
BUG_ON(num_refs < refs_to_drop);
num_refs -= refs_to_drop;
if (num_refs == 0) {
ret = btrfs_del_item(trans, root, path);
} else {
if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
else {
struct btrfs_extent_ref_v0 *ref0;
ref0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref_v0);
btrfs_set_ref_count_v0(leaf, ref0, num_refs);
}
#endif
btrfs_mark_buffer_dirty(leaf);
}
return ret;
}
static noinline u32 extent_data_ref_count(struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref *iref)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_extent_data_ref *ref1;
struct btrfs_shared_data_ref *ref2;
u32 num_refs = 0;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (iref) {
if (btrfs_extent_inline_ref_type(leaf, iref) ==
BTRFS_EXTENT_DATA_REF_KEY) {
ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
} else {
ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
}
} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
ref1 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
ref2 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_shared_data_ref);
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
struct btrfs_extent_ref_v0 *ref0;
ref0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref_v0);
num_refs = btrfs_ref_count_v0(leaf, ref0);
#endif
} else {
WARN_ON(1);
}
return num_refs;
}
static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid)
{
struct btrfs_key key;
int ret;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
key.offset = parent;
} else {
key.type = BTRFS_TREE_BLOCK_REF_KEY;
key.offset = root_objectid;
}
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -ENOENT;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (ret == -ENOENT && parent) {
btrfs_release_path(path);
key.type = BTRFS_EXTENT_REF_V0_KEY;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -ENOENT;
}
#endif
return ret;
}
static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid)
{
struct btrfs_key key;
int ret;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
key.offset = parent;
} else {
key.type = BTRFS_TREE_BLOCK_REF_KEY;
key.offset = root_objectid;
}
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
btrfs_release_path(path);
return ret;
}
static inline int extent_ref_type(u64 parent, u64 owner)
{
int type;
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
if (parent > 0)
type = BTRFS_SHARED_BLOCK_REF_KEY;
else
type = BTRFS_TREE_BLOCK_REF_KEY;
} else {
if (parent > 0)
type = BTRFS_SHARED_DATA_REF_KEY;
else
type = BTRFS_EXTENT_DATA_REF_KEY;
}
return type;
}
static int find_next_key(struct btrfs_path *path, int level,
struct btrfs_key *key)
{
for (; level < BTRFS_MAX_LEVEL; level++) {
if (!path->nodes[level])
break;
if (path->slots[level] + 1 >=
btrfs_header_nritems(path->nodes[level]))
continue;
if (level == 0)
btrfs_item_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
else
btrfs_node_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
return 0;
}
return 1;
}
/*
* look for inline back ref. if back ref is found, *ref_ret is set
* to the address of inline back ref, and 0 is returned.
*
* if back ref isn't found, *ref_ret is set to the address where it
* should be inserted, and -ENOENT is returned.
*
* if insert is true and there are too many inline back refs, the path
* points to the extent item, and -EAGAIN is returned.
*
* NOTE: inline back refs are ordered in the same way that back ref
* items in the tree are ordered.
*/
static noinline_for_stack
int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref **ref_ret,
u64 bytenr, u64 num_bytes,
u64 parent, u64 root_objectid,
u64 owner, u64 offset, int insert)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
u64 flags;
u64 item_size;
unsigned long ptr;
unsigned long end;
int extra_size;
int type;
int want;
int ret;
int err = 0;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = num_bytes;
want = extent_ref_type(parent, owner);
if (insert) {
extra_size = btrfs_extent_inline_ref_size(want);
path->keep_locks = 1;
} else
extra_size = -1;
ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
if (ret < 0) {
err = ret;
goto out;
}
if (ret && !insert) {
err = -ENOENT;
goto out;
} else if (ret) {
err = -EIO;
WARN_ON(1);
goto out;
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (item_size < sizeof(*ei)) {
if (!insert) {
err = -ENOENT;
goto out;
}
ret = convert_extent_item_v0(trans, root, path, owner,
extra_size);
if (ret < 0) {
err = ret;
goto out;
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
}
#endif
BUG_ON(item_size < sizeof(*ei));
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
flags = btrfs_extent_flags(leaf, ei);
ptr = (unsigned long)(ei + 1);
end = (unsigned long)ei + item_size;
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
ptr += sizeof(struct btrfs_tree_block_info);
BUG_ON(ptr > end);
} else {
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
}
err = -ENOENT;
while (1) {
if (ptr >= end) {
WARN_ON(ptr > end);
break;
}
iref = (struct btrfs_extent_inline_ref *)ptr;
type = btrfs_extent_inline_ref_type(leaf, iref);
if (want < type)
break;
if (want > type) {
ptr += btrfs_extent_inline_ref_size(type);
continue;
}
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
struct btrfs_extent_data_ref *dref;
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
if (match_extent_data_ref(leaf, dref, root_objectid,
owner, offset)) {
err = 0;
break;
}
if (hash_extent_data_ref_item(leaf, dref) <
hash_extent_data_ref(root_objectid, owner, offset))
break;
} else {
u64 ref_offset;
ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
if (parent > 0) {
if (parent == ref_offset) {
err = 0;
break;
}
if (ref_offset < parent)
break;
} else {
if (root_objectid == ref_offset) {
err = 0;
break;
}
if (ref_offset < root_objectid)
break;
}
}
ptr += btrfs_extent_inline_ref_size(type);
}
if (err == -ENOENT && insert) {
if (item_size + extra_size >=
BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
err = -EAGAIN;
goto out;
}
/*
* To add new inline back ref, we have to make sure
* there is no corresponding back ref item.
* For simplicity, we just do not add new inline back
* ref if there is any kind of item for this block
*/
if (find_next_key(path, 0, &key) == 0 &&
key.objectid == bytenr &&
key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
err = -EAGAIN;
goto out;
}
}
*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
out:
if (insert) {
path->keep_locks = 0;
btrfs_unlock_up_safe(path, 1);
}
return err;
}
/*
* helper to add new inline back ref
*/
static noinline_for_stack
void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref *iref,
u64 parent, u64 root_objectid,
u64 owner, u64 offset, int refs_to_add,
struct btrfs_delayed_extent_op *extent_op)
{
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
unsigned long ptr;
unsigned long end;
unsigned long item_offset;
u64 refs;
int size;
int type;
leaf = path->nodes[0];
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
item_offset = (unsigned long)iref - (unsigned long)ei;
type = extent_ref_type(parent, owner);
size = btrfs_extent_inline_ref_size(type);
btrfs_extend_item(trans, root, path, size);
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(leaf, ei);
refs += refs_to_add;
btrfs_set_extent_refs(leaf, ei, refs);
if (extent_op)
__run_delayed_extent_op(extent_op, leaf, ei);
ptr = (unsigned long)ei + item_offset;
end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
if (ptr < end - size)
memmove_extent_buffer(leaf, ptr + size, ptr,
end - size - ptr);
iref = (struct btrfs_extent_inline_ref *)ptr;
btrfs_set_extent_inline_ref_type(leaf, iref, type);
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
struct btrfs_extent_data_ref *dref;
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
btrfs_set_extent_data_ref_offset(leaf, dref, offset);
btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
struct btrfs_shared_data_ref *sref;
sref = (struct btrfs_shared_data_ref *)(iref + 1);
btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
} else {
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
}
btrfs_mark_buffer_dirty(leaf);
}
static int lookup_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref **ref_ret,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner, u64 offset)
{
int ret;
ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
bytenr, num_bytes, parent,
root_objectid, owner, offset, 0);
if (ret != -ENOENT)
return ret;
btrfs_release_path(path);
*ref_ret = NULL;
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
root_objectid);
} else {
ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
root_objectid, owner, offset);
}
return ret;
}
/*
* helper to update/remove inline back ref
*/
static noinline_for_stack
void update_inline_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref *iref,
int refs_to_mod,
struct btrfs_delayed_extent_op *extent_op)
{
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
struct btrfs_extent_data_ref *dref = NULL;
struct btrfs_shared_data_ref *sref = NULL;
unsigned long ptr;
unsigned long end;
u32 item_size;
int size;
int type;
u64 refs;
leaf = path->nodes[0];
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(leaf, ei);
WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
refs += refs_to_mod;
btrfs_set_extent_refs(leaf, ei, refs);
if (extent_op)
__run_delayed_extent_op(extent_op, leaf, ei);
type = btrfs_extent_inline_ref_type(leaf, iref);
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
refs = btrfs_extent_data_ref_count(leaf, dref);
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
sref = (struct btrfs_shared_data_ref *)(iref + 1);
refs = btrfs_shared_data_ref_count(leaf, sref);
} else {
refs = 1;
BUG_ON(refs_to_mod != -1);
}
BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
refs += refs_to_mod;
if (refs > 0) {
if (type == BTRFS_EXTENT_DATA_REF_KEY)
btrfs_set_extent_data_ref_count(leaf, dref, refs);
else
btrfs_set_shared_data_ref_count(leaf, sref, refs);
} else {
size = btrfs_extent_inline_ref_size(type);
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ptr = (unsigned long)iref;
end = (unsigned long)ei + item_size;
if (ptr + size < end)
memmove_extent_buffer(leaf, ptr, ptr + size,
end - ptr - size);
item_size -= size;
btrfs_truncate_item(trans, root, path, item_size, 1);
}
btrfs_mark_buffer_dirty(leaf);
}
static noinline_for_stack
int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner,
u64 offset, int refs_to_add,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_extent_inline_ref *iref;
int ret;
ret = lookup_inline_extent_backref(trans, root, path, &iref,
bytenr, num_bytes, parent,
root_objectid, owner, offset, 1);
if (ret == 0) {
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
update_inline_extent_backref(trans, root, path, iref,
refs_to_add, extent_op);
} else if (ret == -ENOENT) {
setup_inline_extent_backref(trans, root, path, iref, parent,
root_objectid, owner, offset,
refs_to_add, extent_op);
ret = 0;
}
return ret;
}
static int insert_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent, u64 root_objectid,
u64 owner, u64 offset, int refs_to_add)
{
int ret;
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
BUG_ON(refs_to_add != 1);
ret = insert_tree_block_ref(trans, root, path, bytenr,
parent, root_objectid);
} else {
ret = insert_extent_data_ref(trans, root, path, bytenr,
parent, root_objectid,
owner, offset, refs_to_add);
}
return ret;
}
static int remove_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref *iref,
int refs_to_drop, int is_data)
{
int ret = 0;
BUG_ON(!is_data && refs_to_drop != 1);
if (iref) {
update_inline_extent_backref(trans, root, path, iref,
-refs_to_drop, NULL);
} else if (is_data) {
ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
} else {
ret = btrfs_del_item(trans, root, path);
}
return ret;
}
static int btrfs_issue_discard(struct block_device *bdev,
u64 start, u64 len)
{
return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
}
static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
u64 num_bytes, u64 *actual_bytes)
{
int ret;
u64 discarded_bytes = 0;
struct btrfs_bio *bbio = NULL;
/* Tell the block device(s) that the sectors can be discarded */
ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
bytenr, &num_bytes, &bbio, 0);
/* Error condition is -ENOMEM */
if (!ret) {
struct btrfs_bio_stripe *stripe = bbio->stripes;
int i;
for (i = 0; i < bbio->num_stripes; i++, stripe++) {
if (!stripe->dev->can_discard)
continue;
ret = btrfs_issue_discard(stripe->dev->bdev,
stripe->physical,
stripe->length);
if (!ret)
discarded_bytes += stripe->length;
else if (ret != -EOPNOTSUPP)
break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
/*
* Just in case we get back EOPNOTSUPP for some reason,
* just ignore the return value so we don't screw up
* people calling discard_extent.
*/
ret = 0;
}
kfree(bbio);
}
if (actual_bytes)
*actual_bytes = discarded_bytes;
if (ret == -EOPNOTSUPP)
ret = 0;
return ret;
}
/* Can return -ENOMEM */
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner, u64 offset, int for_cow)
{
int ret;
struct btrfs_fs_info *fs_info = root->fs_info;
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
root_objectid == BTRFS_TREE_LOG_OBJECTID);
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
num_bytes,
parent, root_objectid, (int)owner,
BTRFS_ADD_DELAYED_REF, NULL, for_cow);
} else {
ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
num_bytes,
parent, root_objectid, owner, offset,
BTRFS_ADD_DELAYED_REF, NULL, for_cow);
}
return ret;
}
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes,
u64 parent, u64 root_objectid,
u64 owner, u64 offset, int refs_to_add,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_extent_item *item;
u64 refs;
int ret;
int err = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 1;
path->leave_spinning = 1;
/* this will setup the path even if it fails to insert the back ref */
ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
path, bytenr, num_bytes, parent,
root_objectid, owner, offset,
refs_to_add, extent_op);
if (ret == 0)
goto out;
if (ret != -EAGAIN) {
err = ret;
goto out;
}
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(leaf, item);
btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
if (extent_op)
__run_delayed_extent_op(extent_op, leaf, item);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
path->reada = 1;
path->leave_spinning = 1;
/* now insert the actual backref */
ret = insert_extent_backref(trans, root->fs_info->extent_root,
path, bytenr, parent, root_objectid,
owner, offset, refs_to_add);
if (ret)
btrfs_abort_transaction(trans, root, ret);
out:
btrfs_free_path(path);
return err;
}
static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_ref_node *node,
struct btrfs_delayed_extent_op *extent_op,
int insert_reserved)
{
int ret = 0;
struct btrfs_delayed_data_ref *ref;
struct btrfs_key ins;
u64 parent = 0;
u64 ref_root = 0;
u64 flags = 0;
ins.objectid = node->bytenr;
ins.offset = node->num_bytes;
ins.type = BTRFS_EXTENT_ITEM_KEY;
ref = btrfs_delayed_node_to_data_ref(node);
if (node->type == BTRFS_SHARED_DATA_REF_KEY)
parent = ref->parent;
else
ref_root = ref->root;
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
if (extent_op) {
BUG_ON(extent_op->update_key);
flags |= extent_op->flags_to_set;
}
ret = alloc_reserved_file_extent(trans, root,
parent, ref_root, flags,
ref->objectid, ref->offset,
&ins, node->ref_mod);
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
node->num_bytes, parent,
ref_root, ref->objectid,
ref->offset, node->ref_mod,
extent_op);
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
ret = __btrfs_free_extent(trans, root, node->bytenr,
node->num_bytes, parent,
ref_root, ref->objectid,
ref->offset, node->ref_mod,
extent_op);
} else {
BUG();
}
return ret;
}
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
struct extent_buffer *leaf,
struct btrfs_extent_item *ei)
{
u64 flags = btrfs_extent_flags(leaf, ei);
if (extent_op->update_flags) {
flags |= extent_op->flags_to_set;
btrfs_set_extent_flags(leaf, ei, flags);
}
if (extent_op->update_key) {
struct btrfs_tree_block_info *bi;
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
bi = (struct btrfs_tree_block_info *)(ei + 1);
btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
}
}
static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_ref_node *node,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_key key;
struct btrfs_path *path;
struct btrfs_extent_item *ei;
struct extent_buffer *leaf;
u32 item_size;
int ret;
int err = 0;
if (trans->aborted)
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = node->bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = node->num_bytes;
path->reada = 1;
path->leave_spinning = 1;
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
path, 0, 1);
if (ret < 0) {
err = ret;
goto out;
}
if (ret > 0) {
err = -EIO;
goto out;
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (item_size < sizeof(*ei)) {
ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
path, (u64)-1, 0);
if (ret < 0) {
err = ret;
goto out;
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
}
#endif
BUG_ON(item_size < sizeof(*ei));
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
__run_delayed_extent_op(extent_op, leaf, ei);
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
return err;
}
static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_ref_node *node,
struct btrfs_delayed_extent_op *extent_op,
int insert_reserved)
{
int ret = 0;
struct btrfs_delayed_tree_ref *ref;
struct btrfs_key ins;
u64 parent = 0;
u64 ref_root = 0;
ins.objectid = node->bytenr;
ins.offset = node->num_bytes;
ins.type = BTRFS_EXTENT_ITEM_KEY;
ref = btrfs_delayed_node_to_tree_ref(node);
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
parent = ref->parent;
else
ref_root = ref->root;
BUG_ON(node->ref_mod != 1);
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
BUG_ON(!extent_op || !extent_op->update_flags ||
!extent_op->update_key);
ret = alloc_reserved_tree_block(trans, root,
parent, ref_root,
extent_op->flags_to_set,
&extent_op->key,
ref->level, &ins);
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
node->num_bytes, parent, ref_root,
ref->level, 0, 1, extent_op);
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
ret = __btrfs_free_extent(trans, root, node->bytenr,
node->num_bytes, parent, ref_root,
ref->level, 0, 1, extent_op);
} else {
BUG();
}
return ret;
}
/* helper function to actually process a single delayed ref entry */
static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_ref_node *node,
struct btrfs_delayed_extent_op *extent_op,
int insert_reserved)
{
int ret = 0;
if (trans->aborted)
return 0;
if (btrfs_delayed_ref_is_head(node)) {
struct btrfs_delayed_ref_head *head;
/*
* we've hit the end of the chain and we were supposed
* to insert this extent into the tree. But, it got
* deleted before we ever needed to insert it, so all
* we have to do is clean up the accounting
*/
BUG_ON(extent_op);
head = btrfs_delayed_node_to_head(node);
if (insert_reserved) {
btrfs_pin_extent(root, node->bytenr,
node->num_bytes, 1);
if (head->is_data) {
ret = btrfs_del_csums(trans, root,
node->bytenr,
node->num_bytes);
}
}
return ret;
}
if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
node->type == BTRFS_SHARED_BLOCK_REF_KEY)
ret = run_delayed_tree_ref(trans, root, node, extent_op,
insert_reserved);
else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
node->type == BTRFS_SHARED_DATA_REF_KEY)
ret = run_delayed_data_ref(trans, root, node, extent_op,
insert_reserved);
else
BUG();
return ret;
}
static noinline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head *head)
{
struct rb_node *node;
struct btrfs_delayed_ref_node *ref;
int action = BTRFS_ADD_DELAYED_REF;
again:
/*
* select delayed ref of type BTRFS_ADD_DELAYED_REF first.
* this prevents ref count from going down to zero when
* there still are pending delayed ref.
*/
node = rb_prev(&head->node.rb_node);
while (1) {
if (!node)
break;
ref = rb_entry(node, struct btrfs_delayed_ref_node,
rb_node);
if (ref->bytenr != head->node.bytenr)
break;
if (ref->action == action)
return ref;
node = rb_prev(node);
}
if (action == BTRFS_ADD_DELAYED_REF) {
action = BTRFS_DROP_DELAYED_REF;
goto again;
}
return NULL;
}
/*
* Returns 0 on success or if called with an already aborted transaction.
* Returns -ENOMEM or -EIO on failure and will abort the transaction.
*/
static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct list_head *cluster)
{
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
struct btrfs_delayed_ref_head *locked_ref = NULL;
struct btrfs_delayed_extent_op *extent_op;
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
int count = 0;
int must_insert_reserved = 0;
delayed_refs = &trans->transaction->delayed_refs;
while (1) {
if (!locked_ref) {
/* pick a new head ref from the cluster list */
if (list_empty(cluster))
break;
locked_ref = list_entry(cluster->next,
struct btrfs_delayed_ref_head, cluster);
/* grab the lock that says we are going to process
* all the refs for this head */
ret = btrfs_delayed_ref_lock(trans, locked_ref);
/*
* we may have dropped the spin lock to get the head
* mutex lock, and that might have given someone else
* time to free the head. If that's true, it has been
* removed from our list and we can move on.
*/
if (ret == -EAGAIN) {
locked_ref = NULL;
count++;
continue;
}
}
/*
* We need to try and merge add/drops of the same ref since we
* can run into issues with relocate dropping the implicit ref
* and then it being added back again before the drop can
* finish. If we merged anything we need to re-loop so we can
* get a good ref.
*/
btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
locked_ref);
/*
* locked_ref is the head node, so we have to go one
* node back for any delayed ref updates
*/
ref = select_delayed_ref(locked_ref);
if (ref && ref->seq &&
btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
/*
* there are still refs with lower seq numbers in the
* process of being added. Don't run this ref yet.
*/
list_del_init(&locked_ref->cluster);
btrfs_delayed_ref_unlock(locked_ref);
locked_ref = NULL;
delayed_refs->num_heads_ready++;
spin_unlock(&delayed_refs->lock);
cond_resched();
spin_lock(&delayed_refs->lock);
continue;
}
/*
* record the must insert reserved flag before we
* drop the spin lock.
*/
must_insert_reserved = locked_ref->must_insert_reserved;
locked_ref->must_insert_reserved = 0;
extent_op = locked_ref->extent_op;
locked_ref->extent_op = NULL;
if (!ref) {
/* All delayed refs have been processed, Go ahead
* and send the head node to run_one_delayed_ref,
* so that any accounting fixes can happen
*/
ref = &locked_ref->node;
if (extent_op && must_insert_reserved) {
btrfs_free_delayed_extent_op(extent_op);
extent_op = NULL;
}
if (extent_op) {
spin_unlock(&delayed_refs->lock);
ret = run_delayed_extent_op(trans, root,
ref, extent_op);
btrfs_free_delayed_extent_op(extent_op);
if (ret) {
printk(KERN_DEBUG
"btrfs: run_delayed_extent_op "
"returned %d\n", ret);
spin_lock(&delayed_refs->lock);
btrfs_delayed_ref_unlock(locked_ref);
return ret;
}
goto next;
}
}
ref->in_tree = 0;
rb_erase(&ref->rb_node, &delayed_refs->root);
delayed_refs->num_entries--;
if (!btrfs_delayed_ref_is_head(ref)) {
/*
* when we play the delayed ref, also correct the
* ref_mod on head
*/
switch (ref->action) {
case BTRFS_ADD_DELAYED_REF:
case BTRFS_ADD_DELAYED_EXTENT:
locked_ref->node.ref_mod -= ref->ref_mod;
break;
case BTRFS_DROP_DELAYED_REF:
locked_ref->node.ref_mod += ref->ref_mod;
break;
default:
WARN_ON(1);
}
}
spin_unlock(&delayed_refs->lock);
ret = run_one_delayed_ref(trans, root, ref, extent_op,
must_insert_reserved);
btrfs_free_delayed_extent_op(extent_op);
if (ret) {
btrfs_delayed_ref_unlock(locked_ref);
btrfs_put_delayed_ref(ref);
printk(KERN_DEBUG
"btrfs: run_one_delayed_ref returned %d\n", ret);
spin_lock(&delayed_refs->lock);
return ret;
}
/*
* If this node is a head, that means all the refs in this head
* have been dealt with, and we will pick the next head to deal
* with, so we must unlock the head and drop it from the cluster
* list before we release it.
*/
if (btrfs_delayed_ref_is_head(ref)) {
list_del_init(&locked_ref->cluster);
btrfs_delayed_ref_unlock(locked_ref);
locked_ref = NULL;
}
btrfs_put_delayed_ref(ref);
count++;
next:
cond_resched();
spin_lock(&delayed_refs->lock);
}
return count;
}
#ifdef SCRAMBLE_DELAYED_REFS
/*
* Normally delayed refs get processed in ascending bytenr order. This
* correlates in most cases to the order added. To expose dependencies on this
* order, we start to process the tree in the middle instead of the beginning
*/
static u64 find_middle(struct rb_root *root)
{
struct rb_node *n = root->rb_node;
struct btrfs_delayed_ref_node *entry;
int alt = 1;
u64 middle;
u64 first = 0, last = 0;
n = rb_first(root);
if (n) {
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
first = entry->bytenr;
}
n = rb_last(root);
if (n) {
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
last = entry->bytenr;
}
n = root->rb_node;
while (n) {
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
WARN_ON(!entry->in_tree);
middle = entry->bytenr;
if (alt)
n = n->rb_left;
else
n = n->rb_right;
alt = 1 - alt;
}
return middle;
}
#endif
int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct qgroup_update *qgroup_update;
int ret = 0;
if (list_empty(&trans->qgroup_ref_list) !=
!trans->delayed_ref_elem.seq) {
/* list without seq or seq without list */
printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
list_empty(&trans->qgroup_ref_list) ? "" : " not",
trans->delayed_ref_elem.seq);
BUG();
}
if (!trans->delayed_ref_elem.seq)
return 0;
while (!list_empty(&trans->qgroup_ref_list)) {
qgroup_update = list_first_entry(&trans->qgroup_ref_list,
struct qgroup_update, list);
list_del(&qgroup_update->list);
if (!ret)
ret = btrfs_qgroup_account_ref(
trans, fs_info, qgroup_update->node,
qgroup_update->extent_op);
kfree(qgroup_update);
}
btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
return ret;
}
static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
int count)
{
int val = atomic_read(&delayed_refs->ref_seq);
if (val < seq || val >= seq + count)
return 1;
return 0;
}
/*
* this starts processing the delayed reference count updates and
* extent insertions we have queued up so far. count can be
* 0, which means to process everything in the tree at the start
* of the run (but not newly added entries), or it can be some target
* number you'd like to process.
*
* Returns 0 on success or if called with an aborted transaction
* Returns <0 on error and aborts the transaction
*/
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root, unsigned long count)
{
struct rb_node *node;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
struct list_head cluster;
int ret;
u64 delayed_start;
int run_all = count == (unsigned long)-1;
int run_most = 0;
int loops;
/* We'll clean this up in btrfs_cleanup_transaction */
if (trans->aborted)
return 0;
if (root == root->fs_info->extent_root)
root = root->fs_info->tree_root;
btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
delayed_refs = &trans->transaction->delayed_refs;
INIT_LIST_HEAD(&cluster);
if (count == 0) {
count = delayed_refs->num_entries * 2;
run_most = 1;
}
if (!run_all && !run_most) {
int old;
int seq = atomic_read(&delayed_refs->ref_seq);
progress:
old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
if (old) {
DEFINE_WAIT(__wait);
if (delayed_refs->num_entries < 16348)
return 0;
prepare_to_wait(&delayed_refs->wait, &__wait,
TASK_UNINTERRUPTIBLE);
old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
if (old) {
schedule();
finish_wait(&delayed_refs->wait, &__wait);
if (!refs_newer(delayed_refs, seq, 256))
goto progress;
else
return 0;
} else {
finish_wait(&delayed_refs->wait, &__wait);
goto again;
}
}
} else {
atomic_inc(&delayed_refs->procs_running_refs);
}
again:
loops = 0;
spin_lock(&delayed_refs->lock);
#ifdef SCRAMBLE_DELAYED_REFS
delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
#endif
while (1) {
if (!(run_all || run_most) &&
delayed_refs->num_heads_ready < 64)
break;
/*
* go find something we can process in the rbtree. We start at
* the beginning of the tree, and then build a cluster
* of refs to process starting at the first one we are able to
* lock
*/
delayed_start = delayed_refs->run_delayed_start;
ret = btrfs_find_ref_cluster(trans, &cluster,
delayed_refs->run_delayed_start);
if (ret)
break;
ret = run_clustered_refs(trans, root, &cluster);
if (ret < 0) {
btrfs_release_ref_cluster(&cluster);
spin_unlock(&delayed_refs->lock);
btrfs_abort_transaction(trans, root, ret);
atomic_dec(&delayed_refs->procs_running_refs);
return ret;
}
atomic_add(ret, &delayed_refs->ref_seq);
count -= min_t(unsigned long, ret, count);
if (count == 0)
break;
if (delayed_start >= delayed_refs->run_delayed_start) {
if (loops == 0) {
/*
* btrfs_find_ref_cluster looped. let's do one
* more cycle. if we don't run any delayed ref
* during that cycle (because we can't because
* all of them are blocked), bail out.
*/
loops = 1;
} else {
/*
* no runnable refs left, stop trying
*/
BUG_ON(run_all);
break;
}
}
if (ret) {
/* refs were run, let's reset staleness detection */
loops = 0;
}
}
if (run_all) {
if (!list_empty(&trans->new_bgs)) {
spin_unlock(&delayed_refs->lock);
btrfs_create_pending_block_groups(trans, root);
spin_lock(&delayed_refs->lock);
}
node = rb_first(&delayed_refs->root);
if (!node)
goto out;
count = (unsigned long)-1;
while (node) {
ref = rb_entry(node, struct btrfs_delayed_ref_node,
rb_node);
if (btrfs_delayed_ref_is_head(ref)) {
struct btrfs_delayed_ref_head *head;
head = btrfs_delayed_node_to_head(ref);
atomic_inc(&ref->refs);
spin_unlock(&delayed_refs->lock);
/*
* Mutex was contended, block until it's
* released and try again
*/
mutex_lock(&head->mutex);
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(ref);
cond_resched();
goto again;
}
node = rb_next(node);
}
spin_unlock(&delayed_refs->lock);
schedule_timeout(1);
goto again;
}
out:
atomic_dec(&delayed_refs->procs_running_refs);
smp_mb();
if (waitqueue_active(&delayed_refs->wait))
wake_up(&delayed_refs->wait);
spin_unlock(&delayed_refs->lock);
assert_qgroups_uptodate(trans);
return 0;
}
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 flags,
int is_data)
{
struct btrfs_delayed_extent_op *extent_op;
int ret;
extent_op = btrfs_alloc_delayed_extent_op();
if (!extent_op)
return -ENOMEM;
extent_op->flags_to_set = flags;
extent_op->update_flags = 1;
extent_op->update_key = 0;
extent_op->is_data = is_data ? 1 : 0;
ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
num_bytes, extent_op);
if (ret)
btrfs_free_delayed_extent_op(extent_op);
return ret;
}
static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 objectid, u64 offset, u64 bytenr)
{
struct btrfs_delayed_ref_head *head;
struct btrfs_delayed_ref_node *ref;
struct btrfs_delayed_data_ref *data_ref;
struct btrfs_delayed_ref_root *delayed_refs;
struct rb_node *node;
int ret = 0;
ret = -ENOENT;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
head = btrfs_find_delayed_ref_head(trans, bytenr);
if (!head)
goto out;
if (!mutex_trylock(&head->mutex)) {
atomic_inc(&head->node.refs);
spin_unlock(&delayed_refs->lock);
btrfs_release_path(path);
/*
* Mutex was contended, block until it's released and let
* caller try again
*/
mutex_lock(&head->mutex);
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(&head->node);
return -EAGAIN;
}
node = rb_prev(&head->node.rb_node);
if (!node)
goto out_unlock;
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
if (ref->bytenr != bytenr)
goto out_unlock;
ret = 1;
if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
goto out_unlock;
data_ref = btrfs_delayed_node_to_data_ref(ref);
node = rb_prev(node);
if (node) {
int seq = ref->seq;
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
if (ref->bytenr == bytenr && ref->seq == seq)
goto out_unlock;
}
if (data_ref->root != root->root_key.objectid ||
data_ref->objectid != objectid || data_ref->offset != offset)
goto out_unlock;
ret = 0;
out_unlock:
mutex_unlock(&head->mutex);
out:
spin_unlock(&delayed_refs->lock);
return ret;
}
static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 objectid, u64 offset, u64 bytenr)
{
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct extent_buffer *leaf;
struct btrfs_extent_data_ref *ref;
struct btrfs_extent_inline_ref *iref;
struct btrfs_extent_item *ei;
struct btrfs_key key;
u32 item_size;
int ret;
key.objectid = bytenr;
key.offset = (u64)-1;
key.type = BTRFS_EXTENT_ITEM_KEY;
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
BUG_ON(ret == 0); /* Corruption */
ret = -ENOENT;
if (path->slots[0] == 0)
goto out;
path->slots[0]--;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
goto out;
ret = 1;
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (item_size < sizeof(*ei)) {
WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
goto out;
}
#endif
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
if (item_size != sizeof(*ei) +
btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
goto out;
if (btrfs_extent_generation(leaf, ei) <=
btrfs_root_last_snapshot(&root->root_item))
goto out;
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
if (btrfs_extent_inline_ref_type(leaf, iref) !=
BTRFS_EXTENT_DATA_REF_KEY)
goto out;
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
if (btrfs_extent_refs(leaf, ei) !=
btrfs_extent_data_ref_count(leaf, ref) ||
btrfs_extent_data_ref_root(leaf, ref) !=
root->root_key.objectid ||
btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
btrfs_extent_data_ref_offset(leaf, ref) != offset)
goto out;
ret = 0;
out:
return ret;
}
int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 offset, u64 bytenr)
{
struct btrfs_path *path;
int ret;
int ret2;
path = btrfs_alloc_path();
if (!path)
return -ENOENT;
do {
ret = check_committed_ref(trans, root, path, objectid,
offset, bytenr);
if (ret && ret != -ENOENT)
goto out;
ret2 = check_delayed_ref(trans, root, path, objectid,
offset, bytenr);
} while (ret2 == -EAGAIN);
if (ret2 && ret2 != -ENOENT) {
ret = ret2;
goto out;
}
if (ret != -ENOENT || ret2 != -ENOENT)
ret = 0;
out:
btrfs_free_path(path);
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
WARN_ON(ret > 0);
return ret;
}
static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
int full_backref, int inc, int for_cow)
{
u64 bytenr;
u64 num_bytes;
u64 parent;
u64 ref_root;
u32 nritems;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
int i;
int level;
int ret = 0;
int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
u64, u64, u64, u64, u64, u64, int);
ref_root = btrfs_header_owner(buf);
nritems = btrfs_header_nritems(buf);
level = btrfs_header_level(buf);
if (!root->ref_cows && level == 0)
return 0;
if (inc)
process_func = btrfs_inc_extent_ref;
else
process_func = btrfs_free_extent;
if (full_backref)
parent = buf->start;
else
parent = 0;
for (i = 0; i < nritems; i++) {
if (level == 0) {
btrfs_item_key_to_cpu(buf, &key, i);
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(buf, i,
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(buf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
if (bytenr == 0)
continue;
num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
key.offset -= btrfs_file_extent_offset(buf, fi);
ret = process_func(trans, root, bytenr, num_bytes,
parent, ref_root, key.objectid,
key.offset, for_cow);
if (ret)
goto fail;
} else {
bytenr = btrfs_node_blockptr(buf, i);
num_bytes = btrfs_level_size(root, level - 1);
ret = process_func(trans, root, bytenr, num_bytes,
parent, ref_root, level - 1, 0,
for_cow);
if (ret)
goto fail;
}
}
return 0;
fail:
return ret;
}
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, int full_backref, int for_cow)
{
return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
}
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, int full_backref, int for_cow)
{
return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
}
static int write_one_cache_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_block_group_cache *cache)
{
int ret;
struct btrfs_root *extent_root = root->fs_info->extent_root;
unsigned long bi;
struct extent_buffer *leaf;
ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
if (ret < 0)
goto fail;
BUG_ON(ret); /* Corruption */
leaf = path->nodes[0];
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
fail:
if (ret) {
btrfs_abort_transaction(trans, root, ret);
return ret;
}
return 0;
}
static struct btrfs_block_group_cache *
next_block_group(struct btrfs_root *root,
struct btrfs_block_group_cache *cache)
{
struct rb_node *node;
spin_lock(&root->fs_info->block_group_cache_lock);
node = rb_next(&cache->cache_node);
btrfs_put_block_group(cache);
if (node) {
cache = rb_entry(node, struct btrfs_block_group_cache,
cache_node);
btrfs_get_block_group(cache);
} else
cache = NULL;
spin_unlock(&root->fs_info->block_group_cache_lock);
return cache;
}
static int cache_save_setup(struct btrfs_block_group_cache *block_group,
struct btrfs_trans_handle *trans,
struct btrfs_path *path)
{
struct btrfs_root *root = block_group->fs_info->tree_root;
struct inode *inode = NULL;
u64 alloc_hint = 0;
int dcs = BTRFS_DC_ERROR;
int num_pages = 0;
int retries = 0;
int ret = 0;
/*
* If this block group is smaller than 100 megs don't bother caching the
* block group.
*/
if (block_group->key.offset < (100 * 1024 * 1024)) {
spin_lock(&block_group->lock);
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
spin_unlock(&block_group->lock);
return 0;
}
again:
inode = lookup_free_space_inode(root, block_group, path);
if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
ret = PTR_ERR(inode);
btrfs_release_path(path);
goto out;
}
if (IS_ERR(inode)) {
BUG_ON(retries);
retries++;
if (block_group->ro)
goto out_free;
ret = create_free_space_inode(root, trans, block_group, path);
if (ret)
goto out_free;
goto again;
}
/* We've already setup this transaction, go ahead and exit */
if (block_group->cache_generation == trans->transid &&
i_size_read(inode)) {
dcs = BTRFS_DC_SETUP;
goto out_put;
}
/*
* We want to set the generation to 0, that way if anything goes wrong
* from here on out we know not to trust this cache when we load up next
* time.
*/
BTRFS_I(inode)->generation = 0;
ret = btrfs_update_inode(trans, root, inode);
WARN_ON(ret);
if (i_size_read(inode) > 0) {
ret = btrfs_truncate_free_space_cache(root, trans, path,
inode);
if (ret)
goto out_put;
}
spin_lock(&block_group->lock);
if (block_group->cached != BTRFS_CACHE_FINISHED ||
!btrfs_test_opt(root, SPACE_CACHE)) {
/*
* don't bother trying to write stuff out _if_
* a) we're not cached,
* b) we're with nospace_cache mount option.
*/
dcs = BTRFS_DC_WRITTEN;
spin_unlock(&block_group->lock);
goto out_put;
}
spin_unlock(&block_group->lock);
/*
* Try to preallocate enough space based on how big the block group is.
* Keep in mind this has to include any pinned space which could end up
* taking up quite a bit since it's not folded into the other space
* cache.
*/
num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
if (!num_pages)
num_pages = 1;
num_pages *= 16;
num_pages *= PAGE_CACHE_SIZE;
ret = btrfs_check_data_free_space(inode, num_pages);
if (ret)
goto out_put;
ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
num_pages, num_pages,
&alloc_hint);
if (!ret)
dcs = BTRFS_DC_SETUP;
btrfs_free_reserved_data_space(inode, num_pages);
out_put:
iput(inode);
out_free:
btrfs_release_path(path);
out:
spin_lock(&block_group->lock);
if (!ret && dcs == BTRFS_DC_SETUP)
block_group->cache_generation = trans->transid;
block_group->disk_cache_state = dcs;
spin_unlock(&block_group->lock);
return ret;
}
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_block_group_cache *cache;
int err = 0;
struct btrfs_path *path;
u64 last = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
again:
while (1) {
cache = btrfs_lookup_first_block_group(root->fs_info, last);
while (cache) {
if (cache->disk_cache_state == BTRFS_DC_CLEAR)
break;
cache = next_block_group(root, cache);
}
if (!cache) {
if (last == 0)
break;
last = 0;
continue;
}
err = cache_save_setup(cache, trans, path);
last = cache->key.objectid + cache->key.offset;
btrfs_put_block_group(cache);
}
while (1) {
if (last == 0) {
err = btrfs_run_delayed_refs(trans, root,
(unsigned long)-1);
if (err) /* File system offline */
goto out;
}
cache = btrfs_lookup_first_block_group(root->fs_info, last);
while (cache) {
if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
btrfs_put_block_group(cache);
goto again;
}
if (cache->dirty)
break;
cache = next_block_group(root, cache);
}
if (!cache) {
if (last == 0)
break;
last = 0;
continue;
}
if (cache->disk_cache_state == BTRFS_DC_SETUP)
cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
cache->dirty = 0;
last = cache->key.objectid + cache->key.offset;
err = write_one_cache_group(trans, root, path, cache);
if (err) /* File system offline */
goto out;
btrfs_put_block_group(cache);
}
while (1) {
/*
* I don't think this is needed since we're just marking our
* preallocated extent as written, but just in case it can't
* hurt.
*/
if (last == 0) {
err = btrfs_run_delayed_refs(trans, root,
(unsigned long)-1);
if (err) /* File system offline */
goto out;
}
cache = btrfs_lookup_first_block_group(root->fs_info, last);
while (cache) {
/*
* Really this shouldn't happen, but it could if we
* couldn't write the entire preallocated extent and
* splitting the extent resulted in a new block.
*/
if (cache->dirty) {
btrfs_put_block_group(cache);
goto again;
}
if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
break;
cache = next_block_group(root, cache);
}
if (!cache) {
if (last == 0)
break;
last = 0;
continue;
}
err = btrfs_write_out_cache(root, trans, cache, path);
/*
* If we didn't have an error then the cache state is still
* NEED_WRITE, so we can set it to WRITTEN.
*/
if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
cache->disk_cache_state = BTRFS_DC_WRITTEN;
last = cache->key.objectid + cache->key.offset;
btrfs_put_block_group(cache);
}
out:
btrfs_free_path(path);
return err;
}
int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
{
struct btrfs_block_group_cache *block_group;
int readonly = 0;
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
if (!block_group || block_group->ro)
readonly = 1;
if (block_group)
btrfs_put_block_group(block_group);
return readonly;
}
static int update_space_info(struct btrfs_fs_info *info, u64 flags,
u64 total_bytes, u64 bytes_used,
struct btrfs_space_info **space_info)
{
struct btrfs_space_info *found;
int i;
int factor;
if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10))
factor = 2;
else
factor = 1;
found = __find_space_info(info, flags);
if (found) {
spin_lock(&found->lock);
found->total_bytes += total_bytes;
found->disk_total += total_bytes * factor;
found->bytes_used += bytes_used;
found->disk_used += bytes_used * factor;
found->full = 0;
spin_unlock(&found->lock);
*space_info = found;
return 0;
}
found = kzalloc(sizeof(*found), GFP_NOFS);
if (!found)
return -ENOMEM;
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
INIT_LIST_HEAD(&found->block_groups[i]);
init_rwsem(&found->groups_sem);
spin_lock_init(&found->lock);
found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
found->total_bytes = total_bytes;
found->disk_total = total_bytes * factor;
found->bytes_used = bytes_used;
found->disk_used = bytes_used * factor;
found->bytes_pinned = 0;
found->bytes_reserved = 0;
found->bytes_readonly = 0;
found->bytes_may_use = 0;
found->full = 0;
found->force_alloc = CHUNK_ALLOC_NO_FORCE;
found->chunk_alloc = 0;
found->flush = 0;
init_waitqueue_head(&found->wait);
*space_info = found;
list_add_rcu(&found->list, &info->space_info);
if (flags & BTRFS_BLOCK_GROUP_DATA)
info->data_sinfo = found;
return 0;
}
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
u64 extra_flags = chunk_to_extended(flags) &
BTRFS_EXTENDED_PROFILE_MASK;
write_seqlock(&fs_info->profiles_lock);
if (flags & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits |= extra_flags;
write_sequnlock(&fs_info->profiles_lock);
}
/*
* returns target flags in extended format or 0 if restripe for this
* chunk_type is not in progress
*
* should be called with either volume_mutex or balance_lock held
*/
static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
{
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
u64 target = 0;
if (!bctl)
return 0;
if (flags & BTRFS_BLOCK_GROUP_DATA &&
bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
}
return target;
}
/*
* @flags: available profiles in extended format (see ctree.h)
*
* Returns reduced profile in chunk format. If profile changing is in
* progress (either running or paused) picks the target profile (if it's
* already available), otherwise falls back to plain reducing.
*/
u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
{
/*
* we add in the count of missing devices because we want
* to make sure that any RAID levels on a degraded FS
* continue to be honored.
*/
u64 num_devices = root->fs_info->fs_devices->rw_devices +
root->fs_info->fs_devices->missing_devices;
u64 target;
u64 tmp;
/*
* see if restripe for this chunk_type is in progress, if so
* try to reduce to the target profile
*/
spin_lock(&root->fs_info->balance_lock);
target = get_restripe_target(root->fs_info, flags);
if (target) {
/* pick target profile only if it's already available */
if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
spin_unlock(&root->fs_info->balance_lock);
return extended_to_chunk(target);
}
}
spin_unlock(&root->fs_info->balance_lock);
/* First, mask out the RAID levels which aren't possible */
if (num_devices == 1)
flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID5);
if (num_devices < 3)
flags &= ~BTRFS_BLOCK_GROUP_RAID6;
if (num_devices < 4)
flags &= ~BTRFS_BLOCK_GROUP_RAID10;
tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
flags &= ~tmp;
if (tmp & BTRFS_BLOCK_GROUP_RAID6)
tmp = BTRFS_BLOCK_GROUP_RAID6;
else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
tmp = BTRFS_BLOCK_GROUP_RAID5;
else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
tmp = BTRFS_BLOCK_GROUP_RAID10;
else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
tmp = BTRFS_BLOCK_GROUP_RAID1;
else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
tmp = BTRFS_BLOCK_GROUP_RAID0;
return extended_to_chunk(flags | tmp);
}
static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
{
unsigned seq;
do {
seq = read_seqbegin(&root->fs_info->profiles_lock);
if (flags & BTRFS_BLOCK_GROUP_DATA)
flags |= root->fs_info->avail_data_alloc_bits;
else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
flags |= root->fs_info->avail_system_alloc_bits;
else if (flags & BTRFS_BLOCK_GROUP_METADATA)
flags |= root->fs_info->avail_metadata_alloc_bits;
} while (read_seqretry(&root->fs_info->profiles_lock, seq));
return btrfs_reduce_alloc_profile(root, flags);
}
u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
{
u64 flags;
u64 ret;
if (data)
flags = BTRFS_BLOCK_GROUP_DATA;
else if (root == root->fs_info->chunk_root)
flags = BTRFS_BLOCK_GROUP_SYSTEM;
else
flags = BTRFS_BLOCK_GROUP_METADATA;
ret = get_alloc_profile(root, flags);
return ret;
}
/*
* This will check the space that the inode allocates from to make sure we have
* enough space for bytes.
*/
int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
{
struct btrfs_space_info *data_sinfo;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 used;
int ret = 0, committed = 0, alloc_chunk = 1;
/* make sure bytes are sectorsize aligned */
bytes = ALIGN(bytes, root->sectorsize);
if (root == root->fs_info->tree_root ||
BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
alloc_chunk = 0;
committed = 1;
}
data_sinfo = fs_info->data_sinfo;
if (!data_sinfo)
goto alloc;
again:
/* make sure we have enough space to handle the data first */
spin_lock(&data_sinfo->lock);
used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
data_sinfo->bytes_may_use;
if (used + bytes > data_sinfo->total_bytes) {
struct btrfs_trans_handle *trans;
/*
* if we don't have enough free bytes in this space then we need
* to alloc a new chunk.
*/
if (!data_sinfo->full && alloc_chunk) {
u64 alloc_target;
data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
spin_unlock(&data_sinfo->lock);
alloc:
alloc_target = btrfs_get_alloc_profile(root, 1);
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
alloc_target,
CHUNK_ALLOC_NO_FORCE);
btrfs_end_transaction(trans, root);
if (ret < 0) {
if (ret != -ENOSPC)
return ret;
else
goto commit_trans;
}
if (!data_sinfo)
data_sinfo = fs_info->data_sinfo;
goto again;
}
/*
* If we have less pinned bytes than we want to allocate then
* don't bother committing the transaction, it won't help us.
*/
if (data_sinfo->bytes_pinned < bytes)
committed = 1;
spin_unlock(&data_sinfo->lock);
/* commit the current transaction and try again */
commit_trans:
if (!committed &&
!atomic_read(&root->fs_info->open_ioctl_trans)) {
committed = 1;
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
ret = btrfs_commit_transaction(trans, root);
if (ret)
return ret;
goto again;
}
return -ENOSPC;
}
data_sinfo->bytes_may_use += bytes;
trace_btrfs_space_reservation(root->fs_info, "space_info",
data_sinfo->flags, bytes, 1);
spin_unlock(&data_sinfo->lock);
return 0;
}
/*
* Called if we need to clear a data reservation for this inode.
*/
void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_space_info *data_sinfo;
/* make sure bytes are sectorsize aligned */
bytes = ALIGN(bytes, root->sectorsize);
data_sinfo = root->fs_info->data_sinfo;
spin_lock(&data_sinfo->lock);
data_sinfo->bytes_may_use -= bytes;
trace_btrfs_space_reservation(root->fs_info, "space_info",
data_sinfo->flags, bytes, 0);
spin_unlock(&data_sinfo->lock);
}
static void force_metadata_allocation(struct btrfs_fs_info *info)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list) {
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
found->force_alloc = CHUNK_ALLOC_FORCE;
}
rcu_read_unlock();
}
static int should_alloc_chunk(struct btrfs_root *root,
struct btrfs_space_info *sinfo, int force)
{
struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
u64 thresh;
if (force == CHUNK_ALLOC_FORCE)
return 1;
/*
* We need to take into account the global rsv because for all intents
* and purposes it's used space. Don't worry about locking the
* global_rsv, it doesn't change except when the transaction commits.
*/
if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
num_allocated += global_rsv->size;
/*
* in limited mode, we want to have some free space up to
* about 1% of the FS size.
*/
if (force == CHUNK_ALLOC_LIMITED) {
thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
thresh = max_t(u64, 64 * 1024 * 1024,
div_factor_fine(thresh, 1));
if (num_bytes - num_allocated < thresh)
return 1;
}
if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
return 0;
return 1;
}
static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
{
u64 num_dev;
if (type & (BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID5 |
BTRFS_BLOCK_GROUP_RAID6))
num_dev = root->fs_info->fs_devices->rw_devices;
else if (type & BTRFS_BLOCK_GROUP_RAID1)
num_dev = 2;
else
num_dev = 1; /* DUP or single */
/* metadata for updaing devices and chunk tree */
return btrfs_calc_trans_metadata_size(root, num_dev + 1);
}
static void check_system_chunk(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 type)
{
struct btrfs_space_info *info;
u64 left;
u64 thresh;
info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
spin_lock(&info->lock);
left = info->total_bytes - info->bytes_used - info->bytes_pinned -
info->bytes_reserved - info->bytes_readonly;
spin_unlock(&info->lock);
thresh = get_system_chunk_thresh(root, type);
if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
left, thresh, type);
dump_space_info(info, 0, 0);
}
if (left < thresh) {
u64 flags;
flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
btrfs_alloc_chunk(trans, root, flags);
}
}
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root, u64 flags, int force)
{
struct btrfs_space_info *space_info;
struct btrfs_fs_info *fs_info = extent_root->fs_info;
int wait_for_alloc = 0;
int ret = 0;
/* Don't re-enter if we're already allocating a chunk */
if (trans->allocating_chunk)
return -ENOSPC;
space_info = __find_space_info(extent_root->fs_info, flags);
if (!space_info) {
ret = update_space_info(extent_root->fs_info, flags,
0, 0, &space_info);
BUG_ON(ret); /* -ENOMEM */
}
BUG_ON(!space_info); /* Logic error */
again:
spin_lock(&space_info->lock);
if (force < space_info->force_alloc)
force = space_info->force_alloc;
if (space_info->full) {
spin_unlock(&space_info->lock);
return 0;
}
if (!should_alloc_chunk(extent_root, space_info, force)) {
spin_unlock(&space_info->lock);
return 0;
} else if (space_info->chunk_alloc) {
wait_for_alloc = 1;
} else {
space_info->chunk_alloc = 1;
}
spin_unlock(&space_info->lock);
mutex_lock(&fs_info->chunk_mutex);
/*
* The chunk_mutex is held throughout the entirety of a chunk
* allocation, so once we've acquired the chunk_mutex we know that the
* other guy is done and we need to recheck and see if we should
* allocate.
*/
if (wait_for_alloc) {
mutex_unlock(&fs_info->chunk_mutex);
wait_for_alloc = 0;
goto again;
}
trans->allocating_chunk = true;
/*
* If we have mixed data/metadata chunks we want to make sure we keep
* allocating mixed chunks instead of individual chunks.
*/
if (btrfs_mixed_space_info(space_info))
flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
/*
* if we're doing a data chunk, go ahead and make sure that
* we keep a reasonable number of metadata chunks allocated in the
* FS as well.
*/
if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
fs_info->data_chunk_allocations++;
if (!(fs_info->data_chunk_allocations %
fs_info->metadata_ratio))
force_metadata_allocation(fs_info);
}
/*
* Check if we have enough space in SYSTEM chunk because we may need
* to update devices.
*/
check_system_chunk(trans, extent_root, flags);
ret = btrfs_alloc_chunk(trans, extent_root, flags);
trans->allocating_chunk = false;
spin_lock(&space_info->lock);
if (ret < 0 && ret != -ENOSPC)
goto out;
if (ret)
space_info->full = 1;
else
ret = 1;
space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
out:
space_info->chunk_alloc = 0;
spin_unlock(&space_info->lock);
mutex_unlock(&fs_info->chunk_mutex);
return ret;
}
static int can_overcommit(struct btrfs_root *root,
struct btrfs_space_info *space_info, u64 bytes,
enum btrfs_reserve_flush_enum flush)
{
struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
u64 profile = btrfs_get_alloc_profile(root, 0);
u64 rsv_size = 0;
u64 avail;
u64 used;
u64 to_add;
used = space_info->bytes_used + space_info->bytes_reserved +
space_info->bytes_pinned + space_info->bytes_readonly;
spin_lock(&global_rsv->lock);
rsv_size = global_rsv->size;
spin_unlock(&global_rsv->lock);
/*
* We only want to allow over committing if we have lots of actual space
* free, but if we don't have enough space to handle the global reserve
* space then we could end up having a real enospc problem when trying
* to allocate a chunk or some other such important allocation.
*/
rsv_size <<= 1;
if (used + rsv_size >= space_info->total_bytes)
return 0;
used += space_info->bytes_may_use;
spin_lock(&root->fs_info->free_chunk_lock);
avail = root->fs_info->free_chunk_space;
spin_unlock(&root->fs_info->free_chunk_lock);
/*
* If we have dup, raid1 or raid10 then only half of the free
* space is actually useable. For raid56, the space info used
* doesn't include the parity drive, so we don't have to
* change the math
*/
if (profile & (BTRFS_BLOCK_GROUP_DUP |
BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10))
avail >>= 1;
to_add = space_info->total_bytes;
/*
* If we aren't flushing all things, let us overcommit up to
* 1/2th of the space. If we can flush, don't let us overcommit
* too much, let it overcommit up to 1/8 of the space.
*/
if (flush == BTRFS_RESERVE_FLUSH_ALL)
to_add >>= 3;
else
to_add >>= 1;
/*
* Limit the overcommit to the amount of free space we could possibly
* allocate for chunks.
*/
to_add = min(avail, to_add);
if (used + bytes < space_info->total_bytes + to_add)
return 1;
return 0;
}
void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
unsigned long nr_pages)
{
struct super_block *sb = root->fs_info->sb;
int started;
/* If we can not start writeback, just sync all the delalloc file. */
started = try_to_writeback_inodes_sb_nr(sb, nr_pages,
WB_REASON_FS_FREE_SPACE);
if (!started) {
/*
* We needn't worry the filesystem going from r/w to r/o though
* we don't acquire ->s_umount mutex, because the filesystem
* should guarantee the delalloc inodes list be empty after
* the filesystem is readonly(all dirty pages are written to
* the disk).
*/
btrfs_start_delalloc_inodes(root, 0);
btrfs_wait_ordered_extents(root, 0);
}
}
/*
* shrink metadata reservation for delalloc
*/
static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
bool wait_ordered)
{
struct btrfs_block_rsv *block_rsv;
struct btrfs_space_info *space_info;
struct btrfs_trans_handle *trans;
u64 delalloc_bytes;
u64 max_reclaim;
long time_left;
unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
int loops = 0;
enum btrfs_reserve_flush_enum flush;
trans = (struct btrfs_trans_handle *)current->journal_info;
block_rsv = &root->fs_info->delalloc_block_rsv;
space_info = block_rsv->space_info;
smp_mb();
delalloc_bytes = percpu_counter_sum_positive(
&root->fs_info->delalloc_bytes);
if (delalloc_bytes == 0) {
if (trans)
return;
btrfs_wait_ordered_extents(root, 0);
return;
}
while (delalloc_bytes && loops < 3) {
max_reclaim = min(delalloc_bytes, to_reclaim);
nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
btrfs_writeback_inodes_sb_nr(root, nr_pages);
/*
* We need to wait for the async pages to actually start before
* we do anything.
*/
wait_event(root->fs_info->async_submit_wait,
!atomic_read(&root->fs_info->async_delalloc_pages));
if (!trans)
flush = BTRFS_RESERVE_FLUSH_ALL;
else
flush = BTRFS_RESERVE_NO_FLUSH;
spin_lock(&space_info->lock);
if (can_overcommit(root, space_info, orig, flush)) {
spin_unlock(&space_info->lock);
break;
}
spin_unlock(&space_info->lock);
loops++;
if (wait_ordered && !trans) {
btrfs_wait_ordered_extents(root, 0);
} else {
time_left = schedule_timeout_killable(1);
if (time_left)
break;
}
smp_mb();
delalloc_bytes = percpu_counter_sum_positive(
&root->fs_info->delalloc_bytes);
}
}
/**
* maybe_commit_transaction - possibly commit the transaction if its ok to
* @root - the root we're allocating for
* @bytes - the number of bytes we want to reserve
* @force - force the commit
*
* This will check to make sure that committing the transaction will actually
* get us somewhere and then commit the transaction if it does. Otherwise it
* will return -ENOSPC.
*/
static int may_commit_transaction(struct btrfs_root *root,
struct btrfs_space_info *space_info,
u64 bytes, int force)
{
struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
struct btrfs_trans_handle *trans;
trans = (struct btrfs_trans_handle *)current->journal_info;
if (trans)
return -EAGAIN;
if (force)
goto commit;
/* See if there is enough pinned space to make this reservation */
spin_lock(&space_info->lock);
if (space_info->bytes_pinned >= bytes) {
spin_unlock(&space_info->lock);
goto commit;
}
spin_unlock(&space_info->lock);
/*
* See if there is some space in the delayed insertion reservation for
* this reservation.
*/
if (space_info != delayed_rsv->space_info)
return -ENOSPC;
spin_lock(&space_info->lock);
spin_lock(&delayed_rsv->lock);
if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
spin_unlock(&delayed_rsv->lock);
spin_unlock(&space_info->lock);
return -ENOSPC;
}
spin_unlock(&delayed_rsv->lock);
spin_unlock(&space_info->lock);
commit:
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return -ENOSPC;
return btrfs_commit_transaction(trans, root);
}
enum flush_state {
FLUSH_DELAYED_ITEMS_NR = 1,
FLUSH_DELAYED_ITEMS = 2,
FLUSH_DELALLOC = 3,
FLUSH_DELALLOC_WAIT = 4,
ALLOC_CHUNK = 5,
COMMIT_TRANS = 6,
};
static int flush_space(struct btrfs_root *root,
struct btrfs_space_info *space_info, u64 num_bytes,
u64 orig_bytes, int state)
{
struct btrfs_trans_handle *trans;
int nr;
int ret = 0;
switch (state) {
case FLUSH_DELAYED_ITEMS_NR:
case FLUSH_DELAYED_ITEMS:
if (state == FLUSH_DELAYED_ITEMS_NR) {
u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
nr = (int)div64_u64(num_bytes, bytes);
if (!nr)
nr = 1;
nr *= 2;
} else {
nr = -1;
}
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
ret = btrfs_run_delayed_items_nr(trans, root, nr);
btrfs_end_transaction(trans, root);
break;
case FLUSH_DELALLOC:
case FLUSH_DELALLOC_WAIT:
shrink_delalloc(root, num_bytes, orig_bytes,
state == FLUSH_DELALLOC_WAIT);
break;
case ALLOC_CHUNK:
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
btrfs_get_alloc_profile(root, 0),
CHUNK_ALLOC_NO_FORCE);
btrfs_end_transaction(trans, root);
if (ret == -ENOSPC)
ret = 0;
break;
case COMMIT_TRANS:
ret = may_commit_transaction(root, space_info, orig_bytes, 0);
break;
default:
ret = -ENOSPC;
break;
}
return ret;
}
/**
* reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
* @root - the root we're allocating for
* @block_rsv - the block_rsv we're allocating for
* @orig_bytes - the number of bytes we want
* @flush - whether or not we can flush to make our reservation
*
* This will reserve orgi_bytes number of bytes from the space info associated
* with the block_rsv. If there is not enough space it will make an attempt to
* flush out space to make room. It will do this by flushing delalloc if
* possible or committing the transaction. If flush is 0 then no attempts to
* regain reservations will be made and this will fail if there is not enough
* space already.
*/
static int reserve_metadata_bytes(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
u64 orig_bytes,
enum btrfs_reserve_flush_enum flush)
{
struct btrfs_space_info *space_info = block_rsv->space_info;
u64 used;
u64 num_bytes = orig_bytes;
int flush_state = FLUSH_DELAYED_ITEMS_NR;
int ret = 0;
bool flushing = false;
again:
ret = 0;
spin_lock(&space_info->lock);
/*
* We only want to wait if somebody other than us is flushing and we
* are actually allowed to flush all things.
*/
while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
space_info->flush) {
spin_unlock(&space_info->lock);
/*
* If we have a trans handle we can't wait because the flusher
* may have to commit the transaction, which would mean we would
* deadlock since we are waiting for the flusher to finish, but
* hold the current transaction open.
*/
if (current->journal_info)
return -EAGAIN;
ret = wait_event_killable(space_info->wait, !space_info->flush);
/* Must have been killed, return */
if (ret)
return -EINTR;
spin_lock(&space_info->lock);
}
ret = -ENOSPC;
used = space_info->bytes_used + space_info->bytes_reserved +
space_info->bytes_pinned + space_info->bytes_readonly +
space_info->bytes_may_use;
/*
* The idea here is that we've not already over-reserved the block group
* then we can go ahead and save our reservation first and then start
* flushing if we need to. Otherwise if we've already overcommitted
* lets start flushing stuff first and then come back and try to make
* our reservation.
*/
if (used <= space_info->total_bytes) {
if (used + orig_bytes <= space_info->total_bytes) {
space_info->bytes_may_use += orig_bytes;
trace_btrfs_space_reservation(root->fs_info,
"space_info", space_info->flags, orig_bytes, 1);
ret = 0;
} else {
/*
* Ok set num_bytes to orig_bytes since we aren't
* overocmmitted, this way we only try and reclaim what
* we need.
*/
num_bytes = orig_bytes;
}
} else {
/*
* Ok we're over committed, set num_bytes to the overcommitted
* amount plus the amount of bytes that we need for this
* reservation.
*/
num_bytes = used - space_info->total_bytes +
(orig_bytes * 2);
}
if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
space_info->bytes_may_use += orig_bytes;
trace_btrfs_space_reservation(root->fs_info, "space_info",
space_info->flags, orig_bytes,
1);
ret = 0;
}
/*
* Couldn't make our reservation, save our place so while we're trying
* to reclaim space we can actually use it instead of somebody else
* stealing it from us.
*
* We make the other tasks wait for the flush only when we can flush
* all things.
*/
if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
flushing = true;
space_info->flush = 1;
}
spin_unlock(&space_info->lock);
if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
goto out;
ret = flush_space(root, space_info, num_bytes, orig_bytes,
flush_state);
flush_state++;
/*
* If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
* would happen. So skip delalloc flush.
*/
if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
(flush_state == FLUSH_DELALLOC ||
flush_state == FLUSH_DELALLOC_WAIT))
flush_state = ALLOC_CHUNK;
if (!ret)
goto again;
else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
flush_state < COMMIT_TRANS)
goto again;
else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
flush_state <= COMMIT_TRANS)
goto again;
out:
if (ret == -ENOSPC &&
unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
struct btrfs_block_rsv *global_rsv =
&root->fs_info->global_block_rsv;
if (block_rsv != global_rsv &&
!block_rsv_use_bytes(global_rsv, orig_bytes))
ret = 0;
}
if (flushing) {
spin_lock(&space_info->lock);
space_info->flush = 0;
wake_up_all(&space_info->wait);
spin_unlock(&space_info->lock);
}
return ret;
}
static struct btrfs_block_rsv *get_block_rsv(
const struct btrfs_trans_handle *trans,
const struct btrfs_root *root)
{
struct btrfs_block_rsv *block_rsv = NULL;
if (root->ref_cows)
block_rsv = trans->block_rsv;
if (root == root->fs_info->csum_root && trans->adding_csums)
block_rsv = trans->block_rsv;
if (!block_rsv)
block_rsv = root->block_rsv;
if (!block_rsv)
block_rsv = &root->fs_info->empty_block_rsv;
return block_rsv;
}
static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
u64 num_bytes)
{
int ret = -ENOSPC;
spin_lock(&block_rsv->lock);
if (block_rsv->reserved >= num_bytes) {
block_rsv->reserved -= num_bytes;
if (block_rsv->reserved < block_rsv->size)
block_rsv->full = 0;
ret = 0;
}
spin_unlock(&block_rsv->lock);
return ret;
}
static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
u64 num_bytes, int update_size)
{
spin_lock(&block_rsv->lock);
block_rsv->reserved += num_bytes;
if (update_size)
block_rsv->size += num_bytes;
else if (block_rsv->reserved >= block_rsv->size)
block_rsv->full = 1;
spin_unlock(&block_rsv->lock);
}
static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
struct btrfs_block_rsv *block_rsv,
struct btrfs_block_rsv *dest, u64 num_bytes)
{
struct btrfs_space_info *space_info = block_rsv->space_info;
spin_lock(&block_rsv->lock);
if (num_bytes == (u64)-1)
num_bytes = block_rsv->size;
block_rsv->size -= num_bytes;
if (block_rsv->reserved >= block_rsv->size) {
num_bytes = block_rsv->reserved - block_rsv->size;
block_rsv->reserved = block_rsv->size;
block_rsv->full = 1;
} else {
num_bytes = 0;
}
spin_unlock(&block_rsv->lock);
if (num_bytes > 0) {
if (dest) {
spin_lock(&dest->lock);
if (!dest->full) {
u64 bytes_to_add;
bytes_to_add = dest->size - dest->reserved;
bytes_to_add = min(num_bytes, bytes_to_add);
dest->reserved += bytes_to_add;
if (dest->reserved >= dest->size)
dest->full = 1;
num_bytes -= bytes_to_add;
}
spin_unlock(&dest->lock);
}
if (num_bytes) {
spin_lock(&space_info->lock);
space_info->bytes_may_use -= num_bytes;
trace_btrfs_space_reservation(fs_info, "space_info",
space_info->flags, num_bytes, 0);
space_info->reservation_progress++;
spin_unlock(&space_info->lock);
}
}
}
static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
struct btrfs_block_rsv *dst, u64 num_bytes)
{
int ret;
ret = block_rsv_use_bytes(src, num_bytes);
if (ret)
return ret;
block_rsv_add_bytes(dst, num_bytes, 1);
return 0;
}
void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
{
memset(rsv, 0, sizeof(*rsv));
spin_lock_init(&rsv->lock);
rsv->type = type;
}
struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
unsigned short type)
{
struct btrfs_block_rsv *block_rsv;
struct btrfs_fs_info *fs_info = root->fs_info;
block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
if (!block_rsv)
return NULL;
btrfs_init_block_rsv(block_rsv, type);
block_rsv->space_info = __find_space_info(fs_info,
BTRFS_BLOCK_GROUP_METADATA);
return block_rsv;
}
void btrfs_free_block_rsv(struct btrfs_root *root,
struct btrfs_block_rsv *rsv)
{
if (!rsv)
return;
btrfs_block_rsv_release(root, rsv, (u64)-1);
kfree(rsv);
}
int btrfs_block_rsv_add(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv, u64 num_bytes,
enum btrfs_reserve_flush_enum flush)
{
int ret;
if (num_bytes == 0)
return 0;
ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
if (!ret) {
block_rsv_add_bytes(block_rsv, num_bytes, 1);
return 0;
}
return ret;
}
int btrfs_block_rsv_check(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv, int min_factor)
{
u64 num_bytes = 0;
int ret = -ENOSPC;
if (!block_rsv)
return 0;
spin_lock(&block_rsv->lock);
num_bytes = div_factor(block_rsv->size, min_factor);
if (block_rsv->reserved >= num_bytes)
ret = 0;
spin_unlock(&block_rsv->lock);
return ret;
}
int btrfs_block_rsv_refill(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv, u64 min_reserved,
enum btrfs_reserve_flush_enum flush)
{
u64 num_bytes = 0;
int ret = -ENOSPC;
if (!block_rsv)
return 0;
spin_lock(&block_rsv->lock);
num_bytes = min_reserved;
if (block_rsv->reserved >= num_bytes)
ret = 0;
else
num_bytes -= block_rsv->reserved;
spin_unlock(&block_rsv->lock);
if (!ret)
return 0;
ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
if (!ret) {
block_rsv_add_bytes(block_rsv, num_bytes, 0);
return 0;
}
return ret;
}
int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
struct btrfs_block_rsv *dst_rsv,
u64 num_bytes)
{
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
}
void btrfs_block_rsv_release(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
u64 num_bytes)
{
struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
if (global_rsv->full || global_rsv == block_rsv ||
block_rsv->space_info != global_rsv->space_info)
global_rsv = NULL;
block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
num_bytes);
}
/*
* helper to calculate size of global block reservation.
* the desired value is sum of space used by extent tree,
* checksum tree and root tree
*/
static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
{
struct btrfs_space_info *sinfo;
u64 num_bytes;
u64 meta_used;
u64 data_used;
int csum_size = btrfs_super_csum_size(fs_info->super_copy);
sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
spin_lock(&sinfo->lock);
data_used = sinfo->bytes_used;
spin_unlock(&sinfo->lock);
sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
spin_lock(&sinfo->lock);
if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
data_used = 0;
meta_used = sinfo->bytes_used;
spin_unlock(&sinfo->lock);
num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
csum_size * 2;
num_bytes += div64_u64(data_used + meta_used, 50);
if (num_bytes * 3 > meta_used)
num_bytes = div64_u64(meta_used, 3);
return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
}
static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
{
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
struct btrfs_space_info *sinfo = block_rsv->space_info;
u64 num_bytes;
num_bytes = calc_global_metadata_size(fs_info);
spin_lock(&sinfo->lock);
spin_lock(&block_rsv->lock);
block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
sinfo->bytes_reserved + sinfo->bytes_readonly +
sinfo->bytes_may_use;
if (sinfo->total_bytes > num_bytes) {
num_bytes = sinfo->total_bytes - num_bytes;
block_rsv->reserved += num_bytes;
sinfo->bytes_may_use += num_bytes;
trace_btrfs_space_reservation(fs_info, "space_info",
sinfo->flags, num_bytes, 1);
}
if (block_rsv->reserved >= block_rsv->size) {
num_bytes = block_rsv->reserved - block_rsv->size;
sinfo->bytes_may_use -= num_bytes;
trace_btrfs_space_reservation(fs_info, "space_info",
sinfo->flags, num_bytes, 0);
sinfo->reservation_progress++;
block_rsv->reserved = block_rsv->size;
block_rsv->full = 1;
}
spin_unlock(&block_rsv->lock);
spin_unlock(&sinfo->lock);
}
static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
{
struct btrfs_space_info *space_info;
space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
fs_info->chunk_block_rsv.space_info = space_info;
space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
fs_info->global_block_rsv.space_info = space_info;
fs_info->delalloc_block_rsv.space_info = space_info;
fs_info->trans_block_rsv.space_info = space_info;
fs_info->empty_block_rsv.space_info = space_info;
fs_info->delayed_block_rsv.space_info = space_info;
fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
update_global_block_rsv(fs_info);
}
static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
{
block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
(u64)-1);
WARN_ON(fs_info->delalloc_block_rsv.size > 0);
WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
WARN_ON(fs_info->trans_block_rsv.size > 0);
WARN_ON(fs_info->trans_block_rsv.reserved > 0);
WARN_ON(fs_info->chunk_block_rsv.size > 0);
WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
WARN_ON(fs_info->delayed_block_rsv.size > 0);
WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
}
void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
if (!trans->block_rsv)
return;
if (!trans->bytes_reserved)
return;
trace_btrfs_space_reservation(root->fs_info, "transaction",
trans->transid, trans->bytes_reserved, 0);
btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
trans->bytes_reserved = 0;
}
/* Can only return 0 or -ENOSPC */
int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
/*
* We need to hold space in order to delete our orphan item once we've
* added it, so this takes the reservation so we can release it later
* when we are truly done with the orphan item.
*/
u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
trace_btrfs_space_reservation(root->fs_info, "orphan",
btrfs_ino(inode), num_bytes, 1);
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
}
void btrfs_orphan_release_metadata(struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
trace_btrfs_space_reservation(root->fs_info, "orphan",
btrfs_ino(inode), num_bytes, 0);
btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
}
/*
* btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
* root: the root of the parent directory
* rsv: block reservation
* items: the number of items that we need do reservation
* qgroup_reserved: used to return the reserved size in qgroup
*
* This function is used to reserve the space for snapshot/subvolume
* creation and deletion. Those operations are different with the
* common file/directory operations, they change two fs/file trees
* and root tree, the number of items that the qgroup reserves is
* different with the free space reservation. So we can not use
* the space reseravtion mechanism in start_transaction().
*/
int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
struct btrfs_block_rsv *rsv,
int items,
u64 *qgroup_reserved)
{
u64 num_bytes;
int ret;
if (root->fs_info->quota_enabled) {
/* One for parent inode, two for dir entries */
num_bytes = 3 * root->leafsize;
ret = btrfs_qgroup_reserve(root, num_bytes);
if (ret)
return ret;
} else {
num_bytes = 0;
}
*qgroup_reserved = num_bytes;
num_bytes = btrfs_calc_trans_metadata_size(root, items);
rsv->space_info = __find_space_info(root->fs_info,
BTRFS_BLOCK_GROUP_METADATA);
ret = btrfs_block_rsv_add(root, rsv, num_bytes,
BTRFS_RESERVE_FLUSH_ALL);
if (ret) {
if (*qgroup_reserved)
btrfs_qgroup_free(root, *qgroup_reserved);
}
return ret;
}
void btrfs_subvolume_release_metadata(struct btrfs_root *root,
struct btrfs_block_rsv *rsv,
u64 qgroup_reserved)
{
btrfs_block_rsv_release(root, rsv, (u64)-1);
if (qgroup_reserved)
btrfs_qgroup_free(root, qgroup_reserved);
}
/**
* drop_outstanding_extent - drop an outstanding extent
* @inode: the inode we're dropping the extent for
*
* This is called when we are freeing up an outstanding extent, either called
* after an error or after an extent is written. This will return the number of
* reserved extents that need to be freed. This must be called with
* BTRFS_I(inode)->lock held.
*/
static unsigned drop_outstanding_extent(struct inode *inode)
{
unsigned drop_inode_space = 0;
unsigned dropped_extents = 0;
BUG_ON(!BTRFS_I(inode)->outstanding_extents);
BTRFS_I(inode)->outstanding_extents--;
if (BTRFS_I(inode)->outstanding_extents == 0 &&
test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
&BTRFS_I(inode)->runtime_flags))
drop_inode_space = 1;
/*
* If we have more or the same amount of outsanding extents than we have
* reserved then we need to leave the reserved extents count alone.
*/
if (BTRFS_I(inode)->outstanding_extents >=
BTRFS_I(inode)->reserved_extents)
return drop_inode_space;
dropped_extents = BTRFS_I(inode)->reserved_extents -
BTRFS_I(inode)->outstanding_extents;
BTRFS_I(inode)->reserved_extents -= dropped_extents;
return dropped_extents + drop_inode_space;
}
/**
* calc_csum_metadata_size - return the amount of metada space that must be
* reserved/free'd for the given bytes.
* @inode: the inode we're manipulating
* @num_bytes: the number of bytes in question
* @reserve: 1 if we are reserving space, 0 if we are freeing space
*
* This adjusts the number of csum_bytes in the inode and then returns the
* correct amount of metadata that must either be reserved or freed. We
* calculate how many checksums we can fit into one leaf and then divide the
* number of bytes that will need to be checksumed by this value to figure out
* how many checksums will be required. If we are adding bytes then the number
* may go up and we will return the number of additional bytes that must be
* reserved. If it is going down we will return the number of bytes that must
* be freed.
*
* This must be called with BTRFS_I(inode)->lock held.
*/
static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
int reserve)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 csum_size;
int num_csums_per_leaf;
int num_csums;
int old_csums;
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
BTRFS_I(inode)->csum_bytes == 0)
return 0;
old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
if (reserve)
BTRFS_I(inode)->csum_bytes += num_bytes;
else
BTRFS_I(inode)->csum_bytes -= num_bytes;
csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
num_csums_per_leaf = (int)div64_u64(csum_size,
sizeof(struct btrfs_csum_item) +
sizeof(struct btrfs_disk_key));
num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
num_csums = num_csums + num_csums_per_leaf - 1;
num_csums = num_csums / num_csums_per_leaf;
old_csums = old_csums + num_csums_per_leaf - 1;
old_csums = old_csums / num_csums_per_leaf;
/* No change, no need to reserve more */
if (old_csums == num_csums)
return 0;
if (reserve)
return btrfs_calc_trans_metadata_size(root,
num_csums - old_csums);
return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
}
int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
u64 to_reserve = 0;
u64 csum_bytes;
unsigned nr_extents = 0;
int extra_reserve = 0;
enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
int ret = 0;
bool delalloc_lock = true;
u64 to_free = 0;
unsigned dropped;
/* If we are a free space inode we need to not flush since we will be in
* the middle of a transaction commit. We also don't need the delalloc
* mutex since we won't race with anybody. We need this mostly to make
* lockdep shut its filthy mouth.
*/
if (btrfs_is_free_space_inode(inode)) {
flush = BTRFS_RESERVE_NO_FLUSH;
delalloc_lock = false;
}
if (flush != BTRFS_RESERVE_NO_FLUSH &&
btrfs_transaction_in_commit(root->fs_info))
schedule_timeout(1);
if (delalloc_lock)
mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
num_bytes = ALIGN(num_bytes, root->sectorsize);
spin_lock(&BTRFS_I(inode)->lock);
BTRFS_I(inode)->outstanding_extents++;
if (BTRFS_I(inode)->outstanding_extents >
BTRFS_I(inode)->reserved_extents)
nr_extents = BTRFS_I(inode)->outstanding_extents -
BTRFS_I(inode)->reserved_extents;
/*
* Add an item to reserve for updating the inode when we complete the
* delalloc io.
*/
if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
&BTRFS_I(inode)->runtime_flags)) {
nr_extents++;
extra_reserve = 1;
}
to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
csum_bytes = BTRFS_I(inode)->csum_bytes;
spin_unlock(&BTRFS_I(inode)->lock);
if (root->fs_info->quota_enabled) {
ret = btrfs_qgroup_reserve(root, num_bytes +
nr_extents * root->leafsize);
if (ret)
goto out_fail;
}
ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
if (unlikely(ret)) {
if (root->fs_info->quota_enabled)
btrfs_qgroup_free(root, num_bytes +
nr_extents * root->leafsize);
goto out_fail;
}
spin_lock(&BTRFS_I(inode)->lock);
if (extra_reserve) {
set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
&BTRFS_I(inode)->runtime_flags);
nr_extents--;
}
BTRFS_I(inode)->reserved_extents += nr_extents;
spin_unlock(&BTRFS_I(inode)->lock);
if (delalloc_lock)
mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
if (to_reserve)
trace_btrfs_space_reservation(root->fs_info,"delalloc",
btrfs_ino(inode), to_reserve, 1);
block_rsv_add_bytes(block_rsv, to_reserve, 1);
return 0;
out_fail:
spin_lock(&BTRFS_I(inode)->lock);
dropped = drop_outstanding_extent(inode);
/*
* If the inodes csum_bytes is the same as the original
* csum_bytes then we know we haven't raced with any free()ers
* so we can just reduce our inodes csum bytes and carry on.
*/
if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
calc_csum_metadata_size(inode, num_bytes, 0);
} else {
u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
u64 bytes;
/*
* This is tricky, but first we need to figure out how much we
* free'd from any free-ers that occured during this
* reservation, so we reset ->csum_bytes to the csum_bytes
* before we dropped our lock, and then call the free for the
* number of bytes that were freed while we were trying our
* reservation.
*/
bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
BTRFS_I(inode)->csum_bytes = csum_bytes;
to_free = calc_csum_metadata_size(inode, bytes, 0);
/*
* Now we need to see how much we would have freed had we not
* been making this reservation and our ->csum_bytes were not
* artificially inflated.
*/
BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
bytes = csum_bytes - orig_csum_bytes;
bytes = calc_csum_metadata_size(inode, bytes, 0);
/*
* Now reset ->csum_bytes to what it should be. If bytes is
* more than to_free then we would have free'd more space had we
* not had an artificially high ->csum_bytes, so we need to free
* the remainder. If bytes is the same or less then we don't
* need to do anything, the other free-ers did the correct
* thing.
*/
BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
if (bytes > to_free)
to_free = bytes - to_free;
else
to_free = 0;
}
spin_unlock(&BTRFS_I(inode)->lock);
if (dropped)
to_free += btrfs_calc_trans_metadata_size(root, dropped);
if (to_free) {
btrfs_block_rsv_release(root, block_rsv, to_free);
trace_btrfs_space_reservation(root->fs_info, "delalloc",
btrfs_ino(inode), to_free, 0);
}
if (delalloc_lock)
mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
return ret;
}
/**
* btrfs_delalloc_release_metadata - release a metadata reservation for an inode
* @inode: the inode to release the reservation for
* @num_bytes: the number of bytes we're releasing
*
* This will release the metadata reservation for an inode. This can be called
* once we complete IO for a given set of bytes to release their metadata
* reservations.
*/
void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 to_free = 0;
unsigned dropped;
num_bytes = ALIGN(num_bytes, root->sectorsize);
spin_lock(&BTRFS_I(inode)->lock);
dropped = drop_outstanding_extent(inode);
if (num_bytes)
to_free = calc_csum_metadata_size(inode, num_bytes, 0);
spin_unlock(&BTRFS_I(inode)->lock);
if (dropped > 0)
to_free += btrfs_calc_trans_metadata_size(root, dropped);
trace_btrfs_space_reservation(root->fs_info, "delalloc",
btrfs_ino(inode), to_free, 0);
if (root->fs_info->quota_enabled) {
btrfs_qgroup_free(root, num_bytes +
dropped * root->leafsize);
}
btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
to_free);
}
/**
* btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
* @inode: inode we're writing to
* @num_bytes: the number of bytes we want to allocate
*
* This will do the following things
*
* o reserve space in the data space info for num_bytes
* o reserve space in the metadata space info based on number of outstanding
* extents and how much csums will be needed
* o add to the inodes ->delalloc_bytes
* o add it to the fs_info's delalloc inodes list.
*
* This will return 0 for success and -ENOSPC if there is no space left.
*/
int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
{
int ret;
ret = btrfs_check_data_free_space(inode, num_bytes);
if (ret)
return ret;
ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
if (ret) {
btrfs_free_reserved_data_space(inode, num_bytes);
return ret;
}
return 0;
}
/**
* btrfs_delalloc_release_space - release data and metadata space for delalloc
* @inode: inode we're releasing space for
* @num_bytes: the number of bytes we want to free up
*
* This must be matched with a call to btrfs_delalloc_reserve_space. This is
* called in the case that we don't need the metadata AND data reservations
* anymore. So if there is an error or we insert an inline extent.
*
* This function will release the metadata space that was not used and will
* decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
* list if there are no delalloc bytes left.
*/
void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
{
btrfs_delalloc_release_metadata(inode, num_bytes);
btrfs_free_reserved_data_space(inode, num_bytes);
}
static int update_block_group(struct btrfs_root *root,
u64 bytenr, u64 num_bytes, int alloc)
{
struct btrfs_block_group_cache *cache = NULL;
struct btrfs_fs_info *info = root->fs_info;
u64 total = num_bytes;
u64 old_val;
u64 byte_in_group;
int factor;
/* block accounting for super block */
spin_lock(&info->delalloc_lock);
old_val = btrfs_super_bytes_used(info->super_copy);
if (alloc)
old_val += num_bytes;
else
old_val -= num_bytes;
btrfs_set_super_bytes_used(info->super_copy, old_val);
spin_unlock(&info->delalloc_lock);
while (total) {
cache = btrfs_lookup_block_group(info, bytenr);
if (!cache)
return -ENOENT;
if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10))
factor = 2;
else
factor = 1;
/*
* If this block group has free space cache written out, we
* need to make sure to load it if we are removing space. This
* is because we need the unpinning stage to actually add the
* space back to the block group, otherwise we will leak space.
*/
if (!alloc && cache->cached == BTRFS_CACHE_NO)
cache_block_group(cache, 1);
byte_in_group = bytenr - cache->key.objectid;
WARN_ON(byte_in_group > cache->key.offset);
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
if (btrfs_test_opt(root, SPACE_CACHE) &&
cache->disk_cache_state < BTRFS_DC_CLEAR)
cache->disk_cache_state = BTRFS_DC_CLEAR;
cache->dirty = 1;
old_val = btrfs_block_group_used(&cache->item);
num_bytes = min(total, cache->key.offset - byte_in_group);
if (alloc) {
old_val += num_bytes;
btrfs_set_block_group_used(&cache->item, old_val);
cache->reserved -= num_bytes;
cache->space_info->bytes_reserved -= num_bytes;
cache->space_info->bytes_used += num_bytes;
cache->space_info->disk_used += num_bytes * factor;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
} else {
old_val -= num_bytes;
btrfs_set_block_group_used(&cache->item, old_val);
cache->pinned += num_bytes;
cache->space_info->bytes_pinned += num_bytes;
cache->space_info->bytes_used -= num_bytes;
cache->space_info->disk_used -= num_bytes * factor;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
set_extent_dirty(info->pinned_extents,
bytenr, bytenr + num_bytes - 1,
GFP_NOFS | __GFP_NOFAIL);
}
btrfs_put_block_group(cache);
total -= num_bytes;
bytenr += num_bytes;
}
return 0;
}
static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
{
struct btrfs_block_group_cache *cache;
u64 bytenr;
spin_lock(&root->fs_info->block_group_cache_lock);
bytenr = root->fs_info->first_logical_byte;
spin_unlock(&root->fs_info->block_group_cache_lock);
if (bytenr < (u64)-1)
return bytenr;
cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
if (!cache)
return 0;
bytenr = cache->key.objectid;
btrfs_put_block_group(cache);
return bytenr;
}
static int pin_down_extent(struct btrfs_root *root,
struct btrfs_block_group_cache *cache,
u64 bytenr, u64 num_bytes, int reserved)
{
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
cache->pinned += num_bytes;
cache->space_info->bytes_pinned += num_bytes;
if (reserved) {
cache->reserved -= num_bytes;
cache->space_info->bytes_reserved -= num_bytes;
}
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
set_extent_dirty(root->fs_info->pinned_extents, bytenr,
bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
return 0;
}
/*
* this function must be called within transaction
*/
int btrfs_pin_extent(struct btrfs_root *root,
u64 bytenr, u64 num_bytes, int reserved)
{
struct btrfs_block_group_cache *cache;
cache = btrfs_lookup_block_group(root->fs_info, bytenr);
BUG_ON(!cache); /* Logic error */
pin_down_extent(root, cache, bytenr, num_bytes, reserved);
btrfs_put_block_group(cache);
return 0;
}
/*
* this function must be called within transaction
*/
int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
u64 bytenr, u64 num_bytes)
{
struct btrfs_block_group_cache *cache;
cache = btrfs_lookup_block_group(root->fs_info, bytenr);
BUG_ON(!cache); /* Logic error */
/*
* pull in the free space cache (if any) so that our pin
* removes the free space from the cache. We have load_only set
* to one because the slow code to read in the free extents does check
* the pinned extents.
*/
cache_block_group(cache, 1);
pin_down_extent(root, cache, bytenr, num_bytes, 0);
/* remove us from the free space cache (if we're there at all) */
btrfs_remove_free_space(cache, bytenr, num_bytes);
btrfs_put_block_group(cache);
return 0;
}
/**
* btrfs_update_reserved_bytes - update the block_group and space info counters
* @cache: The cache we are manipulating
* @num_bytes: The number of bytes in question
* @reserve: One of the reservation enums
*
* This is called by the allocator when it reserves space, or by somebody who is
* freeing space that was never actually used on disk. For example if you
* reserve some space for a new leaf in transaction A and before transaction A
* commits you free that leaf, you call this with reserve set to 0 in order to
* clear the reservation.
*
* Metadata reservations should be called with RESERVE_ALLOC so we do the proper
* ENOSPC accounting. For data we handle the reservation through clearing the
* delalloc bits in the io_tree. We have to do this since we could end up
* allocating less disk space for the amount of data we have reserved in the
* case of compression.
*
* If this is a reservation and the block group has become read only we cannot
* make the reservation and return -EAGAIN, otherwise this function always
* succeeds.
*/
static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
u64 num_bytes, int reserve)
{
struct btrfs_space_info *space_info = cache->space_info;
int ret = 0;
spin_lock(&space_info->lock);
spin_lock(&cache->lock);
if (reserve != RESERVE_FREE) {
if (cache->ro) {
ret = -EAGAIN;
} else {
cache->reserved += num_bytes;
space_info->bytes_reserved += num_bytes;
if (reserve == RESERVE_ALLOC) {
trace_btrfs_space_reservation(cache->fs_info,
"space_info", space_info->flags,
num_bytes, 0);
space_info->bytes_may_use -= num_bytes;
}
}
} else {
if (cache->ro)
space_info->bytes_readonly += num_bytes;
cache->reserved -= num_bytes;
space_info->bytes_reserved -= num_bytes;
space_info->reservation_progress++;
}
spin_unlock(&cache->lock);
spin_unlock(&space_info->lock);
return ret;
}
void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_caching_control *next;
struct btrfs_caching_control *caching_ctl;
struct btrfs_block_group_cache *cache;
down_write(&fs_info->extent_commit_sem);
list_for_each_entry_safe(caching_ctl, next,
&fs_info->caching_block_groups, list) {
cache = caching_ctl->block_group;
if (block_group_cache_done(cache)) {
cache->last_byte_to_unpin = (u64)-1;
list_del_init(&caching_ctl->list);
put_caching_control(caching_ctl);
} else {
cache->last_byte_to_unpin = caching_ctl->progress;
}
}
if (fs_info->pinned_extents == &fs_info->freed_extents[0])
fs_info->pinned_extents = &fs_info->freed_extents[1];
else
fs_info->pinned_extents = &fs_info->freed_extents[0];
up_write(&fs_info->extent_commit_sem);
update_global_block_rsv(fs_info);
}
static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_block_group_cache *cache = NULL;
struct btrfs_space_info *space_info;
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
u64 len;
bool readonly;
while (start <= end) {
readonly = false;
if (!cache ||
start >= cache->key.objectid + cache->key.offset) {
if (cache)
btrfs_put_block_group(cache);
cache = btrfs_lookup_block_group(fs_info, start);
BUG_ON(!cache); /* Logic error */
}
len = cache->key.objectid + cache->key.offset - start;
len = min(len, end + 1 - start);
if (start < cache->last_byte_to_unpin) {
len = min(len, cache->last_byte_to_unpin - start);
btrfs_add_free_space(cache, start, len);
}
start += len;
space_info = cache->space_info;
spin_lock(&space_info->lock);
spin_lock(&cache->lock);
cache->pinned -= len;
space_info->bytes_pinned -= len;
if (cache->ro) {
space_info->bytes_readonly += len;
readonly = true;
}
spin_unlock(&cache->lock);
if (!readonly && global_rsv->space_info == space_info) {
spin_lock(&global_rsv->lock);
if (!global_rsv->full) {
len = min(len, global_rsv->size -
global_rsv->reserved);
global_rsv->reserved += len;
space_info->bytes_may_use += len;
if (global_rsv->reserved >= global_rsv->size)
global_rsv->full = 1;
}
spin_unlock(&global_rsv->lock);
}
spin_unlock(&space_info->lock);
}
if (cache)
btrfs_put_block_group(cache);
return 0;
}
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_io_tree *unpin;
u64 start;
u64 end;
int ret;
if (trans->aborted)
return 0;
if (fs_info->pinned_extents == &fs_info->freed_extents[0])
unpin = &fs_info->freed_extents[1];
else
unpin = &fs_info->freed_extents[0];
while (1) {
ret = find_first_extent_bit(unpin, 0, &start, &end,
EXTENT_DIRTY, NULL);
if (ret)
break;
if (btrfs_test_opt(root, DISCARD))
ret = btrfs_discard_extent(root, start,
end + 1 - start, NULL);
clear_extent_dirty(unpin, start, end, GFP_NOFS);
unpin_extent_range(root, start, end);
cond_resched();
}
return 0;
}
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner_objectid,
u64 owner_offset, int refs_to_drop,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_key key;
struct btrfs_path *path;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
int ret;
int is_data;
int extent_slot = 0;
int found_extent = 0;
int num_to_del = 1;
u32 item_size;
u64 refs;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 1;
path->leave_spinning = 1;
is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
BUG_ON(!is_data && refs_to_drop != 1);
ret = lookup_extent_backref(trans, extent_root, path, &iref,
bytenr, num_bytes, parent,
root_objectid, owner_objectid,
owner_offset);
if (ret == 0) {
extent_slot = path->slots[0];
while (extent_slot >= 0) {
btrfs_item_key_to_cpu(path->nodes[0], &key,
extent_slot);
if (key.objectid != bytenr)
break;
if (key.type == BTRFS_EXTENT_ITEM_KEY &&
key.offset == num_bytes) {
found_extent = 1;
break;
}
if (path->slots[0] - extent_slot > 5)
break;
extent_slot--;
}
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
if (found_extent && item_size < sizeof(*ei))
found_extent = 0;
#endif
if (!found_extent) {
BUG_ON(iref);
ret = remove_extent_backref(trans, extent_root, path,
NULL, refs_to_drop,
is_data);
if (ret) {
btrfs_abort_transaction(trans, extent_root, ret);
goto out;
}
btrfs_release_path(path);
path->leave_spinning = 1;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = num_bytes;
ret = btrfs_search_slot(trans, extent_root,
&key, path, -1, 1);
if (ret) {
printk(KERN_ERR "umm, got %d back from search"
", was looking for %llu\n", ret,
(unsigned long long)bytenr);
if (ret > 0)
btrfs_print_leaf(extent_root,
path->nodes[0]);
}
if (ret < 0) {
btrfs_abort_transaction(trans, extent_root, ret);
goto out;
}
extent_slot = path->slots[0];
}
} else if (ret == -ENOENT) {
btrfs_print_leaf(extent_root, path->nodes[0]);
WARN_ON(1);
printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
"parent %llu root %llu owner %llu offset %llu\n",
(unsigned long long)bytenr,
(unsigned long long)parent,
(unsigned long long)root_objectid,
(unsigned long long)owner_objectid,
(unsigned long long)owner_offset);
} else {
btrfs_abort_transaction(trans, extent_root, ret);
goto out;
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, extent_slot);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (item_size < sizeof(*ei)) {
BUG_ON(found_extent || extent_slot != path->slots[0]);
ret = convert_extent_item_v0(trans, extent_root, path,
owner_objectid, 0);
if (ret < 0) {
btrfs_abort_transaction(trans, extent_root, ret);
goto out;
}
btrfs_release_path(path);
path->leave_spinning = 1;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = num_bytes;
ret = btrfs_search_slot(trans, extent_root, &key, path,
-1, 1);
if (ret) {
printk(KERN_ERR "umm, got %d back from search"
", was looking for %llu\n", ret,
(unsigned long long)bytenr);
btrfs_print_leaf(extent_root, path->nodes[0]);
}
if (ret < 0) {
btrfs_abort_transaction(trans, extent_root, ret);
goto out;
}
extent_slot = path->slots[0];
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, extent_slot);
}
#endif
BUG_ON(item_size < sizeof(*ei));
ei = btrfs_item_ptr(leaf, extent_slot,
struct btrfs_extent_item);
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
struct btrfs_tree_block_info *bi;
BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
bi = (struct btrfs_tree_block_info *)(ei + 1);
WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
}
refs = btrfs_extent_refs(leaf, ei);
BUG_ON(refs < refs_to_drop);
refs -= refs_to_drop;
if (refs > 0) {
if (extent_op)
__run_delayed_extent_op(extent_op, leaf, ei);
/*
* In the case of inline back ref, reference count will
* be updated by remove_extent_backref
*/
if (iref) {
BUG_ON(!found_extent);
} else {
btrfs_set_extent_refs(leaf, ei, refs);
btrfs_mark_buffer_dirty(leaf);
}
if (found_extent) {
ret = remove_extent_backref(trans, extent_root, path,
iref, refs_to_drop,
is_data);
if (ret) {
btrfs_abort_transaction(trans, extent_root, ret);
goto out;
}
}
} else {
if (found_extent) {
BUG_ON(is_data && refs_to_drop !=
extent_data_ref_count(root, path, iref));
if (iref) {
BUG_ON(path->slots[0] != extent_slot);
} else {
BUG_ON(path->slots[0] != extent_slot + 1);
path->slots[0] = extent_slot;
num_to_del = 2;
}
}
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
num_to_del);
if (ret) {
btrfs_abort_transaction(trans, extent_root, ret);
goto out;
}
btrfs_release_path(path);
if (is_data) {
ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
if (ret) {
btrfs_abort_transaction(trans, extent_root, ret);
goto out;
}
}
ret = update_block_group(root, bytenr, num_bytes, 0);
if (ret) {
btrfs_abort_transaction(trans, extent_root, ret);
goto out;
}
}
out:
btrfs_free_path(path);
return ret;
}
/*
* when we free an block, it is possible (and likely) that we free the last
* delayed ref for that extent as well. This searches the delayed ref tree for
* a given extent, and if there are no other delayed refs to be processed, it
* removes it from the tree.
*/
static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr)
{
struct btrfs_delayed_ref_head *head;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
struct rb_node *node;
int ret = 0;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
head = btrfs_find_delayed_ref_head(trans, bytenr);
if (!head)
goto out;
node = rb_prev(&head->node.rb_node);
if (!node)
goto out;
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
/* there are still entries for this ref, we can't drop it */
if (ref->bytenr == bytenr)
goto out;
if (head->extent_op) {
if (!head->must_insert_reserved)
goto out;
btrfs_free_delayed_extent_op(head->extent_op);
head->extent_op = NULL;
}
/*
* waiting for the lock here would deadlock. If someone else has it
* locked they are already in the process of dropping it anyway
*/
if (!mutex_trylock(&head->mutex))
goto out;
/*
* at this point we have a head with no other entries. Go
* ahead and process it.
*/
head->node.in_tree = 0;
rb_erase(&head->node.rb_node, &delayed_refs->root);
delayed_refs->num_entries--;
/*
* we don't take a ref on the node because we're removing it from the
* tree, so we just steal the ref the tree was holding.
*/
delayed_refs->num_heads--;
if (list_empty(&head->cluster))
delayed_refs->num_heads_ready--;
list_del_init(&head->cluster);
spin_unlock(&delayed_refs->lock);
BUG_ON(head->extent_op);
if (head->must_insert_reserved)
ret = 1;
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(&head->node);
return ret;
out:
spin_unlock(&delayed_refs->lock);
return 0;
}
void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
u64 parent, int last_ref)
{
struct btrfs_block_group_cache *cache = NULL;
int ret;
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
buf->start, buf->len,
parent, root->root_key.objectid,
btrfs_header_level(buf),
BTRFS_DROP_DELAYED_REF, NULL, 0);
BUG_ON(ret); /* -ENOMEM */
}
if (!last_ref)
return;
cache = btrfs_lookup_block_group(root->fs_info, buf->start);
if (btrfs_header_generation(buf) == trans->transid) {
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ret = check_ref_cleanup(trans, root, buf->start);
if (!ret)
goto out;
}
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
pin_down_extent(root, cache, buf->start, buf->len, 1);
goto out;
}
WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
btrfs_add_free_space(cache, buf->start, buf->len);
btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
}
out:
/*
* Deleting the buffer, clear the corrupt flag since it doesn't matter
* anymore.
*/
clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
btrfs_put_block_group(cache);
}
/* Can return -ENOMEM */
int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
u64 owner, u64 offset, int for_cow)
{
int ret;
struct btrfs_fs_info *fs_info = root->fs_info;
/*
* tree log blocks never actually go into the extent allocation
* tree, just update pinning info and exit early.
*/
if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
/* unlocks the pinned mutex */
btrfs_pin_extent(root, bytenr, num_bytes, 1);
ret = 0;
} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
num_bytes,
parent, root_objectid, (int)owner,
BTRFS_DROP_DELAYED_REF, NULL, for_cow);
} else {
ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
num_bytes,
parent, root_objectid, owner,
offset, BTRFS_DROP_DELAYED_REF,
NULL, for_cow);
}
return ret;
}
static u64 stripe_align(struct btrfs_root *root,
struct btrfs_block_group_cache *cache,
u64 val, u64 num_bytes)
{
u64 ret = ALIGN(val, root->stripesize);
return ret;
}
/*
* when we wait for progress in the block group caching, its because
* our allocation attempt failed at least once. So, we must sleep
* and let some progress happen before we try again.
*
* This function will sleep at least once waiting for new free space to
* show up, and then it will check the block group free space numbers
* for our min num_bytes. Another option is to have it go ahead
* and look in the rbtree for a free extent of a given size, but this
* is a good start.
*/
static noinline int
wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
u64 num_bytes)
{
struct btrfs_caching_control *caching_ctl;
caching_ctl = get_caching_control(cache);
if (!caching_ctl)
return 0;
wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
(cache->free_space_ctl->free_space >= num_bytes));
put_caching_control(caching_ctl);
return 0;
}
static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
{
struct btrfs_caching_control *caching_ctl;
caching_ctl = get_caching_control(cache);
if (!caching_ctl)
return 0;
wait_event(caching_ctl->wait, block_group_cache_done(cache));
put_caching_control(caching_ctl);
return 0;
}
int __get_raid_index(u64 flags)
{
if (flags & BTRFS_BLOCK_GROUP_RAID10)
return BTRFS_RAID_RAID10;
else if (flags & BTRFS_BLOCK_GROUP_RAID1)
return BTRFS_RAID_RAID1;
else if (flags & BTRFS_BLOCK_GROUP_DUP)
return BTRFS_RAID_DUP;
else if (flags & BTRFS_BLOCK_GROUP_RAID0)
return BTRFS_RAID_RAID0;
else if (flags & BTRFS_BLOCK_GROUP_RAID5)
return BTRFS_RAID_RAID5;
else if (flags & BTRFS_BLOCK_GROUP_RAID6)
return BTRFS_RAID_RAID6;
return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
}
static int get_block_group_index(struct btrfs_block_group_cache *cache)
{
return __get_raid_index(cache->flags);
}
enum btrfs_loop_type {
LOOP_CACHING_NOWAIT = 0,
LOOP_CACHING_WAIT = 1,
LOOP_ALLOC_CHUNK = 2,
LOOP_NO_EMPTY_SIZE = 3,
};
/*
* walks the btree of allocated extents and find a hole of a given size.
* The key ins is changed to record the hole:
* ins->objectid == block start
* ins->flags = BTRFS_EXTENT_ITEM_KEY
* ins->offset == number of blocks
* Any available blocks before search_start are skipped.
*/
static noinline int find_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *orig_root,
u64 num_bytes, u64 empty_size,
u64 hint_byte, struct btrfs_key *ins,
u64 data)
{
int ret = 0;
struct btrfs_root *root = orig_root->fs_info->extent_root;
struct btrfs_free_cluster *last_ptr = NULL;
struct btrfs_block_group_cache *block_group = NULL;
struct btrfs_block_group_cache *used_block_group;
u64 search_start = 0;
int empty_cluster = 2 * 1024 * 1024;
struct btrfs_space_info *space_info;
int loop = 0;
int index = __get_raid_index(data);
int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
bool found_uncached_bg = false;
bool failed_cluster_refill = false;
bool failed_alloc = false;
bool use_cluster = true;
bool have_caching_bg = false;
WARN_ON(num_bytes < root->sectorsize);
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
ins->objectid = 0;
ins->offset = 0;
trace_find_free_extent(orig_root, num_bytes, empty_size, data);
space_info = __find_space_info(root->fs_info, data);
if (!space_info) {
printk(KERN_ERR "No space info for %llu\n", data);
return -ENOSPC;
}
/*
* If the space info is for both data and metadata it means we have a
* small filesystem and we can't use the clustering stuff.
*/
if (btrfs_mixed_space_info(space_info))
use_cluster = false;
if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
last_ptr = &root->fs_info->meta_alloc_cluster;
if (!btrfs_test_opt(root, SSD))
empty_cluster = 64 * 1024;
}
if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
btrfs_test_opt(root, SSD)) {
last_ptr = &root->fs_info->data_alloc_cluster;
}
if (last_ptr) {
spin_lock(&last_ptr->lock);
if (last_ptr->block_group)
hint_byte = last_ptr->window_start;
spin_unlock(&last_ptr->lock);
}
search_start = max(search_start, first_logical_byte(root, 0));
search_start = max(search_start, hint_byte);
if (!last_ptr)
empty_cluster = 0;
if (search_start == hint_byte) {
block_group = btrfs_lookup_block_group(root->fs_info,
search_start);
used_block_group = block_group;
/*
* we don't want to use the block group if it doesn't match our
* allocation bits, or if its not cached.
*
* However if we are re-searching with an ideal block group
* picked out then we don't care that the block group is cached.
*/
if (block_group && block_group_bits(block_group, data) &&
block_group->cached != BTRFS_CACHE_NO) {
down_read(&space_info->groups_sem);
if (list_empty(&block_group->list) ||
block_group->ro) {
/*
* someone is removing this block group,
* we can't jump into the have_block_group
* target because our list pointers are not
* valid
*/
btrfs_put_block_group(block_group);
up_read(&space_info->groups_sem);
} else {
index = get_block_group_index(block_group);
goto have_block_group;
}
} else if (block_group) {
btrfs_put_block_group(block_group);
}
}
search:
have_caching_bg = false;
down_read(&space_info->groups_sem);
list_for_each_entry(block_group, &space_info->block_groups[index],
list) {
u64 offset;
int cached;
used_block_group = block_group;
btrfs_get_block_group(block_group);
search_start = block_group->key.objectid;
/*
* this can happen if we end up cycling through all the
* raid types, but we want to make sure we only allocate
* for the proper type.
*/
if (!block_group_bits(block_group, data)) {
u64 extra = BTRFS_BLOCK_GROUP_DUP |
BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID5 |
BTRFS_BLOCK_GROUP_RAID6 |
BTRFS_BLOCK_GROUP_RAID10;
/*
* if they asked for extra copies and this block group
* doesn't provide them, bail. This does allow us to
* fill raid0 from raid1.
*/
if ((data & extra) && !(block_group->flags & extra))
goto loop;
}
have_block_group:
cached = block_group_cache_done(block_group);
if (unlikely(!cached)) {
found_uncached_bg = true;
ret = cache_block_group(block_group, 0);
BUG_ON(ret < 0);
ret = 0;
}
if (unlikely(block_group->ro))
goto loop;
/*
* Ok we want to try and use the cluster allocator, so
* lets look there
*/
if (last_ptr) {
unsigned long aligned_cluster;
/*
* the refill lock keeps out other
* people trying to start a new cluster
*/
spin_lock(&last_ptr->refill_lock);
used_block_group = last_ptr->block_group;
if (used_block_group != block_group &&
(!used_block_group ||
used_block_group->ro ||
!block_group_bits(used_block_group, data))) {
used_block_group = block_group;
goto refill_cluster;
}
if (used_block_group != block_group)
btrfs_get_block_group(used_block_group);
offset = btrfs_alloc_from_cluster(used_block_group,
last_ptr, num_bytes, used_block_group->key.objectid);
if (offset) {
/* we have a block, we're done */
spin_unlock(&last_ptr->refill_lock);
trace_btrfs_reserve_extent_cluster(root,
block_group, search_start, num_bytes);
goto checks;
}
WARN_ON(last_ptr->block_group != used_block_group);
if (used_block_group != block_group) {
btrfs_put_block_group(used_block_group);
used_block_group = block_group;
}
refill_cluster:
BUG_ON(used_block_group != block_group);
/* If we are on LOOP_NO_EMPTY_SIZE, we can't
* set up a new clusters, so lets just skip it
* and let the allocator find whatever block
* it can find. If we reach this point, we
* will have tried the cluster allocator
* plenty of times and not have found
* anything, so we are likely way too
* fragmented for the clustering stuff to find
* anything.
*
* However, if the cluster is taken from the
* current block group, release the cluster
* first, so that we stand a better chance of
* succeeding in the unclustered
* allocation. */
if (loop >= LOOP_NO_EMPTY_SIZE &&
last_ptr->block_group != block_group) {
spin_unlock(&last_ptr->refill_lock);
goto unclustered_alloc;
}
/*
* this cluster didn't work out, free it and
* start over
*/
btrfs_return_cluster_to_free_space(NULL, last_ptr);
if (loop >= LOOP_NO_EMPTY_SIZE) {
spin_unlock(&last_ptr->refill_lock);
goto unclustered_alloc;
}
aligned_cluster = max_t(unsigned long,
empty_cluster + empty_size,
block_group->full_stripe_len);
/* allocate a cluster in this block group */
ret = btrfs_find_space_cluster(trans, root,
block_group, last_ptr,
search_start, num_bytes,
aligned_cluster);
if (ret == 0) {
/*
* now pull our allocation out of this
* cluster
*/
offset = btrfs_alloc_from_cluster(block_group,
last_ptr, num_bytes,
search_start);
if (offset) {
/* we found one, proceed */
spin_unlock(&last_ptr->refill_lock);
trace_btrfs_reserve_extent_cluster(root,
block_group, search_start,
num_bytes);
goto checks;
}
} else if (!cached && loop > LOOP_CACHING_NOWAIT
&& !failed_cluster_refill) {
spin_unlock(&last_ptr->refill_lock);
failed_cluster_refill = true;
wait_block_group_cache_progress(block_group,
num_bytes + empty_cluster + empty_size);
goto have_block_group;
}
/*
* at this point we either didn't find a cluster
* or we weren't able to allocate a block from our
* cluster. Free the cluster we've been trying
* to use, and go to the next block group
*/
btrfs_return_cluster_to_free_space(NULL, last_ptr);
spin_unlock(&last_ptr->refill_lock);
goto loop;
}
unclustered_alloc:
spin_lock(&block_group->free_space_ctl->tree_lock);
if (cached &&
block_group->free_space_ctl->free_space <
num_bytes + empty_cluster + empty_size) {
spin_unlock(&block_group->free_space_ctl->tree_lock);
goto loop;
}
spin_unlock(&block_group->free_space_ctl->tree_lock);
offset = btrfs_find_space_for_alloc(block_group, search_start,
num_bytes, empty_size);
/*
* If we didn't find a chunk, and we haven't failed on this
* block group before, and this block group is in the middle of
* caching and we are ok with waiting, then go ahead and wait
* for progress to be made, and set failed_alloc to true.
*
* If failed_alloc is true then we've already waited on this
* block group once and should move on to the next block group.
*/
if (!offset && !failed_alloc && !cached &&
loop > LOOP_CACHING_NOWAIT) {
wait_block_group_cache_progress(block_group,
num_bytes + empty_size);
failed_alloc = true;
goto have_block_group;
} else if (!offset) {
if (!cached)
have_caching_bg = true;
goto loop;
}
checks:
search_start = stripe_align(root, used_block_group,
offset, num_bytes);
/* move on to the next group */
if (search_start + num_bytes >
used_block_group->key.objectid + used_block_group->key.offset) {
btrfs_add_free_space(used_block_group, offset, num_bytes);
goto loop;
}
if (offset < search_start)
btrfs_add_free_space(used_block_group, offset,
search_start - offset);
BUG_ON(offset > search_start);
ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
alloc_type);
if (ret == -EAGAIN) {
btrfs_add_free_space(used_block_group, offset, num_bytes);
goto loop;
}
/* we are all good, lets return */
ins->objectid = search_start;
ins->offset = num_bytes;
trace_btrfs_reserve_extent(orig_root, block_group,
search_start, num_bytes);
if (used_block_group != block_group)
btrfs_put_block_group(used_block_group);
btrfs_put_block_group(block_group);
break;
loop:
failed_cluster_refill = false;
failed_alloc = false;
BUG_ON(index != get_block_group_index(block_group));
if (used_block_group != block_group)
btrfs_put_block_group(used_block_group);
btrfs_put_block_group(block_group);
}
up_read(&space_info->groups_sem);
if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
goto search;
if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
goto search;
/*
* LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
* caching kthreads as we move along
* LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
* LOOP_ALLOC_CHUNK, force a chunk allocation and try again
* LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
* again
*/
if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
index = 0;
loop++;
if (loop == LOOP_ALLOC_CHUNK) {
ret = do_chunk_alloc(trans, root, data,
CHUNK_ALLOC_FORCE);
/*
* Do not bail out on ENOSPC since we
* can do more things.
*/
if (ret < 0 && ret != -ENOSPC) {
btrfs_abort_transaction(trans,
root, ret);
goto out;
}
}
if (loop == LOOP_NO_EMPTY_SIZE) {
empty_size = 0;
empty_cluster = 0;
}
goto search;
} else if (!ins->objectid) {
ret = -ENOSPC;
} else if (ins->objectid) {
ret = 0;
}
out:
return ret;
}
static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
int dump_block_groups)
{
struct btrfs_block_group_cache *cache;
int index = 0;
spin_lock(&info->lock);
printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
(unsigned long long)info->flags,
(unsigned long long)(info->total_bytes - info->bytes_used -
info->bytes_pinned - info->bytes_reserved -
info->bytes_readonly),
(info->full) ? "" : "not ");
printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
"reserved=%llu, may_use=%llu, readonly=%llu\n",
(unsigned long long)info->total_bytes,
(unsigned long long)info->bytes_used,
(unsigned long long)info->bytes_pinned,
(unsigned long long)info->bytes_reserved,
(unsigned long long)info->bytes_may_use,
(unsigned long long)info->bytes_readonly);
spin_unlock(&info->lock);
if (!dump_block_groups)
return;
down_read(&info->groups_sem);
again:
list_for_each_entry(cache, &info->block_groups[index], list) {
spin_lock(&cache->lock);
printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
(unsigned long long)cache->key.objectid,
(unsigned long long)cache->key.offset,
(unsigned long long)btrfs_block_group_used(&cache->item),
(unsigned long long)cache->pinned,
(unsigned long long)cache->reserved,
cache->ro ? "[readonly]" : "");
btrfs_dump_free_space(cache, bytes);
spin_unlock(&cache->lock);
}
if (++index < BTRFS_NR_RAID_TYPES)
goto again;
up_read(&info->groups_sem);
}
int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 num_bytes, u64 min_alloc_size,
u64 empty_size, u64 hint_byte,
struct btrfs_key *ins, u64 data)
{
bool final_tried = false;
int ret;
data = btrfs_get_alloc_profile(root, data);
again:
WARN_ON(num_bytes < root->sectorsize);
ret = find_free_extent(trans, root, num_bytes, empty_size,
hint_byte, ins, data);
if (ret == -ENOSPC) {
if (!final_tried) {
num_bytes = num_bytes >> 1;
num_bytes = round_down(num_bytes, root->sectorsize);
num_bytes = max(num_bytes, min_alloc_size);
if (num_bytes == min_alloc_size)
final_tried = true;
goto again;
} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
struct btrfs_space_info *sinfo;
sinfo = __find_space_info(root->fs_info, data);
printk(KERN_ERR "btrfs allocation failed flags %llu, "
"wanted %llu\n", (unsigned long long)data,
(unsigned long long)num_bytes);
if (sinfo)
dump_space_info(sinfo, num_bytes, 1);
}
}
trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
return ret;
}
static int __btrfs_free_reserved_extent(struct btrfs_root *root,
u64 start, u64 len, int pin)
{
struct btrfs_block_group_cache *cache;
int ret = 0;
cache = btrfs_lookup_block_group(root->fs_info, start);
if (!cache) {
printk(KERN_ERR "Unable to find block group for %llu\n",
(unsigned long long)start);
return -ENOSPC;
}
if (btrfs_test_opt(root, DISCARD))
ret = btrfs_discard_extent(root, start, len, NULL);
if (pin)
pin_down_extent(root, cache, start, len, 1);
else {
btrfs_add_free_space(cache, start, len);
btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
}
btrfs_put_block_group(cache);
trace_btrfs_reserved_extent_free(root, start, len);
return ret;
}
int btrfs_free_reserved_extent(struct btrfs_root *root,
u64 start, u64 len)
{
return __btrfs_free_reserved_extent(root, start, len, 0);
}
int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
u64 start, u64 len)
{
return __btrfs_free_reserved_extent(root, start, len, 1);
}
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 parent, u64 root_objectid,
u64 flags, u64 owner, u64 offset,
struct btrfs_key *ins, int ref_mod)
{
int ret;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_extent_item *extent_item;
struct btrfs_extent_inline_ref *iref;
struct btrfs_path *path;
struct extent_buffer *leaf;
int type;
u32 size;
if (parent > 0)
type = BTRFS_SHARED_DATA_REF_KEY;
else
type = BTRFS_EXTENT_DATA_REF_KEY;
size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
ins, size);
if (ret) {
btrfs_free_path(path);
return ret;
}
leaf = path->nodes[0];
extent_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item);
btrfs_set_extent_refs(leaf, extent_item, ref_mod);
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
btrfs_set_extent_flags(leaf, extent_item,
flags | BTRFS_EXTENT_FLAG_DATA);
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
btrfs_set_extent_inline_ref_type(leaf, iref, type);
if (parent > 0) {
struct btrfs_shared_data_ref *ref;
ref = (struct btrfs_shared_data_ref *)(iref + 1);
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
} else {
struct btrfs_extent_data_ref *ref;
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
}
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_free_path(path);
ret = update_block_group(root, ins->objectid, ins->offset, 1);
if (ret) { /* -ENOENT, logic error */
printk(KERN_ERR "btrfs update block group failed for %llu "
"%llu\n", (unsigned long long)ins->objectid,
(unsigned long long)ins->offset);
BUG();
}
return ret;
}
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 parent, u64 root_objectid,
u64 flags, struct btrfs_disk_key *key,
int level, struct btrfs_key *ins)
{
int ret;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_extent_item *extent_item;
struct btrfs_tree_block_info *block_info;
struct btrfs_extent_inline_ref *iref;
struct btrfs_path *path;
struct extent_buffer *leaf;
u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
ins, size);
if (ret) {
btrfs_free_path(path);
return ret;
}
leaf = path->nodes[0];
extent_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item);
btrfs_set_extent_refs(leaf, extent_item, 1);
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
btrfs_set_extent_flags(leaf, extent_item,
flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
btrfs_set_tree_block_key(leaf, block_info, key);
btrfs_set_tree_block_level(leaf, block_info, level);
iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
if (parent > 0) {
BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
btrfs_set_extent_inline_ref_type(leaf, iref,
BTRFS_SHARED_BLOCK_REF_KEY);
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
} else {
btrfs_set_extent_inline_ref_type(leaf, iref,
BTRFS_TREE_BLOCK_REF_KEY);
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
}
btrfs_mark_buffer_dirty(leaf);
btrfs_free_path(path);
ret = update_block_group(root, ins->objectid, ins->offset, 1);
if (ret) { /* -ENOENT, logic error */
printk(KERN_ERR "btrfs update block group failed for %llu "
"%llu\n", (unsigned long long)ins->objectid,
(unsigned long long)ins->offset);
BUG();
}
return ret;
}
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 root_objectid, u64 owner,
u64 offset, struct btrfs_key *ins)
{
int ret;
BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
ins->offset, 0,
root_objectid, owner, offset,
BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
return ret;
}
/*
* this is used by the tree logging recovery code. It records that
* an extent has been allocated and makes sure to clear the free
* space cache bits as well
*/
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 root_objectid, u64 owner, u64 offset,
struct btrfs_key *ins)
{
int ret;
struct btrfs_block_group_cache *block_group;
struct btrfs_caching_control *caching_ctl;
u64 start = ins->objectid;
u64 num_bytes = ins->offset;
block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
cache_block_group(block_group, 0);
caching_ctl = get_caching_control(block_group);
if (!caching_ctl) {
BUG_ON(!block_group_cache_done(block_group));
ret = btrfs_remove_free_space(block_group, start, num_bytes);
BUG_ON(ret); /* -ENOMEM */
} else {
mutex_lock(&caching_ctl->mutex);
if (start >= caching_ctl->progress) {
ret = add_excluded_extent(root, start, num_bytes);
BUG_ON(ret); /* -ENOMEM */
} else if (start + num_bytes <= caching_ctl->progress) {
ret = btrfs_remove_free_space(block_group,
start, num_bytes);
BUG_ON(ret); /* -ENOMEM */
} else {
num_bytes = caching_ctl->progress - start;
ret = btrfs_remove_free_space(block_group,
start, num_bytes);
BUG_ON(ret); /* -ENOMEM */
start = caching_ctl->progress;
num_bytes = ins->objectid + ins->offset -
caching_ctl->progress;
ret = add_excluded_extent(root, start, num_bytes);
BUG_ON(ret); /* -ENOMEM */
}
mutex_unlock(&caching_ctl->mutex);
put_caching_control(caching_ctl);
}
ret = btrfs_update_reserved_bytes(block_group, ins->offset,
RESERVE_ALLOC_NO_ACCOUNT);
BUG_ON(ret); /* logic error */
btrfs_put_block_group(block_group);
ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
0, owner, offset, ins, 1);
return ret;
}
struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u32 blocksize,
int level)
{
struct extent_buffer *buf;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return ERR_PTR(-ENOMEM);
btrfs_set_header_generation(buf, trans->transid);
btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
btrfs_tree_lock(buf);
clean_tree_block(trans, root, buf);
clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
btrfs_set_lock_blocking(buf);
btrfs_set_buffer_uptodate(buf);
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
/*
* we allow two log transactions at a time, use different
* EXENT bit to differentiate dirty pages.
*/
if (root->log_transid % 2 == 0)
set_extent_dirty(&root->dirty_log_pages, buf->start,
buf->start + buf->len - 1, GFP_NOFS);
else
set_extent_new(&root->dirty_log_pages, buf->start,
buf->start + buf->len - 1, GFP_NOFS);
} else {
set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
buf->start + buf->len - 1, GFP_NOFS);
}
trans->blocks_used++;
/* this returns a buffer locked for blocking */
return buf;
}
static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u32 blocksize)
{
struct btrfs_block_rsv *block_rsv;
struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
int ret;
block_rsv = get_block_rsv(trans, root);
if (block_rsv->size == 0) {
ret = reserve_metadata_bytes(root, block_rsv, blocksize,
BTRFS_RESERVE_NO_FLUSH);
/*
* If we couldn't reserve metadata bytes try and use some from
* the global reserve.
*/
if (ret && block_rsv != global_rsv) {
ret = block_rsv_use_bytes(global_rsv, blocksize);
if (!ret)
return global_rsv;
return ERR_PTR(ret);
} else if (ret) {
return ERR_PTR(ret);
}
return block_rsv;
}
ret = block_rsv_use_bytes(block_rsv, blocksize);
if (!ret)
return block_rsv;
if (ret && !block_rsv->failfast) {
if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
static DEFINE_RATELIMIT_STATE(_rs,
DEFAULT_RATELIMIT_INTERVAL * 10,
/*DEFAULT_RATELIMIT_BURST*/ 1);
if (__ratelimit(&_rs))
WARN(1, KERN_DEBUG
"btrfs: block rsv returned %d\n", ret);
}
ret = reserve_metadata_bytes(root, block_rsv, blocksize,
BTRFS_RESERVE_NO_FLUSH);
if (!ret) {
return block_rsv;
} else if (ret && block_rsv != global_rsv) {
ret = block_rsv_use_bytes(global_rsv, blocksize);
if (!ret)
return global_rsv;
}
}
return ERR_PTR(-ENOSPC);
}
static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
struct btrfs_block_rsv *block_rsv, u32 blocksize)
{
block_rsv_add_bytes(block_rsv, blocksize, 0);
block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
}
/*
* finds a free extent and does all the dirty work required for allocation
* returns the key for the extent through ins, and a tree buffer for
* the first block of the extent through buf.
*
* returns the tree buffer or NULL.
*/
struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u32 blocksize,
u64 parent, u64 root_objectid,
struct btrfs_disk_key *key, int level,
u64 hint, u64 empty_size)
{
struct btrfs_key ins;
struct btrfs_block_rsv *block_rsv;
struct extent_buffer *buf;
u64 flags = 0;
int ret;
block_rsv = use_block_rsv(trans, root, blocksize);
if (IS_ERR(block_rsv))
return ERR_CAST(block_rsv);
ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
empty_size, hint, &ins, 0);
if (ret) {
unuse_block_rsv(root->fs_info, block_rsv, blocksize);
return ERR_PTR(ret);
}
buf = btrfs_init_new_buffer(trans, root, ins.objectid,
blocksize, level);
BUG_ON(IS_ERR(buf)); /* -ENOMEM */
if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
if (parent == 0)
parent = ins.objectid;
flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
} else
BUG_ON(parent > 0);
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
struct btrfs_delayed_extent_op *extent_op;
extent_op = btrfs_alloc_delayed_extent_op();
BUG_ON(!extent_op); /* -ENOMEM */
if (key)
memcpy(&extent_op->key, key, sizeof(extent_op->key));
else
memset(&extent_op->key, 0, sizeof(extent_op->key));
extent_op->flags_to_set = flags;
extent_op->update_key = 1;
extent_op->update_flags = 1;
extent_op->is_data = 0;
ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
ins.objectid,
ins.offset, parent, root_objectid,
level, BTRFS_ADD_DELAYED_EXTENT,
extent_op, 0);
BUG_ON(ret); /* -ENOMEM */
}
return buf;
}
struct walk_control {
u64 refs[BTRFS_MAX_LEVEL];
u64 flags[BTRFS_MAX_LEVEL];
struct btrfs_key update_progress;
int stage;
int level;
int shared_level;
int update_ref;
int keep_locks;
int reada_slot;
int reada_count;
int for_reloc;
};
#define DROP_REFERENCE 1
#define UPDATE_BACKREF 2
static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct walk_control *wc,
struct btrfs_path *path)
{
u64 bytenr;
u64 generation;
u64 refs;
u64 flags;
u32 nritems;
u32 blocksize;
struct btrfs_key key;
struct extent_buffer *eb;
int ret;
int slot;
int nread = 0;
if (path->slots[wc->level] < wc->reada_slot) {
wc->reada_count = wc->reada_count * 2 / 3;
wc->reada_count = max(wc->reada_count, 2);
} else {
wc->reada_count = wc->reada_count * 3 / 2;
wc->reada_count = min_t(int, wc->reada_count,
BTRFS_NODEPTRS_PER_BLOCK(root));
}
eb = path->nodes[wc->level];
nritems = btrfs_header_nritems(eb);
blocksize = btrfs_level_size(root, wc->level - 1);
for (slot = path->slots[wc->level]; slot < nritems; slot++) {
if (nread >= wc->reada_count)
break;
cond_resched();
bytenr = btrfs_node_blockptr(eb, slot);
generation = btrfs_node_ptr_generation(eb, slot);
if (slot == path->slots[wc->level])
goto reada;
if (wc->stage == UPDATE_BACKREF &&
generation <= root->root_key.offset)
continue;
/* We don't lock the tree block, it's OK to be racy here */
ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
&refs, &flags);
/* We don't care about errors in readahead. */
if (ret < 0)
continue;
BUG_ON(refs == 0);
if (wc->stage == DROP_REFERENCE) {
if (refs == 1)
goto reada;
if (wc->level == 1 &&
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
continue;
if (!wc->update_ref ||
generation <= root->root_key.offset)
continue;
btrfs_node_key_to_cpu(eb, &key, slot);
ret = btrfs_comp_cpu_keys(&key,
&wc->update_progress);
if (ret < 0)
continue;
} else {
if (wc->level == 1 &&
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
continue;
}
reada:
ret = readahead_tree_block(root, bytenr, blocksize,
generation);
if (ret)
break;
nread++;
}
wc->reada_slot = slot;
}
/*
* helper to process tree block while walking down the tree.
*
* when wc->stage == UPDATE_BACKREF, this function updates
* back refs for pointers in the block.
*
* NOTE: return value 1 means we should stop walking down.
*/
static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct walk_control *wc, int lookup_info)
{
int level = wc->level;
struct extent_buffer *eb = path->nodes[level];
u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
int ret;
if (wc->stage == UPDATE_BACKREF &&
btrfs_header_owner(eb) != root->root_key.objectid)
return 1;
/*
* when reference count of tree block is 1, it won't increase
* again. once full backref flag is set, we never clear it.
*/
if (lookup_info &&
((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
(wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
BUG_ON(!path->locks[level]);
ret = btrfs_lookup_extent_info(trans, root,
eb->start, eb->len,
&wc->refs[level],
&wc->flags[level]);
BUG_ON(ret == -ENOMEM);
if (ret)
return ret;
BUG_ON(wc->refs[level] == 0);
}
if (wc->stage == DROP_REFERENCE) {
if (wc->refs[level] > 1)
return 1;
if (path->locks[level] && !wc->keep_locks) {
btrfs_tree_unlock_rw(eb, path->locks[level]);
path->locks[level] = 0;
}
return 0;
}
/* wc->stage == UPDATE_BACKREF */
if (!(wc->flags[level] & flag)) {
BUG_ON(!path->locks[level]);
ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
BUG_ON(ret); /* -ENOMEM */
ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
BUG_ON(ret); /* -ENOMEM */
ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
eb->len, flag, 0);
BUG_ON(ret); /* -ENOMEM */
wc->flags[level] |= flag;
}
/*
* the block is shared by multiple trees, so it's not good to
* keep the tree lock
*/
if (path->locks[level] && level > 0) {
btrfs_tree_unlock_rw(eb, path->locks[level]);
path->locks[level] = 0;
}
return 0;
}
/*
* helper to process tree block pointer.
*
* when wc->stage == DROP_REFERENCE, this function checks
* reference count of the block pointed to. if the block
* is shared and we need update back refs for the subtree
* rooted at the block, this function changes wc->stage to
* UPDATE_BACKREF. if the block is shared and there is no
* need to update back, this function drops the reference
* to the block.
*
* NOTE: return value 1 means we should stop walking down.
*/
static noinline int do_walk_down(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct walk_control *wc, int *lookup_info)
{
u64 bytenr;
u64 generation;
u64 parent;
u32 blocksize;
struct btrfs_key key;
struct extent_buffer *next;
int level = wc->level;
int reada = 0;
int ret = 0;
generation = btrfs_node_ptr_generation(path->nodes[level],
path->slots[level]);
/*
* if the lower level block was created before the snapshot
* was created, we know there is no need to update back refs
* for the subtree
*/
if (wc->stage == UPDATE_BACKREF &&
generation <= root->root_key.offset) {
*lookup_info = 1;
return 1;
}
bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
blocksize = btrfs_level_size(root, level - 1);
next = btrfs_find_tree_block(root, bytenr, blocksize);
if (!next) {
next = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!next)
return -ENOMEM;
reada = 1;
}
btrfs_tree_lock(next);
btrfs_set_lock_blocking(next);
ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
&wc->refs[level - 1],
&wc->flags[level - 1]);
if (ret < 0) {
btrfs_tree_unlock(next);
return ret;
}
BUG_ON(wc->refs[level - 1] == 0);
*lookup_info = 0;
if (wc->stage == DROP_REFERENCE) {
if (wc->refs[level - 1] > 1) {
if (level == 1 &&
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
goto skip;
if (!wc->update_ref ||
generation <= root->root_key.offset)
goto skip;
btrfs_node_key_to_cpu(path->nodes[level], &key,
path->slots[level]);
ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
if (ret < 0)
goto skip;
wc->stage = UPDATE_BACKREF;
wc->shared_level = level - 1;
}
} else {
if (level == 1 &&
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
goto skip;
}
if (!btrfs_buffer_uptodate(next, generation, 0)) {
btrfs_tree_unlock(next);
free_extent_buffer(next);
next = NULL;
*lookup_info = 1;
}
if (!next) {
if (reada && level == 1)
reada_walk_down(trans, root, wc, path);
next = read_tree_block(root, bytenr, blocksize, generation);
if (!next)
return -EIO;
btrfs_tree_lock(next);
btrfs_set_lock_blocking(next);
}
level--;
BUG_ON(level != btrfs_header_level(next));
path->nodes[level] = next;
path->slots[level] = 0;
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
wc->level = level;
if (wc->level == 1)
wc->reada_slot = 0;
return 0;
skip:
wc->refs[level - 1] = 0;
wc->flags[level - 1] = 0;
if (wc->stage == DROP_REFERENCE) {
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
parent = path->nodes[level]->start;
} else {
BUG_ON(root->root_key.objectid !=
btrfs_header_owner(path->nodes[level]));
parent = 0;
}
ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
root->root_key.objectid, level - 1, 0, 0);
BUG_ON(ret); /* -ENOMEM */
}
btrfs_tree_unlock(next);
free_extent_buffer(next);
*lookup_info = 1;
return 1;
}
/*
* helper to process tree block while walking up the tree.
*
* when wc->stage == DROP_REFERENCE, this function drops
* reference count on the block.
*
* when wc->stage == UPDATE_BACKREF, this function changes
* wc->stage back to DROP_REFERENCE if we changed wc->stage
* to UPDATE_BACKREF previously while processing the block.
*
* NOTE: return value 1 means we should stop walking up.
*/
static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct walk_control *wc)
{
int ret;
int level = wc->level;
struct extent_buffer *eb = path->nodes[level];
u64 parent = 0;
if (wc->stage == UPDATE_BACKREF) {
BUG_ON(wc->shared_level < level);
if (level < wc->shared_level)
goto out;
ret = find_next_key(path, level + 1, &wc->update_progress);
if (ret > 0)
wc->update_ref = 0;
wc->stage = DROP_REFERENCE;
wc->shared_level = -1;
path->slots[level] = 0;
/*
* check reference count again if the block isn't locked.
* we should start walking down the tree again if reference
* count is one.
*/
if (!path->locks[level]) {
BUG_ON(level == 0);
btrfs_tree_lock(eb);
btrfs_set_lock_blocking(eb);
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
ret = btrfs_lookup_extent_info(trans, root,
eb->start, eb->len,
&wc->refs[level],
&wc->flags[level]);
if (ret < 0) {
btrfs_tree_unlock_rw(eb, path->locks[level]);
path->locks[level] = 0;
return ret;
}
BUG_ON(wc->refs[level] == 0);
if (wc->refs[level] == 1) {
btrfs_tree_unlock_rw(eb, path->locks[level]);
path->locks[level] = 0;
return 1;
}
}
}
/* wc->stage == DROP_REFERENCE */
BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
if (wc->refs[level] == 1) {
if (level == 0) {
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
ret = btrfs_dec_ref(trans, root, eb, 1,
wc->for_reloc);
else
ret = btrfs_dec_ref(trans, root, eb, 0,
wc->for_reloc);
BUG_ON(ret); /* -ENOMEM */
}
/* make block locked assertion in clean_tree_block happy */
if (!path->locks[level] &&
btrfs_header_generation(eb) == trans->transid) {
btrfs_tree_lock(eb);
btrfs_set_lock_blocking(eb);
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
}
clean_tree_block(trans, root, eb);
}
if (eb == root->node) {
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
parent = eb->start;
else
BUG_ON(root->root_key.objectid !=
btrfs_header_owner(eb));
} else {
if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
parent = path->nodes[level + 1]->start;
else
BUG_ON(root->root_key.objectid !=
btrfs_header_owner(path->nodes[level + 1]));
}
btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
out:
wc->refs[level] = 0;
wc->flags[level] = 0;
return 0;
}
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct walk_control *wc)
{
int level = wc->level;
int lookup_info = 1;
int ret;
while (level >= 0) {
ret = walk_down_proc(trans, root, path, wc, lookup_info);
if (ret > 0)
break;
if (level == 0)
break;
if (path->slots[level] >=
btrfs_header_nritems(path->nodes[level]))
break;
ret = do_walk_down(trans, root, path, wc, &lookup_info);
if (ret > 0) {
path->slots[level]++;
continue;
} else if (ret < 0)
return ret;
level = wc->level;
}
return 0;
}
static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct walk_control *wc, int max_level)
{
int level = wc->level;
int ret;
path->slots[level] = btrfs_header_nritems(path->nodes[level]);
while (level < max_level && path->nodes[level]) {
wc->level = level;
if (path->slots[level] + 1 <
btrfs_header_nritems(path->nodes[level])) {
path->slots[level]++;
return 0;
} else {
ret = walk_up_proc(trans, root, path, wc);
if (ret > 0)
return 0;
if (path->locks[level]) {
btrfs_tree_unlock_rw(path->nodes[level],
path->locks[level]);
path->locks[level] = 0;
}
free_extent_buffer(path->nodes[level]);
path->nodes[level] = NULL;
level++;
}
}
return 1;
}
/*
* drop a subvolume tree.
*
* this function traverses the tree freeing any blocks that only
* referenced by the tree.
*
* when a shared tree block is found. this function decreases its
* reference count by one. if update_ref is true, this function
* also make sure backrefs for the shared block and all lower level
* blocks are properly updated.
*/
int btrfs_drop_snapshot(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv, int update_ref,
int for_reloc)
{
struct btrfs_path *path;
struct btrfs_trans_handle *trans;
struct btrfs_root *tree_root = root->fs_info->tree_root;
struct btrfs_root_item *root_item = &root->root_item;
struct walk_control *wc;
struct btrfs_key key;
int err = 0;
int ret;
int level;
path = btrfs_alloc_path();
if (!path) {
err = -ENOMEM;
goto out;
}
wc = kzalloc(sizeof(*wc), GFP_NOFS);
if (!wc) {
btrfs_free_path(path);
err = -ENOMEM;
goto out;
}
trans = btrfs_start_transaction(tree_root, 0);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
goto out_free;
}
if (block_rsv)
trans->block_rsv = block_rsv;
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
level = btrfs_header_level(root->node);
path->nodes[level] = btrfs_lock_root_node(root);
btrfs_set_lock_blocking(path->nodes[level]);
path->slots[level] = 0;
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
memset(&wc->update_progress, 0,
sizeof(wc->update_progress));
} else {
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
memcpy(&wc->update_progress, &key,
sizeof(wc->update_progress));
level = root_item->drop_level;
BUG_ON(level == 0);
path->lowest_level = level;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
path->lowest_level = 0;
if (ret < 0) {
err = ret;
goto out_end_trans;
}
WARN_ON(ret > 0);
/*
* unlock our path, this is safe because only this
* function is allowed to delete this snapshot
*/
btrfs_unlock_up_safe(path, 0);
level = btrfs_header_level(root->node);
while (1) {
btrfs_tree_lock(path->nodes[level]);
btrfs_set_lock_blocking(path->nodes[level]);
ret = btrfs_lookup_extent_info(trans, root,
path->nodes[level]->start,
path->nodes[level]->len,
&wc->refs[level],
&wc->flags[level]);
if (ret < 0) {
err = ret;
goto out_end_trans;
}
BUG_ON(wc->refs[level] == 0);
if (level == root_item->drop_level)
break;
btrfs_tree_unlock(path->nodes[level]);
WARN_ON(wc->refs[level] != 1);
level--;
}
}
wc->level = level;
wc->shared_level = -1;
wc->stage = DROP_REFERENCE;
wc->update_ref = update_ref;
wc->keep_locks = 0;
wc->for_reloc = for_reloc;
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
while (1) {
ret = walk_down_tree(trans, root, path, wc);
if (ret < 0) {
err = ret;
break;
}
ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
if (ret < 0) {
err = ret;
break;
}
if (ret > 0) {
BUG_ON(wc->stage != DROP_REFERENCE);
break;
}
if (wc->stage == DROP_REFERENCE) {
level = wc->level;
btrfs_node_key(path->nodes[level],
&root_item->drop_progress,
path->slots[level]);
root_item->drop_level = level;
}
BUG_ON(wc->level == 0);
if (btrfs_should_end_transaction(trans, tree_root)) {
ret = btrfs_update_root(trans, tree_root,
&root->root_key,
root_item);
if (ret) {
btrfs_abort_transaction(trans, tree_root, ret);
err = ret;
goto out_end_trans;
}
btrfs_end_transaction_throttle(trans, tree_root);
trans = btrfs_start_transaction(tree_root, 0);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
goto out_free;
}
if (block_rsv)
trans->block_rsv = block_rsv;
}
}
btrfs_release_path(path);
if (err)
goto out_end_trans;
ret = btrfs_del_root(trans, tree_root, &root->root_key);
if (ret) {
btrfs_abort_transaction(trans, tree_root, ret);
goto out_end_trans;
}
if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
NULL, NULL);
if (ret < 0) {
btrfs_abort_transaction(trans, tree_root, ret);
err = ret;
goto out_end_trans;
} else if (ret > 0) {
/* if we fail to delete the orphan item this time
* around, it'll get picked up the next time.
*
* The most common failure here is just -ENOENT.
*/
btrfs_del_orphan_item(trans, tree_root,
root->root_key.objectid);
}
}
if (root->in_radix) {
btrfs_free_fs_root(tree_root->fs_info, root);
} else {
free_extent_buffer(root->node);
free_extent_buffer(root->commit_root);
kfree(root);
}
out_end_trans:
btrfs_end_transaction_throttle(trans, tree_root);
out_free:
kfree(wc);
btrfs_free_path(path);
out:
if (err)
btrfs_std_error(root->fs_info, err);
return err;
}
/*
* drop subtree rooted at tree block 'node'.
*
* NOTE: this function will unlock and release tree block 'node'
* only used by relocation code
*/
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *node,
struct extent_buffer *parent)
{
struct btrfs_path *path;
struct walk_control *wc;
int level;
int parent_level;
int ret = 0;
int wret;
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
wc = kzalloc(sizeof(*wc), GFP_NOFS);
if (!wc) {
btrfs_free_path(path);
return -ENOMEM;
}
btrfs_assert_tree_locked(parent);
parent_level = btrfs_header_level(parent);
extent_buffer_get(parent);
path->nodes[parent_level] = parent;
path->slots[parent_level] = btrfs_header_nritems(parent);
btrfs_assert_tree_locked(node);
level = btrfs_header_level(node);
path->nodes[level] = node;
path->slots[level] = 0;
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
wc->refs[parent_level] = 1;
wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
wc->level = level;
wc->shared_level = -1;
wc->stage = DROP_REFERENCE;
wc->update_ref = 0;
wc->keep_locks = 1;
wc->for_reloc = 1;
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
while (1) {
wret = walk_down_tree(trans, root, path, wc);
if (wret < 0) {
ret = wret;
break;
}
wret = walk_up_tree(trans, root, path, wc, parent_level);
if (wret < 0)
ret = wret;
if (wret != 0)
break;
}
kfree(wc);
btrfs_free_path(path);
return ret;
}
static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
{
u64 num_devices;
u64 stripped;
/*
* if restripe for this chunk_type is on pick target profile and
* return, otherwise do the usual balance
*/
stripped = get_restripe_target(root->fs_info, flags);
if (stripped)
return extended_to_chunk(stripped);
/*
* we add in the count of missing devices because we want
* to make sure that any RAID levels on a degraded FS
* continue to be honored.
*/
num_devices = root->fs_info->fs_devices->rw_devices +
root->fs_info->fs_devices->missing_devices;
stripped = BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
if (num_devices == 1) {
stripped |= BTRFS_BLOCK_GROUP_DUP;
stripped = flags & ~stripped;
/* turn raid0 into single device chunks */
if (flags & BTRFS_BLOCK_GROUP_RAID0)
return stripped;
/* turn mirroring into duplication */
if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10))
return stripped | BTRFS_BLOCK_GROUP_DUP;
} else {
/* they already had raid on here, just return */
if (flags & stripped)
return flags;
stripped |= BTRFS_BLOCK_GROUP_DUP;
stripped = flags & ~stripped;
/* switch duplicated blocks with raid1 */
if (flags & BTRFS_BLOCK_GROUP_DUP)
return stripped | BTRFS_BLOCK_GROUP_RAID1;
/* this is drive concat, leave it alone */
}
return flags;
}
static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
{
struct btrfs_space_info *sinfo = cache->space_info;
u64 num_bytes;
u64 min_allocable_bytes;
int ret = -ENOSPC;
/*
* We need some metadata space and system metadata space for
* allocating chunks in some corner cases until we force to set
* it to be readonly.
*/
if ((sinfo->flags &
(BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
!force)
min_allocable_bytes = 1 * 1024 * 1024;
else
min_allocable_bytes = 0;
spin_lock(&sinfo->lock);
spin_lock(&cache->lock);
if (cache->ro) {
ret = 0;
goto out;
}
num_bytes = cache->key.offset - cache->reserved - cache->pinned -
cache->bytes_super - btrfs_block_group_used(&cache->item);
if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
min_allocable_bytes <= sinfo->total_bytes) {
sinfo->bytes_readonly += num_bytes;
cache->ro = 1;
ret = 0;
}
out:
spin_unlock(&cache->lock);
spin_unlock(&sinfo->lock);
return ret;
}
int btrfs_set_block_group_ro(struct btrfs_root *root,
struct btrfs_block_group_cache *cache)
{
struct btrfs_trans_handle *trans;
u64 alloc_flags;
int ret;
BUG_ON(cache->ro);
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
alloc_flags = update_block_group_flags(root, cache->flags);
if (alloc_flags != cache->flags) {
ret = do_chunk_alloc(trans, root, alloc_flags,
CHUNK_ALLOC_FORCE);
if (ret < 0)
goto out;
}
ret = set_block_group_ro(cache, 0);
if (!ret)
goto out;
alloc_flags = get_alloc_profile(root, cache->space_info->flags);
ret = do_chunk_alloc(trans, root, alloc_flags,
CHUNK_ALLOC_FORCE);
if (ret < 0)
goto out;
ret = set_block_group_ro(cache, 0);
out:
btrfs_end_transaction(trans, root);
return ret;
}
int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 type)
{
u64 alloc_flags = get_alloc_profile(root, type);
return do_chunk_alloc(trans, root, alloc_flags,
CHUNK_ALLOC_FORCE);
}
/*
* helper to account the unused space of all the readonly block group in the
* list. takes mirrors into account.
*/
static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
{
struct btrfs_block_group_cache *block_group;
u64 free_bytes = 0;
int factor;
list_for_each_entry(block_group, groups_list, list) {
spin_lock(&block_group->lock);
if (!block_group->ro) {
spin_unlock(&block_group->lock);
continue;
}
if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_DUP))
factor = 2;
else
factor = 1;
free_bytes += (block_group->key.offset -
btrfs_block_group_used(&block_group->item)) *
factor;
spin_unlock(&block_group->lock);
}
return free_bytes;
}
/*
* helper to account the unused space of all the readonly block group in the
* space_info. takes mirrors into account.
*/
u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
{
int i;
u64 free_bytes = 0;
spin_lock(&sinfo->lock);
for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
if (!list_empty(&sinfo->block_groups[i]))
free_bytes += __btrfs_get_ro_block_group_free_space(
&sinfo->block_groups[i]);
spin_unlock(&sinfo->lock);
return free_bytes;
}
void btrfs_set_block_group_rw(struct btrfs_root *root,
struct btrfs_block_group_cache *cache)
{
struct btrfs_space_info *sinfo = cache->space_info;
u64 num_bytes;
BUG_ON(!cache->ro);
spin_lock(&sinfo->lock);
spin_lock(&cache->lock);
num_bytes = cache->key.offset - cache->reserved - cache->pinned -
cache->bytes_super - btrfs_block_group_used(&cache->item);
sinfo->bytes_readonly -= num_bytes;
cache->ro = 0;
spin_unlock(&cache->lock);
spin_unlock(&sinfo->lock);
}
/*
* checks to see if its even possible to relocate this block group.
*
* @return - -1 if it's not a good idea to relocate this block group, 0 if its
* ok to go ahead and try.
*/
int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
{
struct btrfs_block_group_cache *block_group;
struct btrfs_space_info *space_info;
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
struct btrfs_device *device;
u64 min_free;
u64 dev_min = 1;
u64 dev_nr = 0;
u64 target;
int index;
int full = 0;
int ret = 0;
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
/* odd, couldn't find the block group, leave it alone */
if (!block_group)
return -1;
min_free = btrfs_block_group_used(&block_group->item);
/* no bytes used, we're good */
if (!min_free)
goto out;
space_info = block_group->space_info;
spin_lock(&space_info->lock);
full = space_info->full;
/*
* if this is the last block group we have in this space, we can't
* relocate it unless we're able to allocate a new chunk below.
*
* Otherwise, we need to make sure we have room in the space to handle
* all of the extents from this block group. If we can, we're good
*/
if ((space_info->total_bytes != block_group->key.offset) &&
(space_info->bytes_used + space_info->bytes_reserved +
space_info->bytes_pinned + space_info->bytes_readonly +
min_free < space_info->total_bytes)) {
spin_unlock(&space_info->lock);
goto out;
}
spin_unlock(&space_info->lock);
/*
* ok we don't have enough space, but maybe we have free space on our
* devices to allocate new chunks for relocation, so loop through our
* alloc devices and guess if we have enough space. if this block
* group is going to be restriped, run checks against the target
* profile instead of the current one.
*/
ret = -1;
/*
* index:
* 0: raid10
* 1: raid1
* 2: dup
* 3: raid0
* 4: single
*/
target = get_restripe_target(root->fs_info, block_group->flags);
if (target) {
index = __get_raid_index(extended_to_chunk(target));
} else {
/*
* this is just a balance, so if we were marked as full
* we know there is no space for a new chunk
*/
if (full)
goto out;
index = get_block_group_index(block_group);
}
if (index == BTRFS_RAID_RAID10) {
dev_min = 4;
/* Divide by 2 */
min_free >>= 1;
} else if (index == BTRFS_RAID_RAID1) {
dev_min = 2;
} else if (index == BTRFS_RAID_DUP) {
/* Multiply by 2 */
min_free <<= 1;
} else if (index == BTRFS_RAID_RAID0) {
dev_min = fs_devices->rw_devices;
do_div(min_free, dev_min);
}
mutex_lock(&root->fs_info->chunk_mutex);
list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
u64 dev_offset;
/*
* check to make sure we can actually find a chunk with enough
* space to fit our block group in.
*/
if (device->total_bytes > device->bytes_used + min_free &&
!device->is_tgtdev_for_dev_replace) {
ret = find_free_dev_extent(device, min_free,
&dev_offset, NULL);
if (!ret)
dev_nr++;
if (dev_nr >= dev_min)
break;
ret = -1;
}
}
mutex_unlock(&root->fs_info->chunk_mutex);
out:
btrfs_put_block_group(block_group);
return ret;
}
static int find_first_block_group(struct btrfs_root *root,
struct btrfs_path *path, struct btrfs_key *key)
{
int ret = 0;
struct btrfs_key found_key;
struct extent_buffer *leaf;
int slot;
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret < 0)
goto out;
while (1) {
slot = path->slots[0];
leaf = path->nodes[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto out;
break;
}
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.objectid >= key->objectid &&
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
ret = 0;
goto out;
}
path->slots[0]++;
}
out:
return ret;
}
void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
{
struct btrfs_block_group_cache *block_group;
u64 last = 0;
while (1) {
struct inode *inode;
block_group = btrfs_lookup_first_block_group(info, last);
while (block_group) {
spin_lock(&block_group->lock);
if (block_group->iref)
break;
spin_unlock(&block_group->lock);
block_group = next_block_group(info->tree_root,
block_group);
}
if (!block_group) {
if (last == 0)
break;
last = 0;
continue;
}
inode = block_group->inode;
block_group->iref = 0;
block_group->inode = NULL;
spin_unlock(&block_group->lock);
iput(inode);
last = block_group->key.objectid + block_group->key.offset;
btrfs_put_block_group(block_group);
}
}
int btrfs_free_block_groups(struct btrfs_fs_info *info)
{
struct btrfs_block_group_cache *block_group;
struct btrfs_space_info *space_info;
struct btrfs_caching_control *caching_ctl;
struct rb_node *n;
down_write(&info->extent_commit_sem);
while (!list_empty(&info->caching_block_groups)) {
caching_ctl = list_entry(info->caching_block_groups.next,
struct btrfs_caching_control, list);
list_del(&caching_ctl->list);
put_caching_control(caching_ctl);
}
up_write(&info->extent_commit_sem);
spin_lock(&info->block_group_cache_lock);
while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
block_group = rb_entry(n, struct btrfs_block_group_cache,
cache_node);
rb_erase(&block_group->cache_node,
&info->block_group_cache_tree);
spin_unlock(&info->block_group_cache_lock);
down_write(&block_group->space_info->groups_sem);
list_del(&block_group->list);
up_write(&block_group->space_info->groups_sem);
if (block_group->cached == BTRFS_CACHE_STARTED)
wait_block_group_cache_done(block_group);
/*
* We haven't cached this block group, which means we could
* possibly have excluded extents on this block group.
*/
if (block_group->cached == BTRFS_CACHE_NO)
free_excluded_extents(info->extent_root, block_group);
btrfs_remove_free_space_cache(block_group);
btrfs_put_block_group(block_group);
spin_lock(&info->block_group_cache_lock);
}
spin_unlock(&info->block_group_cache_lock);
/* now that all the block groups are freed, go through and
* free all the space_info structs. This is only called during
* the final stages of unmount, and so we know nobody is
* using them. We call synchronize_rcu() once before we start,
* just to be on the safe side.
*/
synchronize_rcu();
release_global_block_rsv(info);
while(!list_empty(&info->space_info)) {
space_info = list_entry(info->space_info.next,
struct btrfs_space_info,
list);
if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
if (space_info->bytes_pinned > 0 ||
space_info->bytes_reserved > 0 ||
space_info->bytes_may_use > 0) {
WARN_ON(1);
dump_space_info(space_info, 0, 0);
}
}
list_del(&space_info->list);
kfree(space_info);
}
return 0;
}
static void __link_block_group(struct btrfs_space_info *space_info,
struct btrfs_block_group_cache *cache)
{
int index = get_block_group_index(cache);
down_write(&space_info->groups_sem);
list_add_tail(&cache->list, &space_info->block_groups[index]);
up_write(&space_info->groups_sem);
}
int btrfs_read_block_groups(struct btrfs_root *root)
{
struct btrfs_path *path;
int ret;
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_space_info *space_info;
struct btrfs_key key;
struct btrfs_key found_key;
struct extent_buffer *leaf;
int need_clear = 0;
u64 cache_gen;
root = info->extent_root;
key.objectid = 0;
key.offset = 0;
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 1;
cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
if (btrfs_test_opt(root, SPACE_CACHE) &&
btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
need_clear = 1;
if (btrfs_test_opt(root, CLEAR_CACHE))
need_clear = 1;
while (1) {
ret = find_first_block_group(root, path, &key);
if (ret > 0)
break;
if (ret != 0)
goto error;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
cache = kzalloc(sizeof(*cache), GFP_NOFS);
if (!cache) {
ret = -ENOMEM;
goto error;
}
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
GFP_NOFS);
if (!cache->free_space_ctl) {
kfree(cache);
ret = -ENOMEM;
goto error;
}
atomic_set(&cache->count, 1);
spin_lock_init(&cache->lock);
cache->fs_info = info;
INIT_LIST_HEAD(&cache->list);
INIT_LIST_HEAD(&cache->cluster_list);
if (need_clear) {
/*
* When we mount with old space cache, we need to
* set BTRFS_DC_CLEAR and set dirty flag.
*
* a) Setting 'BTRFS_DC_CLEAR' makes sure that we
* truncate the old free space cache inode and
* setup a new one.
* b) Setting 'dirty flag' makes sure that we flush
* the new space cache info onto disk.
*/
cache->disk_cache_state = BTRFS_DC_CLEAR;
if (btrfs_test_opt(root, SPACE_CACHE))
cache->dirty = 1;
}
read_extent_buffer(leaf, &cache->item,
btrfs_item_ptr_offset(leaf, path->slots[0]),
sizeof(cache->item));
memcpy(&cache->key, &found_key, sizeof(found_key));
key.objectid = found_key.objectid + found_key.offset;
btrfs_release_path(path);
cache->flags = btrfs_block_group_flags(&cache->item);
cache->sectorsize = root->sectorsize;
cache->full_stripe_len = btrfs_full_stripe_len(root,
&root->fs_info->mapping_tree,
found_key.objectid);
btrfs_init_free_space_ctl(cache);
/*
* We need to exclude the super stripes now so that the space
* info has super bytes accounted for, otherwise we'll think
* we have more space than we actually do.
*/
ret = exclude_super_stripes(root, cache);
if (ret) {
/*
* We may have excluded something, so call this just in
* case.
*/
free_excluded_extents(root, cache);
kfree(cache->free_space_ctl);
kfree(cache);
goto error;
}
/*
* check for two cases, either we are full, and therefore
* don't need to bother with the caching work since we won't
* find any space, or we are empty, and we can just add all
* the space in and be done with it. This saves us _alot_ of
* time, particularly in the full case.
*/
if (found_key.offset == btrfs_block_group_used(&cache->item)) {
cache->last_byte_to_unpin = (u64)-1;
cache->cached = BTRFS_CACHE_FINISHED;
free_excluded_extents(root, cache);
} else if (btrfs_block_group_used(&cache->item) == 0) {
cache->last_byte_to_unpin = (u64)-1;
cache->cached = BTRFS_CACHE_FINISHED;
add_new_free_space(cache, root->fs_info,
found_key.objectid,
found_key.objectid +
found_key.offset);
free_excluded_extents(root, cache);
}
ret = update_space_info(info, cache->flags, found_key.offset,
btrfs_block_group_used(&cache->item),
&space_info);
BUG_ON(ret); /* -ENOMEM */
cache->space_info = space_info;
spin_lock(&cache->space_info->lock);
cache->space_info->bytes_readonly += cache->bytes_super;
spin_unlock(&cache->space_info->lock);
__link_block_group(space_info, cache);
ret = btrfs_add_block_group_cache(root->fs_info, cache);
BUG_ON(ret); /* Logic error */
set_avail_alloc_bits(root->fs_info, cache->flags);
if (btrfs_chunk_readonly(root, cache->key.objectid))
set_block_group_ro(cache, 1);
}
list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
if (!(get_alloc_profile(root, space_info->flags) &
(BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID5 |
BTRFS_BLOCK_GROUP_RAID6 |
BTRFS_BLOCK_GROUP_DUP)))
continue;
/*
* avoid allocating from un-mirrored block group if there are
* mirrored block groups.
*/
list_for_each_entry(cache, &space_info->block_groups[3], list)
set_block_group_ro(cache, 1);
list_for_each_entry(cache, &space_info->block_groups[4], list)
set_block_group_ro(cache, 1);
}
init_global_block_rsv(info);
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_block_group_cache *block_group, *tmp;
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct btrfs_block_group_item item;
struct btrfs_key key;
int ret = 0;
list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
new_bg_list) {
list_del_init(&block_group->new_bg_list);
if (ret)
continue;
spin_lock(&block_group->lock);
memcpy(&item, &block_group->item, sizeof(item));
memcpy(&key, &block_group->key, sizeof(key));
spin_unlock(&block_group->lock);
ret = btrfs_insert_item(trans, extent_root, &key, &item,
sizeof(item));
if (ret)
btrfs_abort_transaction(trans, extent_root, ret);
}
}
int btrfs_make_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytes_used,
u64 type, u64 chunk_objectid, u64 chunk_offset,
u64 size)
{
int ret;
struct btrfs_root *extent_root;
struct btrfs_block_group_cache *cache;
extent_root = root->fs_info->extent_root;
root->fs_info->last_trans_log_full_commit = trans->transid;
cache = kzalloc(sizeof(*cache), GFP_NOFS);
if (!cache)
return -ENOMEM;
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
GFP_NOFS);
if (!cache->free_space_ctl) {
kfree(cache);
return -ENOMEM;
}
cache->key.objectid = chunk_offset;
cache->key.offset = size;
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
cache->sectorsize = root->sectorsize;
cache->fs_info = root->fs_info;
cache->full_stripe_len = btrfs_full_stripe_len(root,
&root->fs_info->mapping_tree,
chunk_offset);
atomic_set(&cache->count, 1);
spin_lock_init(&cache->lock);
INIT_LIST_HEAD(&cache->list);
INIT_LIST_HEAD(&cache->cluster_list);
INIT_LIST_HEAD(&cache->new_bg_list);
btrfs_init_free_space_ctl(cache);
btrfs_set_block_group_used(&cache->item, bytes_used);
btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
cache->flags = type;
btrfs_set_block_group_flags(&cache->item, type);
cache->last_byte_to_unpin = (u64)-1;
cache->cached = BTRFS_CACHE_FINISHED;
ret = exclude_super_stripes(root, cache);
if (ret) {
/*
* We may have excluded something, so call this just in
* case.
*/
free_excluded_extents(root, cache);
kfree(cache->free_space_ctl);
kfree(cache);
return ret;
}
add_new_free_space(cache, root->fs_info, chunk_offset,
chunk_offset + size);
free_excluded_extents(root, cache);
ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
&cache->space_info);
BUG_ON(ret); /* -ENOMEM */
update_global_block_rsv(root->fs_info);
spin_lock(&cache->space_info->lock);
cache->space_info->bytes_readonly += cache->bytes_super;
spin_unlock(&cache->space_info->lock);
__link_block_group(cache->space_info, cache);
ret = btrfs_add_block_group_cache(root->fs_info, cache);
BUG_ON(ret); /* Logic error */
list_add_tail(&cache->new_bg_list, &trans->new_bgs);
set_avail_alloc_bits(extent_root->fs_info, type);
return 0;
}
static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
u64 extra_flags = chunk_to_extended(flags) &
BTRFS_EXTENDED_PROFILE_MASK;
write_seqlock(&fs_info->profiles_lock);
if (flags & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits &= ~extra_flags;
if (flags & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits &= ~extra_flags;
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits &= ~extra_flags;
write_sequnlock(&fs_info->profiles_lock);
}
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 group_start)
{
struct btrfs_path *path;
struct btrfs_block_group_cache *block_group;
struct btrfs_free_cluster *cluster;
struct btrfs_root *tree_root = root->fs_info->tree_root;
struct btrfs_key key;
struct inode *inode;
int ret;
int index;
int factor;
root = root->fs_info->extent_root;
block_group = btrfs_lookup_block_group(root->fs_info, group_start);
BUG_ON(!block_group);
BUG_ON(!block_group->ro);
/*
* Free the reserved super bytes from this block group before
* remove it.
*/
free_excluded_extents(root, block_group);
memcpy(&key, &block_group->key, sizeof(key));
index = get_block_group_index(block_group);
if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10))
factor = 2;
else
factor = 1;
/* make sure this block group isn't part of an allocation cluster */
cluster = &root->fs_info->data_alloc_cluster;
spin_lock(&cluster->refill_lock);
btrfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
/*
* make sure this block group isn't part of a metadata
* allocation cluster
*/
cluster = &root->fs_info->meta_alloc_cluster;
spin_lock(&cluster->refill_lock);
btrfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
inode = lookup_free_space_inode(tree_root, block_group, path);
if (!IS_ERR(inode)) {
ret = btrfs_orphan_add(trans, inode);
if (ret) {
btrfs_add_delayed_iput(inode);
goto out;
}
clear_nlink(inode);
/* One for the block groups ref */
spin_lock(&block_group->lock);
if (block_group->iref) {
block_group->iref = 0;
block_group->inode = NULL;
spin_unlock(&block_group->lock);
iput(inode);
} else {
spin_unlock(&block_group->lock);
}
/* One for our lookup ref */
btrfs_add_delayed_iput(inode);
}
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
key.offset = block_group->key.objectid;
key.type = 0;
ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0)
btrfs_release_path(path);
if (ret == 0) {
ret = btrfs_del_item(trans, tree_root, path);
if (ret)
goto out;
btrfs_release_path(path);
}
spin_lock(&root->fs_info->block_group_cache_lock);
rb_erase(&block_group->cache_node,
&root->fs_info->block_group_cache_tree);
if (root->fs_info->first_logical_byte == block_group->key.objectid)
root->fs_info->first_logical_byte = (u64)-1;
spin_unlock(&root->fs_info->block_group_cache_lock);
down_write(&block_group->space_info->groups_sem);
/*
* we must use list_del_init so people can check to see if they
* are still on the list after taking the semaphore
*/
list_del_init(&block_group->list);
if (list_empty(&block_group->space_info->block_groups[index]))
clear_avail_alloc_bits(root->fs_info, block_group->flags);
up_write(&block_group->space_info->groups_sem);
if (block_group->cached == BTRFS_CACHE_STARTED)
wait_block_group_cache_done(block_group);
btrfs_remove_free_space_cache(block_group);
spin_lock(&block_group->space_info->lock);
block_group->space_info->total_bytes -= block_group->key.offset;
block_group->space_info->bytes_readonly -= block_group->key.offset;
block_group->space_info->disk_total -= block_group->key.offset * factor;
spin_unlock(&block_group->space_info->lock);
memcpy(&key, &block_group->key, sizeof(key));
btrfs_clear_space_info_full(root->fs_info);
btrfs_put_block_group(block_group);
btrfs_put_block_group(block_group);
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -EIO;
if (ret < 0)
goto out;
ret = btrfs_del_item(trans, root, path);
out:
btrfs_free_path(path);
return ret;
}
int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
{
struct btrfs_space_info *space_info;
struct btrfs_super_block *disk_super;
u64 features;
u64 flags;
int mixed = 0;
int ret;
disk_super = fs_info->super_copy;
if (!btrfs_super_root(disk_super))
return 1;
features = btrfs_super_incompat_flags(disk_super);
if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
mixed = 1;
flags = BTRFS_BLOCK_GROUP_SYSTEM;
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
if (ret)
goto out;
if (mixed) {
flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
} else {
flags = BTRFS_BLOCK_GROUP_METADATA;
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
if (ret)
goto out;
flags = BTRFS_BLOCK_GROUP_DATA;
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
}
out:
return ret;
}
int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
{
return unpin_extent_range(root, start, end);
}
int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
u64 num_bytes, u64 *actual_bytes)
{
return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
}
int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_block_group_cache *cache = NULL;
u64 group_trimmed;
u64 start;
u64 end;
u64 trimmed = 0;
u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
int ret = 0;
/*
* try to trim all FS space, our block group may start from non-zero.
*/
if (range->len == total_bytes)
cache = btrfs_lookup_first_block_group(fs_info, range->start);
else
cache = btrfs_lookup_block_group(fs_info, range->start);
while (cache) {
if (cache->key.objectid >= (range->start + range->len)) {
btrfs_put_block_group(cache);
break;
}
start = max(range->start, cache->key.objectid);
end = min(range->start + range->len,
cache->key.objectid + cache->key.offset);
if (end - start >= range->minlen) {
if (!block_group_cache_done(cache)) {
ret = cache_block_group(cache, 0);
if (!ret)
wait_block_group_cache_done(cache);
}
ret = btrfs_trim_block_group(cache,
&group_trimmed,
start,
end,
range->minlen);
trimmed += group_trimmed;
if (ret) {
btrfs_put_block_group(cache);
break;
}
}
cache = next_block_group(fs_info->tree_root, cache);
}
range->len = trimmed;
return ret;
}