kernel-fxtec-pro1x/fs/xfs/linux-2.6/xfs_sync.c
Christoph Hellwig 075fe10286 xfs: split xfs_sync_inodes
xfs_sync_inodes is used to write back either file data or inode metadata.
In general we always do these separately, except for one fishy case in
xfs_fs_put_super that does both.  So separate xfs_sync_inodes into
separate xfs_sync_data and xfs_sync_attr functions.  In xfs_fs_put_super
we first call the data sync and then the attr sync as that was the previous
order.  The moved log force in that path doesn't make a difference because
we will force the log again as part of the real unmount process.

The filesystem readonly checks are not performed by the new function but
instead moved into the callers, given that most callers alredy have it
further up in the stack.  Also add debug checks that we do not pass in
incorrect flags in the new xfs_sync_data and xfs_sync_attr function and
fix the one place that did pass in a wrong flag.

Also remove a comment mentioning xfs_sync_inodes that has been incorrect
for a while because we always take either the iolock or ilock in the
sync path these days.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
2009-06-08 15:35:48 +02:00

781 lines
18 KiB
C

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"
#include "xfs_quota.h"
#include <linux/kthread.h>
#include <linux/freezer.h>
STATIC xfs_inode_t *
xfs_inode_ag_lookup(
struct xfs_mount *mp,
struct xfs_perag *pag,
uint32_t *first_index,
int tag)
{
int nr_found;
struct xfs_inode *ip;
/*
* use a gang lookup to find the next inode in the tree
* as the tree is sparse and a gang lookup walks to find
* the number of objects requested.
*/
read_lock(&pag->pag_ici_lock);
if (tag == XFS_ICI_NO_TAG) {
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
(void **)&ip, *first_index, 1);
} else {
nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
(void **)&ip, *first_index, 1, tag);
}
if (!nr_found)
goto unlock;
/*
* Update the index for the next lookup. Catch overflows
* into the next AG range which can occur if we have inodes
* in the last block of the AG and we are currently
* pointing to the last inode.
*/
*first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
goto unlock;
return ip;
unlock:
read_unlock(&pag->pag_ici_lock);
return NULL;
}
STATIC int
xfs_inode_ag_walk(
struct xfs_mount *mp,
xfs_agnumber_t ag,
int (*execute)(struct xfs_inode *ip,
struct xfs_perag *pag, int flags),
int flags,
int tag)
{
struct xfs_perag *pag = &mp->m_perag[ag];
uint32_t first_index;
int last_error = 0;
int skipped;
restart:
skipped = 0;
first_index = 0;
do {
int error = 0;
xfs_inode_t *ip;
ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
if (!ip)
break;
error = execute(ip, pag, flags);
if (error == EAGAIN) {
skipped++;
continue;
}
if (error)
last_error = error;
/*
* bail out if the filesystem is corrupted.
*/
if (error == EFSCORRUPTED)
break;
} while (1);
if (skipped) {
delay(1);
goto restart;
}
xfs_put_perag(mp, pag);
return last_error;
}
int
xfs_inode_ag_iterator(
struct xfs_mount *mp,
int (*execute)(struct xfs_inode *ip,
struct xfs_perag *pag, int flags),
int flags,
int tag)
{
int error = 0;
int last_error = 0;
xfs_agnumber_t ag;
for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
if (!mp->m_perag[ag].pag_ici_init)
continue;
error = xfs_inode_ag_walk(mp, ag, execute, flags, tag);
if (error) {
last_error = error;
if (error == EFSCORRUPTED)
break;
}
}
return XFS_ERROR(last_error);
}
/* must be called with pag_ici_lock held and releases it */
int
xfs_sync_inode_valid(
struct xfs_inode *ip,
struct xfs_perag *pag)
{
struct inode *inode = VFS_I(ip);
/* nothing to sync during shutdown */
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
read_unlock(&pag->pag_ici_lock);
return EFSCORRUPTED;
}
/*
* If we can't get a reference on the inode, it must be in reclaim.
* Leave it for the reclaim code to flush. Also avoid inodes that
* haven't been fully initialised.
*/
if (!igrab(inode)) {
read_unlock(&pag->pag_ici_lock);
return ENOENT;
}
read_unlock(&pag->pag_ici_lock);
if (is_bad_inode(inode) || xfs_iflags_test(ip, XFS_INEW)) {
IRELE(ip);
return ENOENT;
}
return 0;
}
STATIC int
xfs_sync_inode_data(
struct xfs_inode *ip,
struct xfs_perag *pag,
int flags)
{
struct inode *inode = VFS_I(ip);
struct address_space *mapping = inode->i_mapping;
int error = 0;
error = xfs_sync_inode_valid(ip, pag);
if (error)
return error;
if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
goto out_wait;
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
if (flags & SYNC_TRYLOCK)
goto out_wait;
xfs_ilock(ip, XFS_IOLOCK_SHARED);
}
error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
0 : XFS_B_ASYNC, FI_NONE);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
out_wait:
if (flags & SYNC_IOWAIT)
xfs_ioend_wait(ip);
IRELE(ip);
return error;
}
STATIC int
xfs_sync_inode_attr(
struct xfs_inode *ip,
struct xfs_perag *pag,
int flags)
{
int error = 0;
error = xfs_sync_inode_valid(ip, pag);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (xfs_inode_clean(ip))
goto out_unlock;
if (!xfs_iflock_nowait(ip)) {
if (!(flags & SYNC_WAIT))
goto out_unlock;
xfs_iflock(ip);
}
if (xfs_inode_clean(ip)) {
xfs_ifunlock(ip);
goto out_unlock;
}
error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_SHARED);
IRELE(ip);
return error;
}
/*
* Write out pagecache data for the whole filesystem.
*/
int
xfs_sync_data(
struct xfs_mount *mp,
int flags)
{
int error;
ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT|SYNC_IOWAIT)) == 0);
error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
XFS_ICI_NO_TAG);
if (error)
return XFS_ERROR(error);
xfs_log_force(mp, 0,
(flags & SYNC_WAIT) ?
XFS_LOG_FORCE | XFS_LOG_SYNC :
XFS_LOG_FORCE);
return 0;
}
/*
* Write out inode metadata (attributes) for the whole filesystem.
*/
int
xfs_sync_attr(
struct xfs_mount *mp,
int flags)
{
ASSERT((flags & ~SYNC_WAIT) == 0);
return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
XFS_ICI_NO_TAG);
}
STATIC int
xfs_commit_dummy_trans(
struct xfs_mount *mp,
uint log_flags)
{
struct xfs_inode *ip = mp->m_rootip;
struct xfs_trans *tp;
int error;
/*
* Put a dummy transaction in the log to tell recovery
* that all others are OK.
*/
tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
if (error) {
xfs_trans_cancel(tp, 0);
return error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
/* XXX(hch): ignoring the error here.. */
error = xfs_trans_commit(tp, 0);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_log_force(mp, 0, log_flags);
return 0;
}
int
xfs_sync_fsdata(
struct xfs_mount *mp,
int flags)
{
struct xfs_buf *bp;
struct xfs_buf_log_item *bip;
int error = 0;
/*
* If this is xfssyncd() then only sync the superblock if we can
* lock it without sleeping and it is not pinned.
*/
if (flags & SYNC_BDFLUSH) {
ASSERT(!(flags & SYNC_WAIT));
bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
if (!bp)
goto out;
bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
goto out_brelse;
} else {
bp = xfs_getsb(mp, 0);
/*
* If the buffer is pinned then push on the log so we won't
* get stuck waiting in the write for someone, maybe
* ourselves, to flush the log.
*
* Even though we just pushed the log above, we did not have
* the superblock buffer locked at that point so it can
* become pinned in between there and here.
*/
if (XFS_BUF_ISPINNED(bp))
xfs_log_force(mp, 0, XFS_LOG_FORCE);
}
if (flags & SYNC_WAIT)
XFS_BUF_UNASYNC(bp);
else
XFS_BUF_ASYNC(bp);
return xfs_bwrite(mp, bp);
out_brelse:
xfs_buf_relse(bp);
out:
return error;
}
/*
* When remounting a filesystem read-only or freezing the filesystem, we have
* two phases to execute. This first phase is syncing the data before we
* quiesce the filesystem, and the second is flushing all the inodes out after
* we've waited for all the transactions created by the first phase to
* complete. The second phase ensures that the inodes are written to their
* location on disk rather than just existing in transactions in the log. This
* means after a quiesce there is no log replay required to write the inodes to
* disk (this is the main difference between a sync and a quiesce).
*/
/*
* First stage of freeze - no writers will make progress now we are here,
* so we flush delwri and delalloc buffers here, then wait for all I/O to
* complete. Data is frozen at that point. Metadata is not frozen,
* transactions can still occur here so don't bother flushing the buftarg
* because it'll just get dirty again.
*/
int
xfs_quiesce_data(
struct xfs_mount *mp)
{
int error;
/* push non-blocking */
xfs_sync_data(mp, 0);
xfs_qm_sync(mp, SYNC_BDFLUSH);
xfs_filestream_flush(mp);
/* push and block */
xfs_sync_data(mp, SYNC_WAIT|SYNC_IOWAIT);
xfs_qm_sync(mp, SYNC_WAIT);
/* write superblock and hoover up shutdown errors */
error = xfs_sync_fsdata(mp, 0);
/* flush data-only devices */
if (mp->m_rtdev_targp)
XFS_bflush(mp->m_rtdev_targp);
return error;
}
STATIC void
xfs_quiesce_fs(
struct xfs_mount *mp)
{
int count = 0, pincount;
xfs_flush_buftarg(mp->m_ddev_targp, 0);
xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
/*
* This loop must run at least twice. The first instance of the loop
* will flush most meta data but that will generate more meta data
* (typically directory updates). Which then must be flushed and
* logged before we can write the unmount record.
*/
do {
xfs_sync_attr(mp, SYNC_WAIT);
pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
if (!pincount) {
delay(50);
count++;
}
} while (count < 2);
}
/*
* Second stage of a quiesce. The data is already synced, now we have to take
* care of the metadata. New transactions are already blocked, so we need to
* wait for any remaining transactions to drain out before proceding.
*/
void
xfs_quiesce_attr(
struct xfs_mount *mp)
{
int error = 0;
/* wait for all modifications to complete */
while (atomic_read(&mp->m_active_trans) > 0)
delay(100);
/* flush inodes and push all remaining buffers out to disk */
xfs_quiesce_fs(mp);
/*
* Just warn here till VFS can correctly support
* read-only remount without racing.
*/
WARN_ON(atomic_read(&mp->m_active_trans) != 0);
/* Push the superblock and write an unmount record */
error = xfs_log_sbcount(mp, 1);
if (error)
xfs_fs_cmn_err(CE_WARN, mp,
"xfs_attr_quiesce: failed to log sb changes. "
"Frozen image may not be consistent.");
xfs_log_unmount_write(mp);
xfs_unmountfs_writesb(mp);
}
/*
* Enqueue a work item to be picked up by the vfs xfssyncd thread.
* Doing this has two advantages:
* - It saves on stack space, which is tight in certain situations
* - It can be used (with care) as a mechanism to avoid deadlocks.
* Flushing while allocating in a full filesystem requires both.
*/
STATIC void
xfs_syncd_queue_work(
struct xfs_mount *mp,
void *data,
void (*syncer)(struct xfs_mount *, void *),
struct completion *completion)
{
struct xfs_sync_work *work;
work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
INIT_LIST_HEAD(&work->w_list);
work->w_syncer = syncer;
work->w_data = data;
work->w_mount = mp;
work->w_completion = completion;
spin_lock(&mp->m_sync_lock);
list_add_tail(&work->w_list, &mp->m_sync_list);
spin_unlock(&mp->m_sync_lock);
wake_up_process(mp->m_sync_task);
}
/*
* Flush delayed allocate data, attempting to free up reserved space
* from existing allocations. At this point a new allocation attempt
* has failed with ENOSPC and we are in the process of scratching our
* heads, looking about for more room...
*/
STATIC void
xfs_flush_inodes_work(
struct xfs_mount *mp,
void *arg)
{
struct inode *inode = arg;
xfs_sync_data(mp, SYNC_TRYLOCK);
xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_IOWAIT);
iput(inode);
}
void
xfs_flush_inodes(
xfs_inode_t *ip)
{
struct inode *inode = VFS_I(ip);
DECLARE_COMPLETION_ONSTACK(completion);
igrab(inode);
xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
wait_for_completion(&completion);
xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}
/*
* Every sync period we need to unpin all items, reclaim inodes, sync
* quota and write out the superblock. We might need to cover the log
* to indicate it is idle.
*/
STATIC void
xfs_sync_worker(
struct xfs_mount *mp,
void *unused)
{
int error;
if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
/* dgc: errors ignored here */
error = xfs_qm_sync(mp, SYNC_BDFLUSH);
error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
if (xfs_log_need_covered(mp))
error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
}
mp->m_sync_seq++;
wake_up(&mp->m_wait_single_sync_task);
}
STATIC int
xfssyncd(
void *arg)
{
struct xfs_mount *mp = arg;
long timeleft;
xfs_sync_work_t *work, *n;
LIST_HEAD (tmp);
set_freezable();
timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
for (;;) {
timeleft = schedule_timeout_interruptible(timeleft);
/* swsusp */
try_to_freeze();
if (kthread_should_stop() && list_empty(&mp->m_sync_list))
break;
spin_lock(&mp->m_sync_lock);
/*
* We can get woken by laptop mode, to do a sync -
* that's the (only!) case where the list would be
* empty with time remaining.
*/
if (!timeleft || list_empty(&mp->m_sync_list)) {
if (!timeleft)
timeleft = xfs_syncd_centisecs *
msecs_to_jiffies(10);
INIT_LIST_HEAD(&mp->m_sync_work.w_list);
list_add_tail(&mp->m_sync_work.w_list,
&mp->m_sync_list);
}
list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
list_move(&work->w_list, &tmp);
spin_unlock(&mp->m_sync_lock);
list_for_each_entry_safe(work, n, &tmp, w_list) {
(*work->w_syncer)(mp, work->w_data);
list_del(&work->w_list);
if (work == &mp->m_sync_work)
continue;
if (work->w_completion)
complete(work->w_completion);
kmem_free(work);
}
}
return 0;
}
int
xfs_syncd_init(
struct xfs_mount *mp)
{
mp->m_sync_work.w_syncer = xfs_sync_worker;
mp->m_sync_work.w_mount = mp;
mp->m_sync_work.w_completion = NULL;
mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
if (IS_ERR(mp->m_sync_task))
return -PTR_ERR(mp->m_sync_task);
return 0;
}
void
xfs_syncd_stop(
struct xfs_mount *mp)
{
kthread_stop(mp->m_sync_task);
}
int
xfs_reclaim_inode(
xfs_inode_t *ip,
int locked,
int sync_mode)
{
xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
/* The hash lock here protects a thread in xfs_iget_core from
* racing with us on linking the inode back with a vnode.
* Once we have the XFS_IRECLAIM flag set it will not touch
* us.
*/
write_lock(&pag->pag_ici_lock);
spin_lock(&ip->i_flags_lock);
if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
!__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
spin_unlock(&ip->i_flags_lock);
write_unlock(&pag->pag_ici_lock);
if (locked) {
xfs_ifunlock(ip);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
return -EAGAIN;
}
__xfs_iflags_set(ip, XFS_IRECLAIM);
spin_unlock(&ip->i_flags_lock);
write_unlock(&pag->pag_ici_lock);
xfs_put_perag(ip->i_mount, pag);
/*
* If the inode is still dirty, then flush it out. If the inode
* is not in the AIL, then it will be OK to flush it delwri as
* long as xfs_iflush() does not keep any references to the inode.
* We leave that decision up to xfs_iflush() since it has the
* knowledge of whether it's OK to simply do a delwri flush of
* the inode or whether we need to wait until the inode is
* pulled from the AIL.
* We get the flush lock regardless, though, just to make sure
* we don't free it while it is being flushed.
*/
if (!locked) {
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_iflock(ip);
}
/*
* In the case of a forced shutdown we rely on xfs_iflush() to
* wait for the inode to be unpinned before returning an error.
*/
if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
/* synchronize with xfs_iflush_done */
xfs_iflock(ip);
xfs_ifunlock(ip);
}
xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_ireclaim(ip);
return 0;
}
/*
* We set the inode flag atomically with the radix tree tag.
* Once we get tag lookups on the radix tree, this inode flag
* can go away.
*/
void
xfs_inode_set_reclaim_tag(
xfs_inode_t *ip)
{
xfs_mount_t *mp = ip->i_mount;
xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
read_lock(&pag->pag_ici_lock);
spin_lock(&ip->i_flags_lock);
radix_tree_tag_set(&pag->pag_ici_root,
XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
spin_unlock(&ip->i_flags_lock);
read_unlock(&pag->pag_ici_lock);
xfs_put_perag(mp, pag);
}
void
__xfs_inode_clear_reclaim_tag(
xfs_mount_t *mp,
xfs_perag_t *pag,
xfs_inode_t *ip)
{
radix_tree_tag_clear(&pag->pag_ici_root,
XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
}
void
xfs_inode_clear_reclaim_tag(
xfs_inode_t *ip)
{
xfs_mount_t *mp = ip->i_mount;
xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
read_lock(&pag->pag_ici_lock);
spin_lock(&ip->i_flags_lock);
__xfs_inode_clear_reclaim_tag(mp, pag, ip);
spin_unlock(&ip->i_flags_lock);
read_unlock(&pag->pag_ici_lock);
xfs_put_perag(mp, pag);
}
STATIC int
xfs_reclaim_inode_now(
struct xfs_inode *ip,
struct xfs_perag *pag,
int flags)
{
/* ignore if already under reclaim */
if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
read_unlock(&pag->pag_ici_lock);
return 0;
}
read_unlock(&pag->pag_ici_lock);
return xfs_reclaim_inode(ip, 0, flags);
}
int
xfs_reclaim_inodes(
xfs_mount_t *mp,
int mode)
{
return xfs_inode_ag_iterator(mp, xfs_reclaim_inode_now, mode,
XFS_ICI_RECLAIM_TAG);
}