kernel-fxtec-pro1x/arch/mips/kernel/irixelf.c
Steven J. Hill 7ee8798f37 Until I figure out why NFS filesystems are having problems with
the 'load_irix_binary' and having kernel faults, Irix support is
disabled. I suspect locking of some sort, but I will now have to
investigate further.

Static IRIX binaries are now being detected properly and are using the
ELF interpreter found in this file.

Signed-off-by: Steven J. Hill <sjhill@realitydiluted.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2005-10-29 19:30:39 +01:00

1346 lines
35 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* irixelf.c: Code to load IRIX ELF executables conforming to the MIPS ABI.
* Based off of work by Eric Youngdale.
*
* Copyright (C) 1993 - 1994 Eric Youngdale <ericy@cais.com>
* Copyright (C) 1996 - 2004 David S. Miller <dm@engr.sgi.com>
* Copyright (C) 2004 - 2005 Steven J. Hill <sjhill@realitydiluted.com>
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/stat.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/a.out.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/binfmts.h>
#include <linux/string.h>
#include <linux/file.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/shm.h>
#include <linux/personality.h>
#include <linux/elfcore.h>
#include <linux/smp_lock.h>
#include <asm/mipsregs.h>
#include <asm/namei.h>
#include <asm/prctl.h>
#include <asm/uaccess.h>
#define DLINFO_ITEMS 12
#include <linux/elf.h>
#undef DEBUG
static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs);
static int load_irix_library(struct file *);
static int irix_core_dump(long signr, struct pt_regs * regs,
struct file *file);
static struct linux_binfmt irix_format = {
NULL, THIS_MODULE, load_irix_binary, load_irix_library,
irix_core_dump, PAGE_SIZE
};
#ifndef elf_addr_t
#define elf_addr_t unsigned long
#endif
#ifdef DEBUG
/* Debugging routines. */
static char *get_elf_p_type(Elf32_Word p_type)
{
int i = (int) p_type;
switch(i) {
case PT_NULL: return("PT_NULL"); break;
case PT_LOAD: return("PT_LOAD"); break;
case PT_DYNAMIC: return("PT_DYNAMIC"); break;
case PT_INTERP: return("PT_INTERP"); break;
case PT_NOTE: return("PT_NOTE"); break;
case PT_SHLIB: return("PT_SHLIB"); break;
case PT_PHDR: return("PT_PHDR"); break;
case PT_LOPROC: return("PT_LOPROC/REGINFO"); break;
case PT_HIPROC: return("PT_HIPROC"); break;
default: return("PT_BOGUS"); break;
}
}
static void print_elfhdr(struct elfhdr *ehp)
{
int i;
printk("ELFHDR: e_ident<");
for(i = 0; i < (EI_NIDENT - 1); i++) printk("%x ", ehp->e_ident[i]);
printk("%x>\n", ehp->e_ident[i]);
printk(" e_type[%04x] e_machine[%04x] e_version[%08lx]\n",
(unsigned short) ehp->e_type, (unsigned short) ehp->e_machine,
(unsigned long) ehp->e_version);
printk(" e_entry[%08lx] e_phoff[%08lx] e_shoff[%08lx] "
"e_flags[%08lx]\n",
(unsigned long) ehp->e_entry, (unsigned long) ehp->e_phoff,
(unsigned long) ehp->e_shoff, (unsigned long) ehp->e_flags);
printk(" e_ehsize[%04x] e_phentsize[%04x] e_phnum[%04x]\n",
(unsigned short) ehp->e_ehsize, (unsigned short) ehp->e_phentsize,
(unsigned short) ehp->e_phnum);
printk(" e_shentsize[%04x] e_shnum[%04x] e_shstrndx[%04x]\n",
(unsigned short) ehp->e_shentsize, (unsigned short) ehp->e_shnum,
(unsigned short) ehp->e_shstrndx);
}
static void print_phdr(int i, struct elf_phdr *ep)
{
printk("PHDR[%d]: p_type[%s] p_offset[%08lx] p_vaddr[%08lx] "
"p_paddr[%08lx]\n", i, get_elf_p_type(ep->p_type),
(unsigned long) ep->p_offset, (unsigned long) ep->p_vaddr,
(unsigned long) ep->p_paddr);
printk(" p_filesz[%08lx] p_memsz[%08lx] p_flags[%08lx] "
"p_align[%08lx]\n", (unsigned long) ep->p_filesz,
(unsigned long) ep->p_memsz, (unsigned long) ep->p_flags,
(unsigned long) ep->p_align);
}
static void dump_phdrs(struct elf_phdr *ep, int pnum)
{
int i;
for(i = 0; i < pnum; i++, ep++) {
if((ep->p_type == PT_LOAD) ||
(ep->p_type == PT_INTERP) ||
(ep->p_type == PT_PHDR))
print_phdr(i, ep);
}
}
#endif /* DEBUG */
static void set_brk(unsigned long start, unsigned long end)
{
start = PAGE_ALIGN(start);
end = PAGE_ALIGN(end);
if (end <= start)
return;
down_write(&current->mm->mmap_sem);
do_brk(start, end - start);
up_write(&current->mm->mmap_sem);
}
/* We need to explicitly zero any fractional pages
* after the data section (i.e. bss). This would
* contain the junk from the file that should not
* be in memory.
*/
static void padzero(unsigned long elf_bss)
{
unsigned long nbyte;
nbyte = elf_bss & (PAGE_SIZE-1);
if (nbyte) {
nbyte = PAGE_SIZE - nbyte;
clear_user((void *) elf_bss, nbyte);
}
}
static unsigned long * create_irix_tables(char * p, int argc, int envc,
struct elfhdr * exec, unsigned int load_addr,
unsigned int interp_load_addr, struct pt_regs *regs,
struct elf_phdr *ephdr)
{
elf_addr_t *argv;
elf_addr_t *envp;
elf_addr_t *sp, *csp;
#ifdef DEBUG
printk("create_irix_tables: p[%p] argc[%d] envc[%d] "
"load_addr[%08x] interp_load_addr[%08x]\n",
p, argc, envc, load_addr, interp_load_addr);
#endif
sp = (elf_addr_t *) (~15UL & (unsigned long) p);
csp = sp;
csp -= exec ? DLINFO_ITEMS*2 : 2;
csp -= envc+1;
csp -= argc+1;
csp -= 1; /* argc itself */
if ((unsigned long)csp & 15UL) {
sp -= (16UL - ((unsigned long)csp & 15UL)) / sizeof(*sp);
}
/*
* Put the ELF interpreter info on the stack
*/
#define NEW_AUX_ENT(nr, id, val) \
__put_user ((id), sp+(nr*2)); \
__put_user ((val), sp+(nr*2+1)); \
sp -= 2;
NEW_AUX_ENT(0, AT_NULL, 0);
if(exec) {
sp -= 11*2;
NEW_AUX_ENT (0, AT_PHDR, load_addr + exec->e_phoff);
NEW_AUX_ENT (1, AT_PHENT, sizeof (struct elf_phdr));
NEW_AUX_ENT (2, AT_PHNUM, exec->e_phnum);
NEW_AUX_ENT (3, AT_PAGESZ, ELF_EXEC_PAGESIZE);
NEW_AUX_ENT (4, AT_BASE, interp_load_addr);
NEW_AUX_ENT (5, AT_FLAGS, 0);
NEW_AUX_ENT (6, AT_ENTRY, (elf_addr_t) exec->e_entry);
NEW_AUX_ENT (7, AT_UID, (elf_addr_t) current->uid);
NEW_AUX_ENT (8, AT_EUID, (elf_addr_t) current->euid);
NEW_AUX_ENT (9, AT_GID, (elf_addr_t) current->gid);
NEW_AUX_ENT (10, AT_EGID, (elf_addr_t) current->egid);
}
#undef NEW_AUX_ENT
sp -= envc+1;
envp = sp;
sp -= argc+1;
argv = sp;
__put_user((elf_addr_t)argc,--sp);
current->mm->arg_start = (unsigned long) p;
while (argc-->0) {
__put_user((unsigned long)p,argv++);
p += strlen_user(p);
}
__put_user((unsigned long) NULL, argv);
current->mm->arg_end = current->mm->env_start = (unsigned long) p;
while (envc-->0) {
__put_user((unsigned long)p,envp++);
p += strlen_user(p);
}
__put_user((unsigned long) NULL, envp);
current->mm->env_end = (unsigned long) p;
return sp;
}
/* This is much more generalized than the library routine read function,
* so we keep this separate. Technically the library read function
* is only provided so that we can read a.out libraries that have
* an ELF header.
*/
static unsigned int load_irix_interp(struct elfhdr * interp_elf_ex,
struct file * interpreter,
unsigned int *interp_load_addr)
{
struct elf_phdr *elf_phdata = NULL;
struct elf_phdr *eppnt;
unsigned int len;
unsigned int load_addr;
int elf_bss;
int retval;
unsigned int last_bss;
int error;
int i;
unsigned int k;
elf_bss = 0;
last_bss = 0;
error = load_addr = 0;
#ifdef DEBUG
print_elfhdr(interp_elf_ex);
#endif
/* First of all, some simple consistency checks */
if ((interp_elf_ex->e_type != ET_EXEC &&
interp_elf_ex->e_type != ET_DYN) ||
!interpreter->f_op->mmap) {
printk("IRIX interp has bad e_type %d\n", interp_elf_ex->e_type);
return 0xffffffff;
}
/* Now read in all of the header information */
if(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > PAGE_SIZE) {
printk("IRIX interp header bigger than a page (%d)\n",
(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum));
return 0xffffffff;
}
elf_phdata = kmalloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum,
GFP_KERNEL);
if(!elf_phdata) {
printk("Cannot kmalloc phdata for IRIX interp.\n");
return 0xffffffff;
}
/* If the size of this structure has changed, then punt, since
* we will be doing the wrong thing.
*/
if(interp_elf_ex->e_phentsize != 32) {
printk("IRIX interp e_phentsize == %d != 32 ",
interp_elf_ex->e_phentsize);
kfree(elf_phdata);
return 0xffffffff;
}
retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
(char *) elf_phdata,
sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
#ifdef DEBUG
dump_phdrs(elf_phdata, interp_elf_ex->e_phnum);
#endif
eppnt = elf_phdata;
for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
if(eppnt->p_type == PT_LOAD) {
int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
int elf_prot = 0;
unsigned long vaddr = 0;
if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
elf_type |= MAP_FIXED;
vaddr = eppnt->p_vaddr;
pr_debug("INTERP do_mmap(%p, %08lx, %08lx, %08lx, %08lx, %08lx) ",
interpreter, vaddr,
(unsigned long) (eppnt->p_filesz + (eppnt->p_vaddr & 0xfff)),
(unsigned long) elf_prot, (unsigned long) elf_type,
(unsigned long) (eppnt->p_offset & 0xfffff000));
down_write(&current->mm->mmap_sem);
error = do_mmap(interpreter, vaddr,
eppnt->p_filesz + (eppnt->p_vaddr & 0xfff),
elf_prot, elf_type,
eppnt->p_offset & 0xfffff000);
up_write(&current->mm->mmap_sem);
if(error < 0 && error > -1024) {
printk("Aieee IRIX interp mmap error=%d\n", error);
break; /* Real error */
}
pr_debug("error=%08lx ", (unsigned long) error);
if(!load_addr && interp_elf_ex->e_type == ET_DYN) {
load_addr = error;
pr_debug("load_addr = error ");
}
/* Find the end of the file mapping for this phdr, and keep
* track of the largest address we see for this.
*/
k = eppnt->p_vaddr + eppnt->p_filesz;
if(k > elf_bss) elf_bss = k;
/* Do the same thing for the memory mapping - between
* elf_bss and last_bss is the bss section.
*/
k = eppnt->p_memsz + eppnt->p_vaddr;
if(k > last_bss) last_bss = k;
pr_debug("\n");
}
}
/* Now use mmap to map the library into memory. */
if(error < 0 && error > -1024) {
pr_debug("got error %d\n", error);
kfree(elf_phdata);
return 0xffffffff;
}
/* Now fill out the bss section. First pad the last page up
* to the page boundary, and then perform a mmap to make sure
* that there are zero-mapped pages up to and including the
* last bss page.
*/
pr_debug("padzero(%08lx) ", (unsigned long) (elf_bss));
padzero(elf_bss);
len = (elf_bss + 0xfff) & 0xfffff000; /* What we have mapped so far */
pr_debug("last_bss[%08lx] len[%08lx]\n", (unsigned long) last_bss,
(unsigned long) len);
/* Map the last of the bss segment */
if (last_bss > len) {
down_write(&current->mm->mmap_sem);
do_brk(len, (last_bss - len));
up_write(&current->mm->mmap_sem);
}
kfree(elf_phdata);
*interp_load_addr = load_addr;
return ((unsigned int) interp_elf_ex->e_entry);
}
/* Check sanity of IRIX elf executable header. */
static int verify_binary(struct elfhdr *ehp, struct linux_binprm *bprm)
{
if (memcmp(ehp->e_ident, ELFMAG, SELFMAG) != 0)
return -ENOEXEC;
/* First of all, some simple consistency checks */
if((ehp->e_type != ET_EXEC && ehp->e_type != ET_DYN) ||
!bprm->file->f_op->mmap) {
return -ENOEXEC;
}
/* XXX Don't support N32 or 64bit binaries yet because they can
* XXX and do execute 64 bit instructions and expect all registers
* XXX to be 64 bit as well. We need to make the kernel save
* XXX all registers as 64bits on cpu's capable of this at
* XXX exception time plus frob the XTLB exception vector.
*/
if((ehp->e_flags & EF_MIPS_ABI2))
return -ENOEXEC;
return 0;
}
/*
* This is where the detailed check is performed. Irix binaries
* use interpreters with 'libc.so' in the name, so this function
* can differentiate between Linux and Irix binaries.
*/
static inline int look_for_irix_interpreter(char **name,
struct file **interpreter,
struct elfhdr *interp_elf_ex,
struct elf_phdr *epp,
struct linux_binprm *bprm, int pnum)
{
int i;
int retval = -EINVAL;
struct file *file = NULL;
*name = NULL;
for(i = 0; i < pnum; i++, epp++) {
if (epp->p_type != PT_INTERP)
continue;
/* It is illegal to have two interpreters for one executable. */
if (*name != NULL)
goto out;
*name = (char *) kmalloc((epp->p_filesz +
strlen(IRIX_EMUL)),
GFP_KERNEL);
if (!*name)
return -ENOMEM;
strcpy(*name, IRIX_EMUL);
retval = kernel_read(bprm->file, epp->p_offset, (*name + 16),
epp->p_filesz);
if (retval < 0)
goto out;
file = open_exec(*name);
if (IS_ERR(file)) {
retval = PTR_ERR(file);
goto out;
}
retval = kernel_read(file, 0, bprm->buf, 128);
if (retval < 0)
goto dput_and_out;
*interp_elf_ex = *(struct elfhdr *) bprm->buf;
}
*interpreter = file;
return 0;
dput_and_out:
fput(file);
out:
kfree(*name);
return retval;
}
static inline int verify_irix_interpreter(struct elfhdr *ihp)
{
if (memcmp(ihp->e_ident, ELFMAG, SELFMAG) != 0)
return -ELIBBAD;
return 0;
}
#define EXEC_MAP_FLAGS (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE)
static inline void map_executable(struct file *fp, struct elf_phdr *epp, int pnum,
unsigned int *estack, unsigned int *laddr,
unsigned int *scode, unsigned int *ebss,
unsigned int *ecode, unsigned int *edata,
unsigned int *ebrk)
{
unsigned int tmp;
int i, prot;
for(i = 0; i < pnum; i++, epp++) {
if(epp->p_type != PT_LOAD)
continue;
/* Map it. */
prot = (epp->p_flags & PF_R) ? PROT_READ : 0;
prot |= (epp->p_flags & PF_W) ? PROT_WRITE : 0;
prot |= (epp->p_flags & PF_X) ? PROT_EXEC : 0;
down_write(&current->mm->mmap_sem);
(void) do_mmap(fp, (epp->p_vaddr & 0xfffff000),
(epp->p_filesz + (epp->p_vaddr & 0xfff)),
prot, EXEC_MAP_FLAGS,
(epp->p_offset & 0xfffff000));
up_write(&current->mm->mmap_sem);
/* Fixup location tracking vars. */
if((epp->p_vaddr & 0xfffff000) < *estack)
*estack = (epp->p_vaddr & 0xfffff000);
if(!*laddr)
*laddr = epp->p_vaddr - epp->p_offset;
if(epp->p_vaddr < *scode)
*scode = epp->p_vaddr;
tmp = epp->p_vaddr + epp->p_filesz;
if(tmp > *ebss)
*ebss = tmp;
if((epp->p_flags & PF_X) && *ecode < tmp)
*ecode = tmp;
if(*edata < tmp)
*edata = tmp;
tmp = epp->p_vaddr + epp->p_memsz;
if(tmp > *ebrk)
*ebrk = tmp;
}
}
static inline int map_interpreter(struct elf_phdr *epp, struct elfhdr *ihp,
struct file *interp, unsigned int *iladdr,
int pnum, mm_segment_t old_fs,
unsigned int *eentry)
{
int i;
*eentry = 0xffffffff;
for(i = 0; i < pnum; i++, epp++) {
if(epp->p_type != PT_INTERP)
continue;
/* We should have fielded this error elsewhere... */
if(*eentry != 0xffffffff)
return -1;
set_fs(old_fs);
*eentry = load_irix_interp(ihp, interp, iladdr);
old_fs = get_fs();
set_fs(get_ds());
fput(interp);
if (*eentry == 0xffffffff)
return -1;
}
return 0;
}
/*
* IRIX maps a page at 0x200000 that holds information about the
* process and the system, here we map the page and fill the
* structure
*/
static void irix_map_prda_page(void)
{
unsigned long v;
struct prda *pp;
down_write(&current->mm->mmap_sem);
v = do_brk (PRDA_ADDRESS, PAGE_SIZE);
up_write(&current->mm->mmap_sem);
if (v < 0)
return;
pp = (struct prda *) v;
pp->prda_sys.t_pid = current->pid;
pp->prda_sys.t_prid = read_c0_prid();
pp->prda_sys.t_rpid = current->pid;
/* We leave the rest set to zero */
}
/* These are the functions used to load ELF style executables and shared
* libraries. There is no binary dependent code anywhere else.
*/
static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs)
{
struct elfhdr elf_ex, interp_elf_ex;
struct file *interpreter;
struct elf_phdr *elf_phdata, *elf_ihdr, *elf_ephdr;
unsigned int load_addr, elf_bss, elf_brk;
unsigned int elf_entry, interp_load_addr = 0;
unsigned int start_code, end_code, end_data, elf_stack;
int retval, has_interp, has_ephdr, size, i;
char *elf_interpreter;
mm_segment_t old_fs;
load_addr = 0;
has_interp = has_ephdr = 0;
elf_ihdr = elf_ephdr = NULL;
elf_ex = *((struct elfhdr *) bprm->buf);
retval = -ENOEXEC;
if (verify_binary(&elf_ex, bprm))
goto out;
/*
* Telling -o32 static binaries from Linux and Irix apart from each
* other is difficult. There are 2 differences to be noted for static
* binaries from the 2 operating systems:
*
* 1) Irix binaries have their .text section before their .init
* section. Linux binaries are just the opposite.
*
* 2) Irix binaries usually have <= 12 sections and Linux
* binaries have > 20.
*
* We will use Method #2 since Method #1 would require us to read in
* the section headers which is way too much overhead. This appears
* to work for everything we have ran into so far. If anyone has a
* better method to tell the binaries apart, I'm listening.
*/
if (elf_ex.e_shnum > 20)
goto out;
#ifdef DEBUG
print_elfhdr(&elf_ex);
#endif
/* Now read in all of the header information */
size = elf_ex.e_phentsize * elf_ex.e_phnum;
if (size > 65536)
goto out;
elf_phdata = kmalloc(size, GFP_KERNEL);
if (elf_phdata == NULL) {
retval = -ENOMEM;
goto out;
}
retval = kernel_read(bprm->file, elf_ex.e_phoff, (char *)elf_phdata, size);
if (retval < 0)
goto out_free_ph;
#ifdef DEBUG
dump_phdrs(elf_phdata, elf_ex.e_phnum);
#endif
/* Set some things for later. */
for(i = 0; i < elf_ex.e_phnum; i++) {
switch(elf_phdata[i].p_type) {
case PT_INTERP:
has_interp = 1;
elf_ihdr = &elf_phdata[i];
break;
case PT_PHDR:
has_ephdr = 1;
elf_ephdr = &elf_phdata[i];
break;
};
}
pr_debug("\n");
elf_bss = 0;
elf_brk = 0;
elf_stack = 0xffffffff;
elf_interpreter = NULL;
start_code = 0xffffffff;
end_code = 0;
end_data = 0;
/*
* If we get a return value, we change the value to be ENOEXEC
* so that we can exit gracefully and the main binary format
* search loop in 'fs/exec.c' will move onto the next handler
* which should be the normal ELF binary handler.
*/
retval = look_for_irix_interpreter(&elf_interpreter, &interpreter,
&interp_elf_ex, elf_phdata, bprm,
elf_ex.e_phnum);
if (retval) {
retval = -ENOEXEC;
goto out_free_file;
}
if (elf_interpreter) {
retval = verify_irix_interpreter(&interp_elf_ex);
if(retval)
goto out_free_interp;
}
/* OK, we are done with that, now set up the arg stuff,
* and then start this sucker up.
*/
retval = -E2BIG;
if (!bprm->sh_bang && !bprm->p)
goto out_free_interp;
/* Flush all traces of the currently running executable */
retval = flush_old_exec(bprm);
if (retval)
goto out_free_dentry;
/* OK, This is the point of no return */
current->mm->end_data = 0;
current->mm->end_code = 0;
current->mm->mmap = NULL;
current->flags &= ~PF_FORKNOEXEC;
elf_entry = (unsigned int) elf_ex.e_entry;
/* Do this so that we can load the interpreter, if need be. We will
* change some of these later.
*/
set_mm_counter(current->mm, rss, 0);
setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
current->mm->start_stack = bprm->p;
/* At this point, we assume that the image should be loaded at
* fixed address, not at a variable address.
*/
old_fs = get_fs();
set_fs(get_ds());
map_executable(bprm->file, elf_phdata, elf_ex.e_phnum, &elf_stack,
&load_addr, &start_code, &elf_bss, &end_code,
&end_data, &elf_brk);
if(elf_interpreter) {
retval = map_interpreter(elf_phdata, &interp_elf_ex,
interpreter, &interp_load_addr,
elf_ex.e_phnum, old_fs, &elf_entry);
kfree(elf_interpreter);
if(retval) {
set_fs(old_fs);
printk("Unable to load IRIX ELF interpreter\n");
send_sig(SIGSEGV, current, 0);
retval = 0;
goto out_free_file;
}
}
set_fs(old_fs);
kfree(elf_phdata);
set_personality(PER_IRIX32);
set_binfmt(&irix_format);
compute_creds(bprm);
current->flags &= ~PF_FORKNOEXEC;
bprm->p = (unsigned long)
create_irix_tables((char *)bprm->p, bprm->argc, bprm->envc,
(elf_interpreter ? &elf_ex : NULL),
load_addr, interp_load_addr, regs, elf_ephdr);
current->mm->start_brk = current->mm->brk = elf_brk;
current->mm->end_code = end_code;
current->mm->start_code = start_code;
current->mm->end_data = end_data;
current->mm->start_stack = bprm->p;
/* Calling set_brk effectively mmaps the pages that we need for the
* bss and break sections.
*/
set_brk(elf_bss, elf_brk);
/*
* IRIX maps a page at 0x200000 which holds some system
* information. Programs depend on this.
*/
irix_map_prda_page();
padzero(elf_bss);
pr_debug("(start_brk) %lx\n" , (long) current->mm->start_brk);
pr_debug("(end_code) %lx\n" , (long) current->mm->end_code);
pr_debug("(start_code) %lx\n" , (long) current->mm->start_code);
pr_debug("(end_data) %lx\n" , (long) current->mm->end_data);
pr_debug("(start_stack) %lx\n" , (long) current->mm->start_stack);
pr_debug("(brk) %lx\n" , (long) current->mm->brk);
#if 0 /* XXX No fucking way dude... */
/* Why this, you ask??? Well SVr4 maps page 0 as read-only,
* and some applications "depend" upon this behavior.
* Since we do not have the power to recompile these, we
* emulate the SVr4 behavior. Sigh.
*/
down_write(&current->mm->mmap_sem);
(void) do_mmap(NULL, 0, 4096, PROT_READ | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE, 0);
up_write(&current->mm->mmap_sem);
#endif
start_thread(regs, elf_entry, bprm->p);
if (current->ptrace & PT_PTRACED)
send_sig(SIGTRAP, current, 0);
return 0;
out:
return retval;
out_free_dentry:
allow_write_access(interpreter);
fput(interpreter);
out_free_interp:
kfree(elf_interpreter);
out_free_file:
out_free_ph:
kfree (elf_phdata);
goto out;
}
/* This is really simpleminded and specialized - we are loading an
* a.out library that is given an ELF header.
*/
static int load_irix_library(struct file *file)
{
struct elfhdr elf_ex;
struct elf_phdr *elf_phdata = NULL;
unsigned int len = 0;
int elf_bss = 0;
int retval;
unsigned int bss;
int error;
int i,j, k;
error = kernel_read(file, 0, (char *) &elf_ex, sizeof(elf_ex));
if (error != sizeof(elf_ex))
return -ENOEXEC;
if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
return -ENOEXEC;
/* First of all, some simple consistency checks. */
if(elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
!file->f_op->mmap)
return -ENOEXEC;
/* Now read in all of the header information. */
if(sizeof(struct elf_phdr) * elf_ex.e_phnum > PAGE_SIZE)
return -ENOEXEC;
elf_phdata = kmalloc(sizeof(struct elf_phdr) * elf_ex.e_phnum, GFP_KERNEL);
if (elf_phdata == NULL)
return -ENOMEM;
retval = kernel_read(file, elf_ex.e_phoff, (char *) elf_phdata,
sizeof(struct elf_phdr) * elf_ex.e_phnum);
j = 0;
for(i=0; i<elf_ex.e_phnum; i++)
if((elf_phdata + i)->p_type == PT_LOAD) j++;
if(j != 1) {
kfree(elf_phdata);
return -ENOEXEC;
}
while(elf_phdata->p_type != PT_LOAD) elf_phdata++;
/* Now use mmap to map the library into memory. */
down_write(&current->mm->mmap_sem);
error = do_mmap(file,
elf_phdata->p_vaddr & 0xfffff000,
elf_phdata->p_filesz + (elf_phdata->p_vaddr & 0xfff),
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
elf_phdata->p_offset & 0xfffff000);
up_write(&current->mm->mmap_sem);
k = elf_phdata->p_vaddr + elf_phdata->p_filesz;
if (k > elf_bss) elf_bss = k;
if (error != (elf_phdata->p_vaddr & 0xfffff000)) {
kfree(elf_phdata);
return error;
}
padzero(elf_bss);
len = (elf_phdata->p_filesz + elf_phdata->p_vaddr+ 0xfff) & 0xfffff000;
bss = elf_phdata->p_memsz + elf_phdata->p_vaddr;
if (bss > len) {
down_write(&current->mm->mmap_sem);
do_brk(len, bss-len);
up_write(&current->mm->mmap_sem);
}
kfree(elf_phdata);
return 0;
}
/* Called through irix_syssgi() to map an elf image given an FD,
* a phdr ptr USER_PHDRP in userspace, and a count CNT telling how many
* phdrs there are in the USER_PHDRP array. We return the vaddr the
* first phdr was successfully mapped to.
*/
unsigned long irix_mapelf(int fd, struct elf_phdr *user_phdrp, int cnt)
{
unsigned long type, vaddr, filesz, offset, flags;
struct elf_phdr *hp;
struct file *filp;
int i, retval;
pr_debug("irix_mapelf: fd[%d] user_phdrp[%p] cnt[%d]\n",
fd, user_phdrp, cnt);
/* First get the verification out of the way. */
hp = user_phdrp;
if (!access_ok(VERIFY_READ, hp, (sizeof(struct elf_phdr) * cnt))) {
pr_debug("irix_mapelf: bad pointer to ELF PHDR!\n");
return -EFAULT;
}
#ifdef DEBUG
dump_phdrs(user_phdrp, cnt);
#endif
for (i = 0; i < cnt; i++, hp++) {
if (__get_user(type, &hp->p_type))
return -EFAULT;
if (type != PT_LOAD) {
printk("irix_mapelf: One section is not PT_LOAD!\n");
return -ENOEXEC;
}
}
filp = fget(fd);
if (!filp)
return -EACCES;
if(!filp->f_op) {
printk("irix_mapelf: Bogon filp!\n");
fput(filp);
return -EACCES;
}
hp = user_phdrp;
for(i = 0; i < cnt; i++, hp++) {
int prot;
retval = __get_user(vaddr, &hp->p_vaddr);
retval |= __get_user(filesz, &hp->p_filesz);
retval |= __get_user(offset, &hp->p_offset);
retval |= __get_user(flags, &hp->p_flags);
if (retval)
return retval;
prot = (flags & PF_R) ? PROT_READ : 0;
prot |= (flags & PF_W) ? PROT_WRITE : 0;
prot |= (flags & PF_X) ? PROT_EXEC : 0;
down_write(&current->mm->mmap_sem);
retval = do_mmap(filp, (vaddr & 0xfffff000),
(filesz + (vaddr & 0xfff)),
prot, (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
(offset & 0xfffff000));
up_write(&current->mm->mmap_sem);
if (retval != (vaddr & 0xfffff000)) {
printk("irix_mapelf: do_mmap fails with %d!\n", retval);
fput(filp);
return retval;
}
}
pr_debug("irix_mapelf: Success, returning %08lx\n",
(unsigned long) user_phdrp->p_vaddr);
fput(filp);
if (__get_user(vaddr, &user_phdrp->p_vaddr))
return -EFAULT;
return vaddr;
}
/*
* ELF core dumper
*
* Modelled on fs/exec.c:aout_core_dump()
* Jeremy Fitzhardinge <jeremy@sw.oz.au>
*/
/* These are the only things you should do on a core-file: use only these
* functions to write out all the necessary info.
*/
static int dump_write(struct file *file, const void *addr, int nr)
{
return file->f_op->write(file, (const char *) addr, nr, &file->f_pos) == nr;
}
static int dump_seek(struct file *file, off_t off)
{
if (file->f_op->llseek) {
if (file->f_op->llseek(file, off, 0) != off)
return 0;
} else
file->f_pos = off;
return 1;
}
/* Decide whether a segment is worth dumping; default is yes to be
* sure (missing info is worse than too much; etc).
* Personally I'd include everything, and use the coredump limit...
*
* I think we should skip something. But I am not sure how. H.J.
*/
static inline int maydump(struct vm_area_struct *vma)
{
if (!(vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC)))
return 0;
#if 1
if (vma->vm_flags & (VM_WRITE|VM_GROWSUP|VM_GROWSDOWN))
return 1;
if (vma->vm_flags & (VM_READ|VM_EXEC|VM_EXECUTABLE|VM_SHARED))
return 0;
#endif
return 1;
}
#define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
/* An ELF note in memory. */
struct memelfnote
{
const char *name;
int type;
unsigned int datasz;
void *data;
};
static int notesize(struct memelfnote *en)
{
int sz;
sz = sizeof(struct elf_note);
sz += roundup(strlen(en->name), 4);
sz += roundup(en->datasz, 4);
return sz;
}
/* #define DEBUG */
#define DUMP_WRITE(addr, nr) \
if (!dump_write(file, (addr), (nr))) \
goto end_coredump;
#define DUMP_SEEK(off) \
if (!dump_seek(file, (off))) \
goto end_coredump;
static int writenote(struct memelfnote *men, struct file *file)
{
struct elf_note en;
en.n_namesz = strlen(men->name);
en.n_descsz = men->datasz;
en.n_type = men->type;
DUMP_WRITE(&en, sizeof(en));
DUMP_WRITE(men->name, en.n_namesz);
/* XXX - cast from long long to long to avoid need for libgcc.a */
DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */
DUMP_WRITE(men->data, men->datasz);
DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */
return 1;
end_coredump:
return 0;
}
#undef DUMP_WRITE
#undef DUMP_SEEK
#define DUMP_WRITE(addr, nr) \
if (!dump_write(file, (addr), (nr))) \
goto end_coredump;
#define DUMP_SEEK(off) \
if (!dump_seek(file, (off))) \
goto end_coredump;
/* Actual dumper.
*
* This is a two-pass process; first we find the offsets of the bits,
* and then they are actually written out. If we run out of core limit
* we just truncate.
*/
static int irix_core_dump(long signr, struct pt_regs * regs, struct file *file)
{
int has_dumped = 0;
mm_segment_t fs;
int segs;
int i;
size_t size;
struct vm_area_struct *vma;
struct elfhdr elf;
off_t offset = 0, dataoff;
int limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
int numnote = 4;
struct memelfnote notes[4];
struct elf_prstatus prstatus; /* NT_PRSTATUS */
elf_fpregset_t fpu; /* NT_PRFPREG */
struct elf_prpsinfo psinfo; /* NT_PRPSINFO */
/* Count what's needed to dump, up to the limit of coredump size. */
segs = 0;
size = 0;
for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
if (maydump(vma))
{
int sz = vma->vm_end-vma->vm_start;
if (size+sz >= limit)
break;
else
size += sz;
}
segs++;
}
#ifdef DEBUG
printk("irix_core_dump: %d segs taking %d bytes\n", segs, size);
#endif
/* Set up header. */
memcpy(elf.e_ident, ELFMAG, SELFMAG);
elf.e_ident[EI_CLASS] = ELFCLASS32;
elf.e_ident[EI_DATA] = ELFDATA2LSB;
elf.e_ident[EI_VERSION] = EV_CURRENT;
elf.e_ident[EI_OSABI] = ELF_OSABI;
memset(elf.e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
elf.e_type = ET_CORE;
elf.e_machine = ELF_ARCH;
elf.e_version = EV_CURRENT;
elf.e_entry = 0;
elf.e_phoff = sizeof(elf);
elf.e_shoff = 0;
elf.e_flags = 0;
elf.e_ehsize = sizeof(elf);
elf.e_phentsize = sizeof(struct elf_phdr);
elf.e_phnum = segs+1; /* Include notes. */
elf.e_shentsize = 0;
elf.e_shnum = 0;
elf.e_shstrndx = 0;
fs = get_fs();
set_fs(KERNEL_DS);
has_dumped = 1;
current->flags |= PF_DUMPCORE;
DUMP_WRITE(&elf, sizeof(elf));
offset += sizeof(elf); /* Elf header. */
offset += (segs+1) * sizeof(struct elf_phdr); /* Program headers. */
/* Set up the notes in similar form to SVR4 core dumps made
* with info from their /proc.
*/
memset(&psinfo, 0, sizeof(psinfo));
memset(&prstatus, 0, sizeof(prstatus));
notes[0].name = "CORE";
notes[0].type = NT_PRSTATUS;
notes[0].datasz = sizeof(prstatus);
notes[0].data = &prstatus;
prstatus.pr_info.si_signo = prstatus.pr_cursig = signr;
prstatus.pr_sigpend = current->pending.signal.sig[0];
prstatus.pr_sighold = current->blocked.sig[0];
psinfo.pr_pid = prstatus.pr_pid = current->pid;
psinfo.pr_ppid = prstatus.pr_ppid = current->parent->pid;
psinfo.pr_pgrp = prstatus.pr_pgrp = process_group(current);
psinfo.pr_sid = prstatus.pr_sid = current->signal->session;
if (current->pid == current->tgid) {
/*
* This is the record for the group leader. Add in the
* cumulative times of previous dead threads. This total
* won't include the time of each live thread whose state
* is included in the core dump. The final total reported
* to our parent process when it calls wait4 will include
* those sums as well as the little bit more time it takes
* this and each other thread to finish dying after the
* core dump synchronization phase.
*/
jiffies_to_timeval(current->utime + current->signal->utime,
&prstatus.pr_utime);
jiffies_to_timeval(current->stime + current->signal->stime,
&prstatus.pr_stime);
} else {
jiffies_to_timeval(current->utime, &prstatus.pr_utime);
jiffies_to_timeval(current->stime, &prstatus.pr_stime);
}
jiffies_to_timeval(current->signal->cutime, &prstatus.pr_cutime);
jiffies_to_timeval(current->signal->cstime, &prstatus.pr_cstime);
if (sizeof(elf_gregset_t) != sizeof(struct pt_regs)) {
printk("sizeof(elf_gregset_t) (%d) != sizeof(struct pt_regs) "
"(%d)\n", sizeof(elf_gregset_t), sizeof(struct pt_regs));
} else {
*(struct pt_regs *)&prstatus.pr_reg = *regs;
}
notes[1].name = "CORE";
notes[1].type = NT_PRPSINFO;
notes[1].datasz = sizeof(psinfo);
notes[1].data = &psinfo;
i = current->state ? ffz(~current->state) + 1 : 0;
psinfo.pr_state = i;
psinfo.pr_sname = (i < 0 || i > 5) ? '.' : "RSDZTD"[i];
psinfo.pr_zomb = psinfo.pr_sname == 'Z';
psinfo.pr_nice = task_nice(current);
psinfo.pr_flag = current->flags;
psinfo.pr_uid = current->uid;
psinfo.pr_gid = current->gid;
{
int i, len;
set_fs(fs);
len = current->mm->arg_end - current->mm->arg_start;
len = len >= ELF_PRARGSZ ? ELF_PRARGSZ : len;
(void *) copy_from_user(&psinfo.pr_psargs,
(const char *)current->mm->arg_start, len);
for (i = 0; i < len; i++)
if (psinfo.pr_psargs[i] == 0)
psinfo.pr_psargs[i] = ' ';
psinfo.pr_psargs[len] = 0;
set_fs(KERNEL_DS);
}
strlcpy(psinfo.pr_fname, current->comm, sizeof(psinfo.pr_fname));
notes[2].name = "CORE";
notes[2].type = NT_TASKSTRUCT;
notes[2].datasz = sizeof(*current);
notes[2].data = current;
/* Try to dump the FPU. */
prstatus.pr_fpvalid = dump_fpu (regs, &fpu);
if (!prstatus.pr_fpvalid) {
numnote--;
} else {
notes[3].name = "CORE";
notes[3].type = NT_PRFPREG;
notes[3].datasz = sizeof(fpu);
notes[3].data = &fpu;
}
/* Write notes phdr entry. */
{
struct elf_phdr phdr;
int sz = 0;
for(i = 0; i < numnote; i++)
sz += notesize(&notes[i]);
phdr.p_type = PT_NOTE;
phdr.p_offset = offset;
phdr.p_vaddr = 0;
phdr.p_paddr = 0;
phdr.p_filesz = sz;
phdr.p_memsz = 0;
phdr.p_flags = 0;
phdr.p_align = 0;
offset += phdr.p_filesz;
DUMP_WRITE(&phdr, sizeof(phdr));
}
/* Page-align dumped data. */
dataoff = offset = roundup(offset, PAGE_SIZE);
/* Write program headers for segments dump. */
for(vma = current->mm->mmap, i = 0;
i < segs && vma != NULL; vma = vma->vm_next) {
struct elf_phdr phdr;
size_t sz;
i++;
sz = vma->vm_end - vma->vm_start;
phdr.p_type = PT_LOAD;
phdr.p_offset = offset;
phdr.p_vaddr = vma->vm_start;
phdr.p_paddr = 0;
phdr.p_filesz = maydump(vma) ? sz : 0;
phdr.p_memsz = sz;
offset += phdr.p_filesz;
phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
if (vma->vm_flags & VM_WRITE)
phdr.p_flags |= PF_W;
if (vma->vm_flags & VM_EXEC)
phdr.p_flags |= PF_X;
phdr.p_align = PAGE_SIZE;
DUMP_WRITE(&phdr, sizeof(phdr));
}
for(i = 0; i < numnote; i++)
if (!writenote(&notes[i], file))
goto end_coredump;
set_fs(fs);
DUMP_SEEK(dataoff);
for(i = 0, vma = current->mm->mmap;
i < segs && vma != NULL;
vma = vma->vm_next) {
unsigned long addr = vma->vm_start;
unsigned long len = vma->vm_end - vma->vm_start;
if (!maydump(vma))
continue;
i++;
#ifdef DEBUG
printk("elf_core_dump: writing %08lx %lx\n", addr, len);
#endif
DUMP_WRITE((void *)addr, len);
}
if ((off_t) file->f_pos != offset) {
/* Sanity check. */
printk("elf_core_dump: file->f_pos (%ld) != offset (%ld)\n",
(off_t) file->f_pos, offset);
}
end_coredump:
set_fs(fs);
return has_dumped;
}
static int __init init_irix_binfmt(void)
{
extern int init_inventory(void);
extern asmlinkage unsigned long sys_call_table;
extern asmlinkage unsigned long sys_call_table_irix5;
init_inventory();
/*
* Copy the IRIX5 syscall table (8000 bytes) into the main syscall
* table. The IRIX5 calls are located by an offset of 8000 bytes
* from the beginning of the main table.
*/
memcpy((void *) ((unsigned long) &sys_call_table + 8000),
&sys_call_table_irix5, 8000);
return register_binfmt(&irix_format);
}
static void __exit exit_irix_binfmt(void)
{
/*
* Remove the Irix ELF loader.
*/
unregister_binfmt(&irix_format);
}
module_init(init_irix_binfmt)
module_exit(exit_irix_binfmt)