kernel-fxtec-pro1x/kernel/time/sched_clock.c
Ivaylo Georgiev 3fc4c60de5 Merge android-4.19.37 (9bf5904) into msm-4.19
* refs/heads/tmp-9bf5904:
  Linux 4.19.37
  kernel/sysctl.c: fix out-of-bounds access when setting file-max
  Revert "locking/lockdep: Add debug_locks check in __lock_downgrade()"
  i2c-hid: properly terminate i2c_hid_dmi_desc_override_table[] array
  ASoC: rockchip: add missing INTERLEAVED PCM attribute
  tools include: Adopt linux/bits.h
  percpu: stop printing kernel addresses
  ALSA: info: Fix racy addition/deletion of nodes
  mm/vmstat.c: fix /proc/vmstat format for CONFIG_DEBUG_TLBFLUSH=y CONFIG_SMP=n
  device_cgroup: fix RCU imbalance in error case
  sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup
  Revert "kbuild: use -Oz instead of -Os when using clang"
  tpm: Fix the type of the return value in calc_tpm2_event_size()
  tpm/tpm_i2c_atmel: Return -E2BIG when the transfer is incomplete
  modpost: file2alias: check prototype of handler
  modpost: file2alias: go back to simple devtable lookup
  mmc: sdhci: Handle auto-command errors
  mmc: sdhci: Rename SDHCI_ACMD12_ERR and SDHCI_INT_ACMD12ERR
  mmc: sdhci: Fix data command CRC error handling
  nfit/ars: Avoid stale ARS results
  nfit/ars: Allow root to busy-poll the ARS state machine
  nfit/ars: Introduce scrub_flags
  nfit/ars: Remove ars_start_flags
  timers/sched_clock: Prevent generic sched_clock wrap caused by tick_freeze()
  x86/speculation: Prevent deadlock on ssb_state::lock
  perf/x86: Fix incorrect PEBS_REGS
  x86/cpu/bugs: Use __initconst for 'const' init data
  perf/x86/amd: Add event map for AMD Family 17h
  drm/amdgpu/gmc9: fix VM_L2_CNTL3 programming
  mac80211: do not call driver wake_tx_queue op during reconfig
  rt2x00: do not increment sequence number while re-transmitting
  kprobes: Fix error check when reusing optimized probes
  kprobes: Mark ftrace mcount handler functions nokprobe
  x86/kprobes: Verify stack frame on kretprobe
  arm64: futex: Restore oldval initialization to work around buggy compilers
  drm/ttm: fix out-of-bounds read in ttm_put_pages() v2
  crypto: x86/poly1305 - fix overflow during partial reduction
  ipmi: fix sleep-in-atomic in free_user at cleanup SRCU user->release_barrier
  coredump: fix race condition between mmget_not_zero()/get_task_mm() and core dumping
  Revert "svm: Fix AVIC incomplete IPI emulation"
  Revert "scsi: fcoe: clear FC_RP_STARTED flags when receiving a LOGO"
  scsi: core: set result when the command cannot be dispatched
  vt: fix cursor when clearing the screen
  serial: sh-sci: Fix HSCIF RX sampling point calculation
  serial: sh-sci: Fix HSCIF RX sampling point adjustment
  Input: elan_i2c - add hardware ID for multiple Lenovo laptops
  ALSA: core: Fix card races between register and disconnect
  ALSA: hda/realtek - add two more pin configuration sets to quirk table
  staging: comedi: ni_usb6501: Fix possible double-free of ->usb_rx_buf
  staging: comedi: ni_usb6501: Fix use of uninitialized mutex
  staging: comedi: vmk80xx: Fix possible double-free of ->usb_rx_buf
  staging: comedi: vmk80xx: Fix use of uninitialized semaphore
  staging: most: core: use device description as name
  io: accel: kxcjk1013: restore the range after resume.
  iio: core: fix a possible circular locking dependency
  iio: adc: at91: disable adc channel interrupt in timeout case
  iio: Fix scan mask selection
  iio: dac: mcp4725: add missing powerdown bits in store eeprom
  iio: ad_sigma_delta: select channel when reading register
  iio: cros_ec: Fix the maths for gyro scale calculation
  iio:chemical:bme680: Fix SPI read interface
  iio:chemical:bme680: Fix, report temperature in millidegrees
  iio/gyro/bmg160: Use millidegrees for temperature scale
  iio: gyro: mpu3050: fix chip ID reading
  staging: iio: ad7192: Fix ad7193 channel address
  Staging: iio: meter: fixed typo
  KVM: x86: svm: make sure NMI is injected after nmi_singlestep
  KVM: x86: Don't clear EFER during SMM transitions for 32-bit vCPU
  cifs: fix handle leak in smb2_query_symlink()
  cifs: Fix use-after-free in SMB2_read
  cifs: Fix use-after-free in SMB2_write
  CIFS: keep FileInfo handle live during oplock break
  net: IP6 defrag: use rbtrees in nf_conntrack_reasm.c
  net: IP6 defrag: use rbtrees for IPv6 defrag
  net: IP defrag: encapsulate rbtree defrag code into callable functions
  sch_cake: Simplify logic in cake_select_tin()
  nfp: flower: remove vlan CFI bit from push vlan action
  nfp: flower: replace CFI with vlan present
  sch_cake: Make sure we can write the IP header before changing DSCP bits
  sch_cake: Use tc_skb_protocol() helper for getting packet protocol
  route: Avoid crash from dereferencing NULL rt->from
  net/mlx5: FPGA, tls, idr remove on flow delete
  net/tls: prevent bad memory access in tls_is_sk_tx_device_offloaded()
  net/mlx5: FPGA, tls, hold rcu read lock a bit longer
  net: thunderx: don't allow jumbo frames with XDP
  net: thunderx: raise XDP MTU to 1508
  ipv4: ensure rcu_read_lock() in ipv4_link_failure()
  ipv4: recompile ip options in ipv4_link_failure
  vhost: reject zero size iova range
  tipc: missing entries in name table of publications
  team: set slave to promisc if team is already in promisc mode
  tcp: tcp_grow_window() needs to respect tcp_space()
  net: fou: do not use guehdr after iptunnel_pull_offloads in gue_udp_recv
  net: Fix missing meta data in skb with vlan packet
  net: bridge: multicast: use rcu to access port list from br_multicast_start_querier
  net: bridge: fix per-port af_packet sockets
  net: atm: Fix potential Spectre v1 vulnerabilities
  failover: allow name change on IFF_UP slave interfaces
  bonding: fix event handling for stacked bonds
  ANDROID: cuttlefish_defconfig: Enable CONFIG_XFRM_STATISTICS

Conflicts:
	drivers/mmc/host/sdhci.c
	drivers/mmc/host/sdhci.h

Change-Id: Iff88e7f663de91949ddf065ec1d3b69c2fd3a9a9
Signed-off-by: Ivaylo Georgiev <irgeorgiev@codeaurora.org>
2019-05-31 05:26:03 -07:00

319 lines
8.6 KiB
C

/*
* sched_clock.c: Generic sched_clock() support, to extend low level
* hardware time counters to full 64-bit ns values.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clocksource.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/ktime.h>
#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/syscore_ops.h>
#include <linux/hrtimer.h>
#include <linux/sched_clock.h>
#include <linux/seqlock.h>
#include <linux/bitops.h>
/**
* struct clock_read_data - data required to read from sched_clock()
*
* @epoch_ns: sched_clock() value at last update
* @epoch_cyc: Clock cycle value at last update.
* @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
* clocks.
* @read_sched_clock: Current clock source (or dummy source when suspended).
* @mult: Multipler for scaled math conversion.
* @shift: Shift value for scaled math conversion.
*
* Care must be taken when updating this structure; it is read by
* some very hot code paths. It occupies <=40 bytes and, when combined
* with the seqcount used to synchronize access, comfortably fits into
* a 64 byte cache line.
*/
struct clock_read_data {
u64 epoch_ns;
u64 epoch_cyc;
u64 sched_clock_mask;
u64 (*read_sched_clock)(void);
u32 mult;
u32 shift;
};
/**
* struct clock_data - all data needed for sched_clock() (including
* registration of a new clock source)
*
* @seq: Sequence counter for protecting updates. The lowest
* bit is the index for @read_data.
* @read_data: Data required to read from sched_clock.
* @wrap_kt: Duration for which clock can run before wrapping.
* @rate: Tick rate of the registered clock.
* @actual_read_sched_clock: Registered hardware level clock read function.
*
* The ordering of this structure has been chosen to optimize cache
* performance. In particular 'seq' and 'read_data[0]' (combined) should fit
* into a single 64-byte cache line.
*/
struct clock_data {
seqcount_t seq;
struct clock_read_data read_data[2];
ktime_t wrap_kt;
unsigned long rate;
u64 (*actual_read_sched_clock)(void);
};
static struct hrtimer sched_clock_timer;
static int irqtime = -1;
static u64 suspend_ns;
static u64 suspend_cycles;
static u64 resume_cycles;
core_param(irqtime, irqtime, int, 0400);
static u64 notrace jiffy_sched_clock_read(void)
{
/*
* We don't need to use get_jiffies_64 on 32-bit arches here
* because we register with BITS_PER_LONG
*/
return (u64)(jiffies - INITIAL_JIFFIES);
}
static struct clock_data cd ____cacheline_aligned = {
.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
.read_sched_clock = jiffy_sched_clock_read, },
.actual_read_sched_clock = jiffy_sched_clock_read,
};
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
{
return (cyc * mult) >> shift;
}
unsigned long long notrace sched_clock(void)
{
u64 cyc, res;
unsigned long seq;
struct clock_read_data *rd;
do {
seq = raw_read_seqcount(&cd.seq);
rd = cd.read_data + (seq & 1);
cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
rd->sched_clock_mask;
res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
} while (read_seqcount_retry(&cd.seq, seq));
return res;
}
/*
* Updating the data required to read the clock.
*
* sched_clock() will never observe mis-matched data even if called from
* an NMI. We do this by maintaining an odd/even copy of the data and
* steering sched_clock() to one or the other using a sequence counter.
* In order to preserve the data cache profile of sched_clock() as much
* as possible the system reverts back to the even copy when the update
* completes; the odd copy is used *only* during an update.
*/
static void update_clock_read_data(struct clock_read_data *rd)
{
/* update the backup (odd) copy with the new data */
cd.read_data[1] = *rd;
/* steer readers towards the odd copy */
raw_write_seqcount_latch(&cd.seq);
/* now its safe for us to update the normal (even) copy */
cd.read_data[0] = *rd;
/* switch readers back to the even copy */
raw_write_seqcount_latch(&cd.seq);
}
/*
* Atomically update the sched_clock() epoch.
*/
static void update_sched_clock(void)
{
u64 cyc;
u64 ns;
struct clock_read_data rd;
rd = cd.read_data[0];
cyc = cd.actual_read_sched_clock();
ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
rd.epoch_ns = ns;
rd.epoch_cyc = cyc;
update_clock_read_data(&rd);
}
static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
{
update_sched_clock();
hrtimer_forward_now(hrt, cd.wrap_kt);
return HRTIMER_RESTART;
}
void __init
sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
{
u64 res, wrap, new_mask, new_epoch, cyc, ns;
u32 new_mult, new_shift;
unsigned long r;
char r_unit;
struct clock_read_data rd;
if (cd.rate > rate)
return;
WARN_ON(!irqs_disabled());
/* Calculate the mult/shift to convert counter ticks to ns. */
clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
new_mask = CLOCKSOURCE_MASK(bits);
cd.rate = rate;
/* Calculate how many nanosecs until we risk wrapping */
wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
cd.wrap_kt = ns_to_ktime(wrap);
rd = cd.read_data[0];
/* Update epoch for new counter and update 'epoch_ns' from old counter*/
new_epoch = read();
cyc = cd.actual_read_sched_clock();
ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
cd.actual_read_sched_clock = read;
rd.read_sched_clock = read;
rd.sched_clock_mask = new_mask;
rd.mult = new_mult;
rd.shift = new_shift;
rd.epoch_cyc = new_epoch;
rd.epoch_ns = ns;
update_clock_read_data(&rd);
if (sched_clock_timer.function != NULL) {
/* update timeout for clock wrap */
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
}
r = rate;
if (r >= 4000000) {
r /= 1000000;
r_unit = 'M';
} else {
if (r >= 1000) {
r /= 1000;
r_unit = 'k';
} else {
r_unit = ' ';
}
}
/* Calculate the ns resolution of this counter */
res = cyc_to_ns(1ULL, new_mult, new_shift);
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
bits, r, r_unit, res, wrap);
/* Enable IRQ time accounting if we have a fast enough sched_clock() */
if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
enable_sched_clock_irqtime();
pr_debug("Registered %pF as sched_clock source\n", read);
}
void __init generic_sched_clock_init(void)
{
/*
* If no sched_clock() function has been provided at that point,
* make it the final one one.
*/
if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
update_sched_clock();
/*
* Start the timer to keep sched_clock() properly updated and
* sets the initial epoch.
*/
hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sched_clock_timer.function = sched_clock_poll;
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
}
/*
* Clock read function for use when the clock is suspended.
*
* This function makes it appear to sched_clock() as if the clock
* stopped counting at its last update.
*
* This function must only be called from the critical
* section in sched_clock(). It relies on the read_seqcount_retry()
* at the end of the critical section to be sure we observe the
* correct copy of 'epoch_cyc'.
*/
static u64 notrace suspended_sched_clock_read(void)
{
unsigned long seq = raw_read_seqcount(&cd.seq);
return cd.read_data[seq & 1].epoch_cyc;
}
int sched_clock_suspend(void)
{
struct clock_read_data *rd = &cd.read_data[0];
update_sched_clock();
suspend_ns = rd->epoch_ns;
suspend_cycles = rd->epoch_cyc;
pr_info("suspend ns:%17llu suspend cycles:%17llu\n",
rd->epoch_ns, rd->epoch_cyc);
hrtimer_cancel(&sched_clock_timer);
rd->read_sched_clock = suspended_sched_clock_read;
return 0;
}
void sched_clock_resume(void)
{
struct clock_read_data *rd = &cd.read_data[0];
rd->epoch_cyc = cd.actual_read_sched_clock();
resume_cycles = rd->epoch_cyc;
pr_info("resume cycles:%17llu\n", rd->epoch_cyc);
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
rd->read_sched_clock = cd.actual_read_sched_clock;
}
static struct syscore_ops sched_clock_ops = {
.suspend = sched_clock_suspend,
.resume = sched_clock_resume,
};
static int __init sched_clock_syscore_init(void)
{
register_syscore_ops(&sched_clock_ops);
return 0;
}
device_initcall(sched_clock_syscore_init);