/* * Driver for the Conexant CX23885/7/8 PCIe bridge * * Infrared remote control input device * * Most of this file is * * Copyright (C) 2009 Andy Walls * * However, the cx23885_input_{init,fini} functions contained herein are * derived from Linux kernel files linux/media/video/.../...-input.c marked as: * * Copyright (C) 2008 * Copyright (C) 2005 Ludovico Cavedon * Markus Rechberger * Mauro Carvalho Chehab * Sascha Sommer * Copyright (C) 2004, 2005 Chris Pascoe * Copyright (C) 2003, 2004 Gerd Knorr * Copyright (C) 2003 Pavel Machek * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ #include #include #include #include #include "cx23885.h" #define RC5_BITS 14 #define RC5_HALF_BITS (2*RC5_BITS) #define RC5_HALF_BITS_MASK ((1 << RC5_HALF_BITS) - 1) #define RC5_START_BITS_NORMAL 0x3 /* Command range 0 - 63 */ #define RC5_START_BITS_EXTENDED 0x2 /* Command range 64 - 127 */ #define RC5_EXTENDED_COMMAND_OFFSET 64 #define MODULE_NAME "cx23885" static inline unsigned int rc5_command(u32 rc5_baseband) { return RC5_INSTR(rc5_baseband) + ((RC5_START(rc5_baseband) == RC5_START_BITS_EXTENDED) ? RC5_EXTENDED_COMMAND_OFFSET : 0); } static void cx23885_input_process_raw_rc5(struct cx23885_dev *dev) { struct cx23885_ir_input *ir_input = dev->ir_input; unsigned int code, command; u32 rc5; /* Ignore codes that are too short to be valid RC-5 */ if (ir_input->last_bit < (RC5_HALF_BITS - 1)) return; /* The library has the manchester coding backwards; XOR to adapt. */ code = (ir_input->code & RC5_HALF_BITS_MASK) ^ RC5_HALF_BITS_MASK; rc5 = ir_rc5_decode(code); switch (RC5_START(rc5)) { case RC5_START_BITS_NORMAL: break; case RC5_START_BITS_EXTENDED: /* Don't allow if the remote only emits standard commands */ if (ir_input->start == RC5_START_BITS_NORMAL) return; break; default: return; } if (ir_input->addr != RC5_ADDR(rc5)) return; /* Don't generate a keypress for RC-5 auto-repeated keypresses */ command = rc5_command(rc5); if (RC5_TOGGLE(rc5) != RC5_TOGGLE(ir_input->last_rc5) || command != rc5_command(ir_input->last_rc5) || /* Catch T == 0, CMD == 0 (e.g. '0') as first keypress after init */ RC5_START(ir_input->last_rc5) == 0) { /* This keypress is differnet: not an auto repeat */ ir_input_nokey(ir_input->dev, &ir_input->ir); ir_input_keydown(ir_input->dev, &ir_input->ir, command); } ir_input->last_rc5 = rc5; /* Schedule when we should do the key up event: ir_input_nokey() */ mod_timer(&ir_input->timer_keyup, jiffies + msecs_to_jiffies(ir_input->rc5_key_timeout)); } static void cx23885_input_next_pulse_width_rc5(struct cx23885_dev *dev, u32 ns_pulse) { const int rc5_quarterbit_ns = 444444; /* 32 cycles/36 kHz/2 = 444 us */ struct cx23885_ir_input *ir_input = dev->ir_input; int i, level, quarterbits, halfbits; if (!ir_input->active) { ir_input->active = 1; /* assume an initial space that we may not detect or measure */ ir_input->code = 0; ir_input->last_bit = 0; } if (ns_pulse == V4L2_SUBDEV_IR_PULSE_RX_SEQ_END) { ir_input->last_bit++; /* Account for the final space */ ir_input->active = 0; cx23885_input_process_raw_rc5(dev); return; } level = (ns_pulse & V4L2_SUBDEV_IR_PULSE_LEVEL_MASK) ? 1 : 0; /* Skip any leading space to sync to the start bit */ if (ir_input->last_bit == 0 && level == 0) return; /* * With valid RC-5 we can get up to two consecutive half-bits in a * single pulse measurment. Experiments have shown that the duration * of a half-bit can vary. Make sure we always end up with an even * number of quarter bits at the same level (mark or space). */ ns_pulse &= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS; quarterbits = ns_pulse / rc5_quarterbit_ns; if (quarterbits & 1) quarterbits++; halfbits = quarterbits / 2; for (i = 0; i < halfbits; i++) { ir_input->last_bit++; ir_input->code |= (level << ir_input->last_bit); if (ir_input->last_bit >= RC5_HALF_BITS-1) { ir_input->active = 0; cx23885_input_process_raw_rc5(dev); /* * If level is 1, a leading mark is invalid for RC5. * If level is 0, we scan past extra intial space. * Either way we don't want to reactivate collecting * marks or spaces here with any left over half-bits. */ break; } } } static void cx23885_input_process_pulse_widths_rc5(struct cx23885_dev *dev, bool add_eom) { struct cx23885_ir_input *ir_input = dev->ir_input; struct ir_input_state *ir_input_state = &ir_input->ir; u32 ns_pulse[RC5_HALF_BITS+1]; ssize_t num = 0; int count, i; do { v4l2_subdev_call(dev->sd_ir, ir, rx_read, (u8 *) ns_pulse, sizeof(ns_pulse), &num); count = num / sizeof(u32); /* Append an end of Rx seq, if the caller requested */ if (add_eom && count < ARRAY_SIZE(ns_pulse)) { ns_pulse[count] = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END; count++; } /* Just drain the Rx FIFO, if we're called, but not RC-5 */ if (ir_input_state->ir_type != IR_TYPE_RC5) continue; for (i = 0; i < count; i++) cx23885_input_next_pulse_width_rc5(dev, ns_pulse[i]); } while (num != 0); } void cx23885_input_rx_work_handler(struct cx23885_dev *dev, u32 events) { struct v4l2_subdev_ir_parameters params; int overrun, data_available; if (dev->sd_ir == NULL || events == 0) return; switch (dev->board) { case CX23885_BOARD_HAUPPAUGE_HVR1850: case CX23885_BOARD_HAUPPAUGE_HVR1290: /* * The only board we handle right now. However other boards * using the CX2388x integrated IR controller should be similar */ break; default: return; } overrun = events & (V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN | V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN); data_available = events & (V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED | V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ); if (overrun) { /* If there was a FIFO overrun, stop the device */ v4l2_subdev_call(dev->sd_ir, ir, rx_g_parameters, ¶ms); params.enable = false; /* Mitigate race with cx23885_input_ir_stop() */ params.shutdown = atomic_read(&dev->ir_input_stopping); v4l2_subdev_call(dev->sd_ir, ir, rx_s_parameters, ¶ms); } if (data_available) cx23885_input_process_pulse_widths_rc5(dev, overrun); if (overrun) { /* If there was a FIFO overrun, clear & restart the device */ params.enable = true; /* Mitigate race with cx23885_input_ir_stop() */ params.shutdown = atomic_read(&dev->ir_input_stopping); v4l2_subdev_call(dev->sd_ir, ir, rx_s_parameters, ¶ms); } } static void cx23885_input_ir_start(struct cx23885_dev *dev) { struct cx23885_ir_input *ir_input = dev->ir_input; struct ir_input_state *ir_input_state = &ir_input->ir; struct v4l2_subdev_ir_parameters params; if (dev->sd_ir == NULL) return; atomic_set(&dev->ir_input_stopping, 0); /* keyup timer set up, if needed */ switch (dev->board) { case CX23885_BOARD_HAUPPAUGE_HVR1850: case CX23885_BOARD_HAUPPAUGE_HVR1290: setup_timer(&ir_input->timer_keyup, ir_rc5_timer_keyup, /* Not actually RC-5 specific */ (unsigned long) ir_input); if (ir_input_state->ir_type == IR_TYPE_RC5) { /* * RC-5 repeats a held key every * 64 bits * (2 * 32/36000) sec/bit = 113.778 ms */ ir_input->rc5_key_timeout = 115; } break; } v4l2_subdev_call(dev->sd_ir, ir, rx_g_parameters, ¶ms); switch (dev->board) { case CX23885_BOARD_HAUPPAUGE_HVR1850: case CX23885_BOARD_HAUPPAUGE_HVR1290: /* * The IR controller on this board only returns pulse widths. * Any other mode setting will fail to set up the device. */ params.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; params.enable = true; params.interrupt_enable = true; params.shutdown = false; /* Setup for baseband compatible with both RC-5 and RC-6A */ params.modulation = false; /* RC-5: 2,222,222 ns = 1/36 kHz * 32 cycles * 2 marks * 1.25*/ /* RC-6A: 3,333,333 ns = 1/36 kHz * 16 cycles * 6 marks * 1.25*/ params.max_pulse_width = 3333333; /* ns */ /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ params.noise_filter_min_width = 333333; /* ns */ /* * This board has inverted receive sense: * mark is received as low logic level; * falling edges are detected as rising edges; etc. */ params.invert = true; break; } v4l2_subdev_call(dev->sd_ir, ir, rx_s_parameters, ¶ms); } static void cx23885_input_ir_stop(struct cx23885_dev *dev) { struct cx23885_ir_input *ir_input = dev->ir_input; struct v4l2_subdev_ir_parameters params; if (dev->sd_ir == NULL) return; /* * Stop the sd_ir subdevice from generating notifications and * scheduling work. * It is shutdown this way in order to mitigate a race with * cx23885_input_rx_work_handler() in the overrun case, which could * re-enable the subdevice. */ atomic_set(&dev->ir_input_stopping, 1); v4l2_subdev_call(dev->sd_ir, ir, rx_g_parameters, ¶ms); while (params.shutdown == false) { params.enable = false; params.interrupt_enable = false; params.shutdown = true; v4l2_subdev_call(dev->sd_ir, ir, rx_s_parameters, ¶ms); v4l2_subdev_call(dev->sd_ir, ir, rx_g_parameters, ¶ms); } flush_scheduled_work(); switch (dev->board) { case CX23885_BOARD_HAUPPAUGE_HVR1850: case CX23885_BOARD_HAUPPAUGE_HVR1290: del_timer_sync(&ir_input->timer_keyup); break; } } int cx23885_input_init(struct cx23885_dev *dev) { struct cx23885_ir_input *ir; struct input_dev *input_dev; char *ir_codes = NULL; int ir_type, ir_addr, ir_start; int ret; /* * If the IR device (hardware registers, chip, GPIO lines, etc.) isn't * encapsulated in a v4l2_subdev, then I'm not going to deal with it. */ if (dev->sd_ir == NULL) return -ENODEV; switch (dev->board) { case CX23885_BOARD_HAUPPAUGE_HVR1850: case CX23885_BOARD_HAUPPAUGE_HVR1290: /* Parameters for the grey Hauppauge remote for the HVR-1850 */ ir_codes = RC_MAP_HAUPPAUGE_NEW; ir_type = IR_TYPE_RC5; ir_addr = 0x1e; /* RC-5 system bits emitted by the remote */ ir_start = RC5_START_BITS_NORMAL; /* A basic RC-5 remote */ break; } if (ir_codes == NULL) return -ENODEV; ir = kzalloc(sizeof(*ir), GFP_KERNEL); input_dev = input_allocate_device(); if (!ir || !input_dev) { ret = -ENOMEM; goto err_out_free; } ir->dev = input_dev; ir->addr = ir_addr; ir->start = ir_start; /* init input device */ ir->name = kasprintf(GFP_KERNEL, "cx23885 IR (%s)", cx23885_boards[dev->board].name); ir->phys = kasprintf(GFP_KERNEL, "pci-%s/ir0", pci_name(dev->pci)); ret = ir_input_init(input_dev, &ir->ir, ir_type); if (ret < 0) goto err_out_free; input_dev->name = ir->name; input_dev->phys = ir->phys; input_dev->id.bustype = BUS_PCI; input_dev->id.version = 1; if (dev->pci->subsystem_vendor) { input_dev->id.vendor = dev->pci->subsystem_vendor; input_dev->id.product = dev->pci->subsystem_device; } else { input_dev->id.vendor = dev->pci->vendor; input_dev->id.product = dev->pci->device; } input_dev->dev.parent = &dev->pci->dev; dev->ir_input = ir; cx23885_input_ir_start(dev); ret = ir_input_register(ir->dev, ir_codes, NULL, MODULE_NAME); if (ret) goto err_out_stop; return 0; err_out_stop: cx23885_input_ir_stop(dev); dev->ir_input = NULL; err_out_free: kfree(ir->phys); kfree(ir->name); kfree(ir); return ret; } void cx23885_input_fini(struct cx23885_dev *dev) { /* Always stop the IR hardware from generating interrupts */ cx23885_input_ir_stop(dev); if (dev->ir_input == NULL) return; ir_input_unregister(dev->ir_input->dev); kfree(dev->ir_input->phys); kfree(dev->ir_input->name); kfree(dev->ir_input); dev->ir_input = NULL; }