/****************************************************************************** * * GPL LICENSE SUMMARY * * Copyright(c) 2008 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * Contact Information: * Tomas Winkler * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 *****************************************************************************/ #include #include #include #include struct iwl_priv; /* FIXME: remove */ #include "iwl-debug.h" #include "iwl-eeprom.h" #include "iwl-dev.h" /* FIXME: remove */ #include "iwl-core.h" #include "iwl-io.h" #include "iwl-rfkill.h" #include "iwl-power.h" MODULE_DESCRIPTION("iwl core"); MODULE_VERSION(IWLWIFI_VERSION); MODULE_AUTHOR(DRV_COPYRIGHT); MODULE_LICENSE("GPL"); #define IWL_DECLARE_RATE_INFO(r, s, ip, in, rp, rn, pp, np) \ [IWL_RATE_##r##M_INDEX] = { IWL_RATE_##r##M_PLCP, \ IWL_RATE_SISO_##s##M_PLCP, \ IWL_RATE_MIMO2_##s##M_PLCP,\ IWL_RATE_MIMO3_##s##M_PLCP,\ IWL_RATE_##r##M_IEEE, \ IWL_RATE_##ip##M_INDEX, \ IWL_RATE_##in##M_INDEX, \ IWL_RATE_##rp##M_INDEX, \ IWL_RATE_##rn##M_INDEX, \ IWL_RATE_##pp##M_INDEX, \ IWL_RATE_##np##M_INDEX } /* * Parameter order: * rate, ht rate, prev rate, next rate, prev tgg rate, next tgg rate * * If there isn't a valid next or previous rate then INV is used which * maps to IWL_RATE_INVALID * */ const struct iwl_rate_info iwl_rates[IWL_RATE_COUNT] = { IWL_DECLARE_RATE_INFO(1, INV, INV, 2, INV, 2, INV, 2), /* 1mbps */ IWL_DECLARE_RATE_INFO(2, INV, 1, 5, 1, 5, 1, 5), /* 2mbps */ IWL_DECLARE_RATE_INFO(5, INV, 2, 6, 2, 11, 2, 11), /*5.5mbps */ IWL_DECLARE_RATE_INFO(11, INV, 9, 12, 9, 12, 5, 18), /* 11mbps */ IWL_DECLARE_RATE_INFO(6, 6, 5, 9, 5, 11, 5, 11), /* 6mbps */ IWL_DECLARE_RATE_INFO(9, 6, 6, 11, 6, 11, 5, 11), /* 9mbps */ IWL_DECLARE_RATE_INFO(12, 12, 11, 18, 11, 18, 11, 18), /* 12mbps */ IWL_DECLARE_RATE_INFO(18, 18, 12, 24, 12, 24, 11, 24), /* 18mbps */ IWL_DECLARE_RATE_INFO(24, 24, 18, 36, 18, 36, 18, 36), /* 24mbps */ IWL_DECLARE_RATE_INFO(36, 36, 24, 48, 24, 48, 24, 48), /* 36mbps */ IWL_DECLARE_RATE_INFO(48, 48, 36, 54, 36, 54, 36, 54), /* 48mbps */ IWL_DECLARE_RATE_INFO(54, 54, 48, INV, 48, INV, 48, INV),/* 54mbps */ IWL_DECLARE_RATE_INFO(60, 60, 48, INV, 48, INV, 48, INV),/* 60mbps */ /* FIXME:RS: ^^ should be INV (legacy) */ }; EXPORT_SYMBOL(iwl_rates); /** * translate ucode response to mac80211 tx status control values */ void iwl_hwrate_to_tx_control(struct iwl_priv *priv, u32 rate_n_flags, struct ieee80211_tx_info *control) { int rate_index; control->antenna_sel_tx = ((rate_n_flags & RATE_MCS_ANT_ABC_MSK) >> RATE_MCS_ANT_POS); if (rate_n_flags & RATE_MCS_HT_MSK) control->flags |= IEEE80211_TX_CTL_OFDM_HT; if (rate_n_flags & RATE_MCS_GF_MSK) control->flags |= IEEE80211_TX_CTL_GREEN_FIELD; if (rate_n_flags & RATE_MCS_FAT_MSK) control->flags |= IEEE80211_TX_CTL_40_MHZ_WIDTH; if (rate_n_flags & RATE_MCS_DUP_MSK) control->flags |= IEEE80211_TX_CTL_DUP_DATA; if (rate_n_flags & RATE_MCS_SGI_MSK) control->flags |= IEEE80211_TX_CTL_SHORT_GI; rate_index = iwl_hwrate_to_plcp_idx(rate_n_flags); if (control->band == IEEE80211_BAND_5GHZ) rate_index -= IWL_FIRST_OFDM_RATE; control->tx_rate_idx = rate_index; } EXPORT_SYMBOL(iwl_hwrate_to_tx_control); int iwl_hwrate_to_plcp_idx(u32 rate_n_flags) { int idx = 0; /* HT rate format */ if (rate_n_flags & RATE_MCS_HT_MSK) { idx = (rate_n_flags & 0xff); if (idx >= IWL_RATE_MIMO2_6M_PLCP) idx = idx - IWL_RATE_MIMO2_6M_PLCP; idx += IWL_FIRST_OFDM_RATE; /* skip 9M not supported in ht*/ if (idx >= IWL_RATE_9M_INDEX) idx += 1; if ((idx >= IWL_FIRST_OFDM_RATE) && (idx <= IWL_LAST_OFDM_RATE)) return idx; /* legacy rate format, search for match in table */ } else { for (idx = 0; idx < ARRAY_SIZE(iwl_rates); idx++) if (iwl_rates[idx].plcp == (rate_n_flags & 0xFF)) return idx; } return -1; } EXPORT_SYMBOL(iwl_hwrate_to_plcp_idx); const u8 iwl_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; EXPORT_SYMBOL(iwl_bcast_addr); /* This function both allocates and initializes hw and priv. */ struct ieee80211_hw *iwl_alloc_all(struct iwl_cfg *cfg, struct ieee80211_ops *hw_ops) { struct iwl_priv *priv; /* mac80211 allocates memory for this device instance, including * space for this driver's private structure */ struct ieee80211_hw *hw = ieee80211_alloc_hw(sizeof(struct iwl_priv), hw_ops); if (hw == NULL) { IWL_ERROR("Can not allocate network device\n"); goto out; } priv = hw->priv; priv->hw = hw; out: return hw; } EXPORT_SYMBOL(iwl_alloc_all); void iwl_hw_detect(struct iwl_priv *priv) { priv->hw_rev = _iwl_read32(priv, CSR_HW_REV); priv->hw_wa_rev = _iwl_read32(priv, CSR_HW_REV_WA_REG); pci_read_config_byte(priv->pci_dev, PCI_REVISION_ID, &priv->rev_id); } EXPORT_SYMBOL(iwl_hw_detect); /* Tell nic where to find the "keep warm" buffer */ int iwl_kw_init(struct iwl_priv *priv) { unsigned long flags; int ret; spin_lock_irqsave(&priv->lock, flags); ret = iwl_grab_nic_access(priv); if (ret) goto out; iwl_write_direct32(priv, FH_KW_MEM_ADDR_REG, priv->kw.dma_addr >> 4); iwl_release_nic_access(priv); out: spin_unlock_irqrestore(&priv->lock, flags); return ret; } int iwl_kw_alloc(struct iwl_priv *priv) { struct pci_dev *dev = priv->pci_dev; struct iwl_kw *kw = &priv->kw; kw->size = IWL_KW_SIZE; kw->v_addr = pci_alloc_consistent(dev, kw->size, &kw->dma_addr); if (!kw->v_addr) return -ENOMEM; return 0; } /** * iwl_kw_free - Free the "keep warm" buffer */ void iwl_kw_free(struct iwl_priv *priv) { struct pci_dev *dev = priv->pci_dev; struct iwl_kw *kw = &priv->kw; if (kw->v_addr) { pci_free_consistent(dev, kw->size, kw->v_addr, kw->dma_addr); memset(kw, 0, sizeof(*kw)); } } int iwl_hw_nic_init(struct iwl_priv *priv) { unsigned long flags; struct iwl_rx_queue *rxq = &priv->rxq; int ret; /* nic_init */ spin_lock_irqsave(&priv->lock, flags); priv->cfg->ops->lib->apm_ops.init(priv); iwl_write32(priv, CSR_INT_COALESCING, 512 / 32); spin_unlock_irqrestore(&priv->lock, flags); ret = priv->cfg->ops->lib->apm_ops.set_pwr_src(priv, IWL_PWR_SRC_VMAIN); priv->cfg->ops->lib->apm_ops.config(priv); /* Allocate the RX queue, or reset if it is already allocated */ if (!rxq->bd) { ret = iwl_rx_queue_alloc(priv); if (ret) { IWL_ERROR("Unable to initialize Rx queue\n"); return -ENOMEM; } } else iwl_rx_queue_reset(priv, rxq); iwl_rx_replenish(priv); iwl_rx_init(priv, rxq); spin_lock_irqsave(&priv->lock, flags); rxq->need_update = 1; iwl_rx_queue_update_write_ptr(priv, rxq); spin_unlock_irqrestore(&priv->lock, flags); /* Allocate and init all Tx and Command queues */ ret = iwl_txq_ctx_reset(priv); if (ret) return ret; set_bit(STATUS_INIT, &priv->status); return 0; } EXPORT_SYMBOL(iwl_hw_nic_init); /** * iwl_clear_stations_table - Clear the driver's station table * * NOTE: This does not clear or otherwise alter the device's station table. */ void iwl_clear_stations_table(struct iwl_priv *priv) { unsigned long flags; spin_lock_irqsave(&priv->sta_lock, flags); if (iwl_is_alive(priv) && !test_bit(STATUS_EXIT_PENDING, &priv->status) && iwl_send_cmd_pdu_async(priv, REPLY_REMOVE_ALL_STA, 0, NULL, NULL)) IWL_ERROR("Couldn't clear the station table\n"); priv->num_stations = 0; memset(priv->stations, 0, sizeof(priv->stations)); spin_unlock_irqrestore(&priv->sta_lock, flags); } EXPORT_SYMBOL(iwl_clear_stations_table); void iwl_reset_qos(struct iwl_priv *priv) { u16 cw_min = 15; u16 cw_max = 1023; u8 aifs = 2; u8 is_legacy = 0; unsigned long flags; int i; spin_lock_irqsave(&priv->lock, flags); priv->qos_data.qos_active = 0; if (priv->iw_mode == IEEE80211_IF_TYPE_IBSS) { if (priv->qos_data.qos_enable) priv->qos_data.qos_active = 1; if (!(priv->active_rate & 0xfff0)) { cw_min = 31; is_legacy = 1; } } else if (priv->iw_mode == IEEE80211_IF_TYPE_AP) { if (priv->qos_data.qos_enable) priv->qos_data.qos_active = 1; } else if (!(priv->staging_rxon.flags & RXON_FLG_SHORT_SLOT_MSK)) { cw_min = 31; is_legacy = 1; } if (priv->qos_data.qos_active) aifs = 3; priv->qos_data.def_qos_parm.ac[0].cw_min = cpu_to_le16(cw_min); priv->qos_data.def_qos_parm.ac[0].cw_max = cpu_to_le16(cw_max); priv->qos_data.def_qos_parm.ac[0].aifsn = aifs; priv->qos_data.def_qos_parm.ac[0].edca_txop = 0; priv->qos_data.def_qos_parm.ac[0].reserved1 = 0; if (priv->qos_data.qos_active) { i = 1; priv->qos_data.def_qos_parm.ac[i].cw_min = cpu_to_le16(cw_min); priv->qos_data.def_qos_parm.ac[i].cw_max = cpu_to_le16(cw_max); priv->qos_data.def_qos_parm.ac[i].aifsn = 7; priv->qos_data.def_qos_parm.ac[i].edca_txop = 0; priv->qos_data.def_qos_parm.ac[i].reserved1 = 0; i = 2; priv->qos_data.def_qos_parm.ac[i].cw_min = cpu_to_le16((cw_min + 1) / 2 - 1); priv->qos_data.def_qos_parm.ac[i].cw_max = cpu_to_le16(cw_max); priv->qos_data.def_qos_parm.ac[i].aifsn = 2; if (is_legacy) priv->qos_data.def_qos_parm.ac[i].edca_txop = cpu_to_le16(6016); else priv->qos_data.def_qos_parm.ac[i].edca_txop = cpu_to_le16(3008); priv->qos_data.def_qos_parm.ac[i].reserved1 = 0; i = 3; priv->qos_data.def_qos_parm.ac[i].cw_min = cpu_to_le16((cw_min + 1) / 4 - 1); priv->qos_data.def_qos_parm.ac[i].cw_max = cpu_to_le16((cw_max + 1) / 2 - 1); priv->qos_data.def_qos_parm.ac[i].aifsn = 2; priv->qos_data.def_qos_parm.ac[i].reserved1 = 0; if (is_legacy) priv->qos_data.def_qos_parm.ac[i].edca_txop = cpu_to_le16(3264); else priv->qos_data.def_qos_parm.ac[i].edca_txop = cpu_to_le16(1504); } else { for (i = 1; i < 4; i++) { priv->qos_data.def_qos_parm.ac[i].cw_min = cpu_to_le16(cw_min); priv->qos_data.def_qos_parm.ac[i].cw_max = cpu_to_le16(cw_max); priv->qos_data.def_qos_parm.ac[i].aifsn = aifs; priv->qos_data.def_qos_parm.ac[i].edca_txop = 0; priv->qos_data.def_qos_parm.ac[i].reserved1 = 0; } } IWL_DEBUG_QOS("set QoS to default \n"); spin_unlock_irqrestore(&priv->lock, flags); } EXPORT_SYMBOL(iwl_reset_qos); #define MAX_BIT_RATE_40_MHZ 0x96; /* 150 Mbps */ #define MAX_BIT_RATE_20_MHZ 0x48; /* 72 Mbps */ static void iwlcore_init_ht_hw_capab(const struct iwl_priv *priv, struct ieee80211_ht_info *ht_info, enum ieee80211_band band) { u16 max_bit_rate = 0; u8 rx_chains_num = priv->hw_params.rx_chains_num; u8 tx_chains_num = priv->hw_params.tx_chains_num; ht_info->cap = 0; memset(ht_info->supp_mcs_set, 0, 16); ht_info->ht_supported = 1; ht_info->cap |= (u16)IEEE80211_HT_CAP_GRN_FLD; ht_info->cap |= (u16)IEEE80211_HT_CAP_SGI_20; ht_info->cap |= (u16)(IEEE80211_HT_CAP_MIMO_PS & (IWL_MIMO_PS_NONE << 2)); max_bit_rate = MAX_BIT_RATE_20_MHZ; if (priv->hw_params.fat_channel & BIT(band)) { ht_info->cap |= (u16)IEEE80211_HT_CAP_SUP_WIDTH; ht_info->cap |= (u16)IEEE80211_HT_CAP_SGI_40; ht_info->supp_mcs_set[4] = 0x01; max_bit_rate = MAX_BIT_RATE_40_MHZ; } if (priv->cfg->mod_params->amsdu_size_8K) ht_info->cap |= (u16)IEEE80211_HT_CAP_MAX_AMSDU; ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF; ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF; ht_info->supp_mcs_set[0] = 0xFF; if (rx_chains_num >= 2) ht_info->supp_mcs_set[1] = 0xFF; if (rx_chains_num >= 3) ht_info->supp_mcs_set[2] = 0xFF; /* Highest supported Rx data rate */ max_bit_rate *= rx_chains_num; ht_info->supp_mcs_set[10] = (u8)(max_bit_rate & 0x00FF); ht_info->supp_mcs_set[11] = (u8)((max_bit_rate & 0xFF00) >> 8); /* Tx MCS capabilities */ ht_info->supp_mcs_set[12] = IEEE80211_HT_CAP_MCS_TX_DEFINED; if (tx_chains_num != rx_chains_num) { ht_info->supp_mcs_set[12] |= IEEE80211_HT_CAP_MCS_TX_RX_DIFF; ht_info->supp_mcs_set[12] |= ((tx_chains_num - 1) << 2); } } static void iwlcore_init_hw_rates(struct iwl_priv *priv, struct ieee80211_rate *rates) { int i; for (i = 0; i < IWL_RATE_COUNT; i++) { rates[i].bitrate = iwl_rates[i].ieee * 5; rates[i].hw_value = i; /* Rate scaling will work on indexes */ rates[i].hw_value_short = i; rates[i].flags = 0; if ((i > IWL_LAST_OFDM_RATE) || (i < IWL_FIRST_OFDM_RATE)) { /* * If CCK != 1M then set short preamble rate flag. */ rates[i].flags |= (iwl_rates[i].plcp == IWL_RATE_1M_PLCP) ? 0 : IEEE80211_RATE_SHORT_PREAMBLE; } } } /** * iwlcore_init_geos - Initialize mac80211's geo/channel info based from eeprom */ static int iwlcore_init_geos(struct iwl_priv *priv) { struct iwl_channel_info *ch; struct ieee80211_supported_band *sband; struct ieee80211_channel *channels; struct ieee80211_channel *geo_ch; struct ieee80211_rate *rates; int i = 0; if (priv->bands[IEEE80211_BAND_2GHZ].n_bitrates || priv->bands[IEEE80211_BAND_5GHZ].n_bitrates) { IWL_DEBUG_INFO("Geography modes already initialized.\n"); set_bit(STATUS_GEO_CONFIGURED, &priv->status); return 0; } channels = kzalloc(sizeof(struct ieee80211_channel) * priv->channel_count, GFP_KERNEL); if (!channels) return -ENOMEM; rates = kzalloc((sizeof(struct ieee80211_rate) * (IWL_RATE_COUNT + 1)), GFP_KERNEL); if (!rates) { kfree(channels); return -ENOMEM; } /* 5.2GHz channels start after the 2.4GHz channels */ sband = &priv->bands[IEEE80211_BAND_5GHZ]; sband->channels = &channels[ARRAY_SIZE(iwl_eeprom_band_1)]; /* just OFDM */ sband->bitrates = &rates[IWL_FIRST_OFDM_RATE]; sband->n_bitrates = IWL_RATE_COUNT - IWL_FIRST_OFDM_RATE; if (priv->cfg->sku & IWL_SKU_N) iwlcore_init_ht_hw_capab(priv, &sband->ht_info, IEEE80211_BAND_5GHZ); sband = &priv->bands[IEEE80211_BAND_2GHZ]; sband->channels = channels; /* OFDM & CCK */ sband->bitrates = rates; sband->n_bitrates = IWL_RATE_COUNT; if (priv->cfg->sku & IWL_SKU_N) iwlcore_init_ht_hw_capab(priv, &sband->ht_info, IEEE80211_BAND_2GHZ); priv->ieee_channels = channels; priv->ieee_rates = rates; iwlcore_init_hw_rates(priv, rates); for (i = 0; i < priv->channel_count; i++) { ch = &priv->channel_info[i]; /* FIXME: might be removed if scan is OK */ if (!is_channel_valid(ch)) continue; if (is_channel_a_band(ch)) sband = &priv->bands[IEEE80211_BAND_5GHZ]; else sband = &priv->bands[IEEE80211_BAND_2GHZ]; geo_ch = &sband->channels[sband->n_channels++]; geo_ch->center_freq = ieee80211_channel_to_frequency(ch->channel); geo_ch->max_power = ch->max_power_avg; geo_ch->max_antenna_gain = 0xff; geo_ch->hw_value = ch->channel; if (is_channel_valid(ch)) { if (!(ch->flags & EEPROM_CHANNEL_IBSS)) geo_ch->flags |= IEEE80211_CHAN_NO_IBSS; if (!(ch->flags & EEPROM_CHANNEL_ACTIVE)) geo_ch->flags |= IEEE80211_CHAN_PASSIVE_SCAN; if (ch->flags & EEPROM_CHANNEL_RADAR) geo_ch->flags |= IEEE80211_CHAN_RADAR; geo_ch->flags |= ch->fat_extension_channel; if (ch->max_power_avg > priv->tx_power_channel_lmt) priv->tx_power_channel_lmt = ch->max_power_avg; } else { geo_ch->flags |= IEEE80211_CHAN_DISABLED; } /* Save flags for reg domain usage */ geo_ch->orig_flags = geo_ch->flags; IWL_DEBUG_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel, geo_ch->center_freq, is_channel_a_band(ch) ? "5.2" : "2.4", geo_ch->flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid", geo_ch->flags); } if ((priv->bands[IEEE80211_BAND_5GHZ].n_channels == 0) && priv->cfg->sku & IWL_SKU_A) { printk(KERN_INFO DRV_NAME ": Incorrectly detected BG card as ABG. Please send " "your PCI ID 0x%04X:0x%04X to maintainer.\n", priv->pci_dev->device, priv->pci_dev->subsystem_device); priv->cfg->sku &= ~IWL_SKU_A; } printk(KERN_INFO DRV_NAME ": Tunable channels: %d 802.11bg, %d 802.11a channels\n", priv->bands[IEEE80211_BAND_2GHZ].n_channels, priv->bands[IEEE80211_BAND_5GHZ].n_channels); set_bit(STATUS_GEO_CONFIGURED, &priv->status); return 0; } /* * iwlcore_free_geos - undo allocations in iwlcore_init_geos */ static void iwlcore_free_geos(struct iwl_priv *priv) { kfree(priv->ieee_channels); kfree(priv->ieee_rates); clear_bit(STATUS_GEO_CONFIGURED, &priv->status); } static u8 is_single_rx_stream(struct iwl_priv *priv) { return !priv->current_ht_config.is_ht || ((priv->current_ht_config.supp_mcs_set[1] == 0) && (priv->current_ht_config.supp_mcs_set[2] == 0)) || priv->ps_mode == IWL_MIMO_PS_STATIC; } static u8 iwl_is_channel_extension(struct iwl_priv *priv, enum ieee80211_band band, u16 channel, u8 extension_chan_offset) { const struct iwl_channel_info *ch_info; ch_info = iwl_get_channel_info(priv, band, channel); if (!is_channel_valid(ch_info)) return 0; if (extension_chan_offset == IEEE80211_HT_IE_CHA_SEC_ABOVE) return !(ch_info->fat_extension_channel & IEEE80211_CHAN_NO_FAT_ABOVE); else if (extension_chan_offset == IEEE80211_HT_IE_CHA_SEC_BELOW) return !(ch_info->fat_extension_channel & IEEE80211_CHAN_NO_FAT_BELOW); return 0; } u8 iwl_is_fat_tx_allowed(struct iwl_priv *priv, struct ieee80211_ht_info *sta_ht_inf) { struct iwl_ht_info *iwl_ht_conf = &priv->current_ht_config; if ((!iwl_ht_conf->is_ht) || (iwl_ht_conf->supported_chan_width != IWL_CHANNEL_WIDTH_40MHZ) || (iwl_ht_conf->extension_chan_offset == IEEE80211_HT_IE_CHA_SEC_NONE)) return 0; if (sta_ht_inf) { if ((!sta_ht_inf->ht_supported) || (!(sta_ht_inf->cap & IEEE80211_HT_CAP_SUP_WIDTH))) return 0; } return iwl_is_channel_extension(priv, priv->band, iwl_ht_conf->control_channel, iwl_ht_conf->extension_chan_offset); } EXPORT_SYMBOL(iwl_is_fat_tx_allowed); void iwl_set_rxon_ht(struct iwl_priv *priv, struct iwl_ht_info *ht_info) { struct iwl_rxon_cmd *rxon = &priv->staging_rxon; u32 val; if (!ht_info->is_ht) return; /* Set up channel bandwidth: 20 MHz only, or 20/40 mixed if fat ok */ if (iwl_is_fat_tx_allowed(priv, NULL)) rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED_MSK; else rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MIXED_MSK | RXON_FLG_CHANNEL_MODE_PURE_40_MSK); if (le16_to_cpu(rxon->channel) != ht_info->control_channel) { IWL_DEBUG_ASSOC("control diff than current %d %d\n", le16_to_cpu(rxon->channel), ht_info->control_channel); return; } /* Note: control channel is opposite of extension channel */ switch (ht_info->extension_chan_offset) { case IEEE80211_HT_IE_CHA_SEC_ABOVE: rxon->flags &= ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK); break; case IEEE80211_HT_IE_CHA_SEC_BELOW: rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK; break; case IEEE80211_HT_IE_CHA_SEC_NONE: default: rxon->flags &= ~RXON_FLG_CHANNEL_MODE_MIXED_MSK; break; } val = ht_info->ht_protection; rxon->flags |= cpu_to_le32(val << RXON_FLG_HT_OPERATING_MODE_POS); iwl_set_rxon_chain(priv); IWL_DEBUG_ASSOC("supported HT rate 0x%X 0x%X 0x%X " "rxon flags 0x%X operation mode :0x%X " "extension channel offset 0x%x " "control chan %d\n", ht_info->supp_mcs_set[0], ht_info->supp_mcs_set[1], ht_info->supp_mcs_set[2], le32_to_cpu(rxon->flags), ht_info->ht_protection, ht_info->extension_chan_offset, ht_info->control_channel); return; } EXPORT_SYMBOL(iwl_set_rxon_ht); /* * Determine how many receiver/antenna chains to use. * More provides better reception via diversity. Fewer saves power. * MIMO (dual stream) requires at least 2, but works better with 3. * This does not determine *which* chains to use, just how many. */ static int iwlcore_get_rx_chain_counter(struct iwl_priv *priv, u8 *idle_state, u8 *rx_state) { u8 is_single = is_single_rx_stream(priv); u8 is_cam = test_bit(STATUS_POWER_PMI, &priv->status) ? 0 : 1; /* # of Rx chains to use when expecting MIMO. */ if (is_single || (!is_cam && (priv->ps_mode == IWL_MIMO_PS_STATIC))) *rx_state = 2; else *rx_state = 3; /* # Rx chains when idling and maybe trying to save power */ switch (priv->ps_mode) { case IWL_MIMO_PS_STATIC: case IWL_MIMO_PS_DYNAMIC: *idle_state = (is_cam) ? 2 : 1; break; case IWL_MIMO_PS_NONE: *idle_state = (is_cam) ? *rx_state : 1; break; default: *idle_state = 1; break; } return 0; } /** * iwl_set_rxon_chain - Set up Rx chain usage in "staging" RXON image * * Selects how many and which Rx receivers/antennas/chains to use. * This should not be used for scan command ... it puts data in wrong place. */ void iwl_set_rxon_chain(struct iwl_priv *priv) { u8 is_single = is_single_rx_stream(priv); u8 idle_state, rx_state; priv->staging_rxon.rx_chain = 0; rx_state = idle_state = 3; /* Tell uCode which antennas are actually connected. * Before first association, we assume all antennas are connected. * Just after first association, iwl_chain_noise_calibration() * checks which antennas actually *are* connected. */ priv->staging_rxon.rx_chain |= cpu_to_le16(priv->hw_params.valid_rx_ant << RXON_RX_CHAIN_VALID_POS); /* How many receivers should we use? */ iwlcore_get_rx_chain_counter(priv, &idle_state, &rx_state); priv->staging_rxon.rx_chain |= cpu_to_le16(rx_state << RXON_RX_CHAIN_MIMO_CNT_POS); priv->staging_rxon.rx_chain |= cpu_to_le16(idle_state << RXON_RX_CHAIN_CNT_POS); if (!is_single && (rx_state >= 2) && !test_bit(STATUS_POWER_PMI, &priv->status)) priv->staging_rxon.rx_chain |= RXON_RX_CHAIN_MIMO_FORCE_MSK; else priv->staging_rxon.rx_chain &= ~RXON_RX_CHAIN_MIMO_FORCE_MSK; IWL_DEBUG_ASSOC("rx chain %X\n", priv->staging_rxon.rx_chain); } EXPORT_SYMBOL(iwl_set_rxon_chain); /** * iwlcore_set_rxon_channel - Set the phymode and channel values in staging RXON * @phymode: MODE_IEEE80211A sets to 5.2GHz; all else set to 2.4GHz * @channel: Any channel valid for the requested phymode * In addition to setting the staging RXON, priv->phymode is also set. * * NOTE: Does not commit to the hardware; it sets appropriate bit fields * in the staging RXON flag structure based on the phymode */ int iwl_set_rxon_channel(struct iwl_priv *priv, enum ieee80211_band band, u16 channel) { if (!iwl_get_channel_info(priv, band, channel)) { IWL_DEBUG_INFO("Could not set channel to %d [%d]\n", channel, band); return -EINVAL; } if ((le16_to_cpu(priv->staging_rxon.channel) == channel) && (priv->band == band)) return 0; priv->staging_rxon.channel = cpu_to_le16(channel); if (band == IEEE80211_BAND_5GHZ) priv->staging_rxon.flags &= ~RXON_FLG_BAND_24G_MSK; else priv->staging_rxon.flags |= RXON_FLG_BAND_24G_MSK; priv->band = band; IWL_DEBUG_INFO("Staging channel set to %d [%d]\n", channel, band); return 0; } EXPORT_SYMBOL(iwl_set_rxon_channel); int iwl_setup_mac(struct iwl_priv *priv) { int ret; struct ieee80211_hw *hw = priv->hw; hw->rate_control_algorithm = "iwl-4965-rs"; /* Tell mac80211 our characteristics */ hw->flags = IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_NOISE_DBM; /* Default value; 4 EDCA QOS priorities */ hw->queues = 4; /* queues to support 11n aggregation */ if (priv->cfg->sku & IWL_SKU_N) hw->ampdu_queues = 12; hw->conf.beacon_int = 100; if (priv->bands[IEEE80211_BAND_2GHZ].n_channels) priv->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->bands[IEEE80211_BAND_2GHZ]; if (priv->bands[IEEE80211_BAND_5GHZ].n_channels) priv->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &priv->bands[IEEE80211_BAND_5GHZ]; ret = ieee80211_register_hw(priv->hw); if (ret) { IWL_ERROR("Failed to register hw (error %d)\n", ret); return ret; } priv->mac80211_registered = 1; return 0; } EXPORT_SYMBOL(iwl_setup_mac); int iwl_set_hw_params(struct iwl_priv *priv) { priv->hw_params.sw_crypto = priv->cfg->mod_params->sw_crypto; priv->hw_params.max_rxq_size = RX_QUEUE_SIZE; priv->hw_params.max_rxq_log = RX_QUEUE_SIZE_LOG; if (priv->cfg->mod_params->amsdu_size_8K) priv->hw_params.rx_buf_size = IWL_RX_BUF_SIZE_8K; else priv->hw_params.rx_buf_size = IWL_RX_BUF_SIZE_4K; priv->hw_params.max_pkt_size = priv->hw_params.rx_buf_size - 256; if (priv->cfg->mod_params->disable_11n) priv->cfg->sku &= ~IWL_SKU_N; /* Device-specific setup */ return priv->cfg->ops->lib->set_hw_params(priv); } EXPORT_SYMBOL(iwl_set_hw_params); int iwl_init_drv(struct iwl_priv *priv) { int ret; priv->retry_rate = 1; priv->ibss_beacon = NULL; spin_lock_init(&priv->lock); spin_lock_init(&priv->power_data.lock); spin_lock_init(&priv->sta_lock); spin_lock_init(&priv->hcmd_lock); spin_lock_init(&priv->lq_mngr.lock); INIT_LIST_HEAD(&priv->free_frames); mutex_init(&priv->mutex); /* Clear the driver's (not device's) station table */ iwl_clear_stations_table(priv); priv->data_retry_limit = -1; priv->ieee_channels = NULL; priv->ieee_rates = NULL; priv->band = IEEE80211_BAND_2GHZ; priv->iw_mode = IEEE80211_IF_TYPE_STA; priv->use_ant_b_for_management_frame = 1; /* start with ant B */ priv->ps_mode = IWL_MIMO_PS_NONE; /* Choose which receivers/antennas to use */ iwl_set_rxon_chain(priv); iwl_init_scan_params(priv); if (priv->cfg->mod_params->enable_qos) priv->qos_data.qos_enable = 1; iwl_reset_qos(priv); priv->qos_data.qos_active = 0; priv->qos_data.qos_cap.val = 0; iwl_set_rxon_channel(priv, IEEE80211_BAND_2GHZ, 6); priv->rates_mask = IWL_RATES_MASK; /* If power management is turned on, default to AC mode */ priv->power_mode = IWL_POWER_AC; priv->tx_power_user_lmt = IWL_TX_POWER_TARGET_POWER_MAX; ret = iwl_init_channel_map(priv); if (ret) { IWL_ERROR("initializing regulatory failed: %d\n", ret); goto err; } ret = iwlcore_init_geos(priv); if (ret) { IWL_ERROR("initializing geos failed: %d\n", ret); goto err_free_channel_map; } return 0; err_free_channel_map: iwl_free_channel_map(priv); err: return ret; } EXPORT_SYMBOL(iwl_init_drv); void iwl_free_calib_results(struct iwl_priv *priv) { kfree(priv->calib_results.lo_res); priv->calib_results.lo_res = NULL; priv->calib_results.lo_res_len = 0; kfree(priv->calib_results.tx_iq_res); priv->calib_results.tx_iq_res = NULL; priv->calib_results.tx_iq_res_len = 0; kfree(priv->calib_results.tx_iq_perd_res); priv->calib_results.tx_iq_perd_res = NULL; priv->calib_results.tx_iq_perd_res_len = 0; } EXPORT_SYMBOL(iwl_free_calib_results); int iwl_set_tx_power(struct iwl_priv *priv, s8 tx_power, bool force) { int ret = 0; if (tx_power < IWL_TX_POWER_TARGET_POWER_MIN) { IWL_WARNING("Requested user TXPOWER %d below limit.\n", priv->tx_power_user_lmt); return -EINVAL; } if (tx_power > IWL_TX_POWER_TARGET_POWER_MAX) { IWL_WARNING("Requested user TXPOWER %d above limit.\n", priv->tx_power_user_lmt); return -EINVAL; } if (priv->tx_power_user_lmt != tx_power) force = true; priv->tx_power_user_lmt = tx_power; if (force && priv->cfg->ops->lib->send_tx_power) ret = priv->cfg->ops->lib->send_tx_power(priv); return ret; } EXPORT_SYMBOL(iwl_set_tx_power); void iwl_uninit_drv(struct iwl_priv *priv) { iwl_free_calib_results(priv); iwlcore_free_geos(priv); iwl_free_channel_map(priv); kfree(priv->scan); } EXPORT_SYMBOL(iwl_uninit_drv); int iwl_send_statistics_request(struct iwl_priv *priv, u8 flags) { u32 stat_flags = 0; struct iwl_host_cmd cmd = { .id = REPLY_STATISTICS_CMD, .meta.flags = flags, .len = sizeof(stat_flags), .data = (u8 *) &stat_flags, }; return iwl_send_cmd(priv, &cmd); } EXPORT_SYMBOL(iwl_send_statistics_request); /** * iwl_verify_inst_sparse - verify runtime uCode image in card vs. host, * using sample data 100 bytes apart. If these sample points are good, * it's a pretty good bet that everything between them is good, too. */ static int iwlcore_verify_inst_sparse(struct iwl_priv *priv, __le32 *image, u32 len) { u32 val; int ret = 0; u32 errcnt = 0; u32 i; IWL_DEBUG_INFO("ucode inst image size is %u\n", len); ret = iwl_grab_nic_access(priv); if (ret) return ret; for (i = 0; i < len; i += 100, image += 100/sizeof(u32)) { /* read data comes through single port, auto-incr addr */ /* NOTE: Use the debugless read so we don't flood kernel log * if IWL_DL_IO is set */ iwl_write_direct32(priv, HBUS_TARG_MEM_RADDR, i + RTC_INST_LOWER_BOUND); val = _iwl_read_direct32(priv, HBUS_TARG_MEM_RDAT); if (val != le32_to_cpu(*image)) { ret = -EIO; errcnt++; if (errcnt >= 3) break; } } iwl_release_nic_access(priv); return ret; } /** * iwlcore_verify_inst_full - verify runtime uCode image in card vs. host, * looking at all data. */ static int iwl_verify_inst_full(struct iwl_priv *priv, __le32 *image, u32 len) { u32 val; u32 save_len = len; int ret = 0; u32 errcnt; IWL_DEBUG_INFO("ucode inst image size is %u\n", len); ret = iwl_grab_nic_access(priv); if (ret) return ret; iwl_write_direct32(priv, HBUS_TARG_MEM_RADDR, RTC_INST_LOWER_BOUND); errcnt = 0; for (; len > 0; len -= sizeof(u32), image++) { /* read data comes through single port, auto-incr addr */ /* NOTE: Use the debugless read so we don't flood kernel log * if IWL_DL_IO is set */ val = _iwl_read_direct32(priv, HBUS_TARG_MEM_RDAT); if (val != le32_to_cpu(*image)) { IWL_ERROR("uCode INST section is invalid at " "offset 0x%x, is 0x%x, s/b 0x%x\n", save_len - len, val, le32_to_cpu(*image)); ret = -EIO; errcnt++; if (errcnt >= 20) break; } } iwl_release_nic_access(priv); if (!errcnt) IWL_DEBUG_INFO ("ucode image in INSTRUCTION memory is good\n"); return ret; } /** * iwl_verify_ucode - determine which instruction image is in SRAM, * and verify its contents */ int iwl_verify_ucode(struct iwl_priv *priv) { __le32 *image; u32 len; int ret; /* Try bootstrap */ image = (__le32 *)priv->ucode_boot.v_addr; len = priv->ucode_boot.len; ret = iwlcore_verify_inst_sparse(priv, image, len); if (!ret) { IWL_DEBUG_INFO("Bootstrap uCode is good in inst SRAM\n"); return 0; } /* Try initialize */ image = (__le32 *)priv->ucode_init.v_addr; len = priv->ucode_init.len; ret = iwlcore_verify_inst_sparse(priv, image, len); if (!ret) { IWL_DEBUG_INFO("Initialize uCode is good in inst SRAM\n"); return 0; } /* Try runtime/protocol */ image = (__le32 *)priv->ucode_code.v_addr; len = priv->ucode_code.len; ret = iwlcore_verify_inst_sparse(priv, image, len); if (!ret) { IWL_DEBUG_INFO("Runtime uCode is good in inst SRAM\n"); return 0; } IWL_ERROR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n"); /* Since nothing seems to match, show first several data entries in * instruction SRAM, so maybe visual inspection will give a clue. * Selection of bootstrap image (vs. other images) is arbitrary. */ image = (__le32 *)priv->ucode_boot.v_addr; len = priv->ucode_boot.len; ret = iwl_verify_inst_full(priv, image, len); return ret; } EXPORT_SYMBOL(iwl_verify_ucode); static const char *desc_lookup(int i) { switch (i) { case 1: return "FAIL"; case 2: return "BAD_PARAM"; case 3: return "BAD_CHECKSUM"; case 4: return "NMI_INTERRUPT"; case 5: return "SYSASSERT"; case 6: return "FATAL_ERROR"; } return "UNKNOWN"; } #define ERROR_START_OFFSET (1 * sizeof(u32)) #define ERROR_ELEM_SIZE (7 * sizeof(u32)) void iwl_dump_nic_error_log(struct iwl_priv *priv) { u32 data2, line; u32 desc, time, count, base, data1; u32 blink1, blink2, ilink1, ilink2; int ret; if (priv->ucode_type == UCODE_INIT) base = le32_to_cpu(priv->card_alive_init.error_event_table_ptr); else base = le32_to_cpu(priv->card_alive.error_event_table_ptr); if (!priv->cfg->ops->lib->is_valid_rtc_data_addr(base)) { IWL_ERROR("Not valid error log pointer 0x%08X\n", base); return; } ret = iwl_grab_nic_access(priv); if (ret) { IWL_WARNING("Can not read from adapter at this time.\n"); return; } count = iwl_read_targ_mem(priv, base); if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) { IWL_ERROR("Start IWL Error Log Dump:\n"); IWL_ERROR("Status: 0x%08lX, count: %d\n", priv->status, count); } desc = iwl_read_targ_mem(priv, base + 1 * sizeof(u32)); blink1 = iwl_read_targ_mem(priv, base + 3 * sizeof(u32)); blink2 = iwl_read_targ_mem(priv, base + 4 * sizeof(u32)); ilink1 = iwl_read_targ_mem(priv, base + 5 * sizeof(u32)); ilink2 = iwl_read_targ_mem(priv, base + 6 * sizeof(u32)); data1 = iwl_read_targ_mem(priv, base + 7 * sizeof(u32)); data2 = iwl_read_targ_mem(priv, base + 8 * sizeof(u32)); line = iwl_read_targ_mem(priv, base + 9 * sizeof(u32)); time = iwl_read_targ_mem(priv, base + 11 * sizeof(u32)); IWL_ERROR("Desc Time " "data1 data2 line\n"); IWL_ERROR("%-13s (#%d) %010u 0x%08X 0x%08X %u\n", desc_lookup(desc), desc, time, data1, data2, line); IWL_ERROR("blink1 blink2 ilink1 ilink2\n"); IWL_ERROR("0x%05X 0x%05X 0x%05X 0x%05X\n", blink1, blink2, ilink1, ilink2); iwl_release_nic_access(priv); } EXPORT_SYMBOL(iwl_dump_nic_error_log); #define EVENT_START_OFFSET (4 * sizeof(u32)) /** * iwl_print_event_log - Dump error event log to syslog * * NOTE: Must be called with iwl4965_grab_nic_access() already obtained! */ void iwl_print_event_log(struct iwl_priv *priv, u32 start_idx, u32 num_events, u32 mode) { u32 i; u32 base; /* SRAM byte address of event log header */ u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */ u32 ptr; /* SRAM byte address of log data */ u32 ev, time, data; /* event log data */ if (num_events == 0) return; if (priv->ucode_type == UCODE_INIT) base = le32_to_cpu(priv->card_alive_init.log_event_table_ptr); else base = le32_to_cpu(priv->card_alive.log_event_table_ptr); if (mode == 0) event_size = 2 * sizeof(u32); else event_size = 3 * sizeof(u32); ptr = base + EVENT_START_OFFSET + (start_idx * event_size); /* "time" is actually "data" for mode 0 (no timestamp). * place event id # at far right for easier visual parsing. */ for (i = 0; i < num_events; i++) { ev = iwl_read_targ_mem(priv, ptr); ptr += sizeof(u32); time = iwl_read_targ_mem(priv, ptr); ptr += sizeof(u32); if (mode == 0) { /* data, ev */ IWL_ERROR("EVT_LOG:0x%08x:%04u\n", time, ev); } else { data = iwl_read_targ_mem(priv, ptr); ptr += sizeof(u32); IWL_ERROR("EVT_LOGT:%010u:0x%08x:%04u\n", time, data, ev); } } } EXPORT_SYMBOL(iwl_print_event_log); void iwl_dump_nic_event_log(struct iwl_priv *priv) { int ret; u32 base; /* SRAM byte address of event log header */ u32 capacity; /* event log capacity in # entries */ u32 mode; /* 0 - no timestamp, 1 - timestamp recorded */ u32 num_wraps; /* # times uCode wrapped to top of log */ u32 next_entry; /* index of next entry to be written by uCode */ u32 size; /* # entries that we'll print */ if (priv->ucode_type == UCODE_INIT) base = le32_to_cpu(priv->card_alive_init.log_event_table_ptr); else base = le32_to_cpu(priv->card_alive.log_event_table_ptr); if (!priv->cfg->ops->lib->is_valid_rtc_data_addr(base)) { IWL_ERROR("Invalid event log pointer 0x%08X\n", base); return; } ret = iwl_grab_nic_access(priv); if (ret) { IWL_WARNING("Can not read from adapter at this time.\n"); return; } /* event log header */ capacity = iwl_read_targ_mem(priv, base); mode = iwl_read_targ_mem(priv, base + (1 * sizeof(u32))); num_wraps = iwl_read_targ_mem(priv, base + (2 * sizeof(u32))); next_entry = iwl_read_targ_mem(priv, base + (3 * sizeof(u32))); size = num_wraps ? capacity : next_entry; /* bail out if nothing in log */ if (size == 0) { IWL_ERROR("Start IWL Event Log Dump: nothing in log\n"); iwl_release_nic_access(priv); return; } IWL_ERROR("Start IWL Event Log Dump: display count %d, wraps %d\n", size, num_wraps); /* if uCode has wrapped back to top of log, start at the oldest entry, * i.e the next one that uCode would fill. */ if (num_wraps) iwl_print_event_log(priv, next_entry, capacity - next_entry, mode); /* (then/else) start at top of log */ iwl_print_event_log(priv, 0, next_entry, mode); iwl_release_nic_access(priv); } EXPORT_SYMBOL(iwl_dump_nic_event_log); void iwl_rf_kill_ct_config(struct iwl_priv *priv) { struct iwl_ct_kill_config cmd; unsigned long flags; int ret = 0; spin_lock_irqsave(&priv->lock, flags); iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT); spin_unlock_irqrestore(&priv->lock, flags); cmd.critical_temperature_R = cpu_to_le32(priv->hw_params.ct_kill_threshold); ret = iwl_send_cmd_pdu(priv, REPLY_CT_KILL_CONFIG_CMD, sizeof(cmd), &cmd); if (ret) IWL_ERROR("REPLY_CT_KILL_CONFIG_CMD failed\n"); else IWL_DEBUG_INFO("REPLY_CT_KILL_CONFIG_CMD succeeded, " "critical temperature is %d\n", cmd.critical_temperature_R); } EXPORT_SYMBOL(iwl_rf_kill_ct_config); /* * CARD_STATE_CMD * * Use: Sets the device's internal card state to enable, disable, or halt * * When in the 'enable' state the card operates as normal. * When in the 'disable' state, the card enters into a low power mode. * When in the 'halt' state, the card is shut down and must be fully * restarted to come back on. */ static int iwl_send_card_state(struct iwl_priv *priv, u32 flags, u8 meta_flag) { struct iwl_host_cmd cmd = { .id = REPLY_CARD_STATE_CMD, .len = sizeof(u32), .data = &flags, .meta.flags = meta_flag, }; return iwl_send_cmd(priv, &cmd); } void iwl_radio_kill_sw_disable_radio(struct iwl_priv *priv) { unsigned long flags; if (test_bit(STATUS_RF_KILL_SW, &priv->status)) return; IWL_DEBUG_RF_KILL("Manual SW RF KILL set to: RADIO OFF\n"); iwl_scan_cancel(priv); /* FIXME: This is a workaround for AP */ if (priv->iw_mode != IEEE80211_IF_TYPE_AP) { spin_lock_irqsave(&priv->lock, flags); iwl_write32(priv, CSR_UCODE_DRV_GP1_SET, CSR_UCODE_SW_BIT_RFKILL); spin_unlock_irqrestore(&priv->lock, flags); /* call the host command only if no hw rf-kill set */ if (!test_bit(STATUS_RF_KILL_HW, &priv->status) && iwl_is_ready(priv)) iwl_send_card_state(priv, CARD_STATE_CMD_DISABLE, 0); set_bit(STATUS_RF_KILL_SW, &priv->status); /* make sure mac80211 stop sending Tx frame */ if (priv->mac80211_registered) ieee80211_stop_queues(priv->hw); } } EXPORT_SYMBOL(iwl_radio_kill_sw_disable_radio); int iwl_radio_kill_sw_enable_radio(struct iwl_priv *priv) { unsigned long flags; if (!test_bit(STATUS_RF_KILL_SW, &priv->status)) return 0; IWL_DEBUG_RF_KILL("Manual SW RF KILL set to: RADIO ON\n"); spin_lock_irqsave(&priv->lock, flags); iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); /* If the driver is up it will receive CARD_STATE_NOTIFICATION * notification where it will clear SW rfkill status. * Setting it here would break the handler. Only if the * interface is down we can set here since we don't * receive any further notification. */ if (!priv->is_open) clear_bit(STATUS_RF_KILL_SW, &priv->status); spin_unlock_irqrestore(&priv->lock, flags); /* wake up ucode */ msleep(10); spin_lock_irqsave(&priv->lock, flags); iwl_read32(priv, CSR_UCODE_DRV_GP1); if (!iwl_grab_nic_access(priv)) iwl_release_nic_access(priv); spin_unlock_irqrestore(&priv->lock, flags); if (test_bit(STATUS_RF_KILL_HW, &priv->status)) { IWL_DEBUG_RF_KILL("Can not turn radio back on - " "disabled by HW switch\n"); return 0; } /* If the driver is already loaded, it will receive * CARD_STATE_NOTIFICATION notifications and the handler will * call restart to reload the driver. */ return 1; } EXPORT_SYMBOL(iwl_radio_kill_sw_enable_radio);