/* * Kernel-based Virtual Machine driver for Linux * * AMD SVM support * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Yaniv Kamay * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include "kvm_svm.h" #include "irq.h" #include "mmu.h" #include #include #include #include #include #include MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); #define IOPM_ALLOC_ORDER 2 #define MSRPM_ALLOC_ORDER 1 #define DB_VECTOR 1 #define UD_VECTOR 6 #define GP_VECTOR 13 #define DR7_GD_MASK (1 << 13) #define DR6_BD_MASK (1 << 13) #define SEG_TYPE_LDT 2 #define SEG_TYPE_BUSY_TSS16 3 #define SVM_FEATURE_NPT (1 << 0) #define SVM_FEATURE_LBRV (1 << 1) #define SVM_DEATURE_SVML (1 << 2) /* enable NPT for AMD64 and X86 with PAE */ #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) static bool npt_enabled = true; #else static bool npt_enabled = false; #endif static int npt = 1; module_param(npt, int, S_IRUGO); static void kvm_reput_irq(struct vcpu_svm *svm); static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) { return container_of(vcpu, struct vcpu_svm, vcpu); } unsigned long iopm_base; unsigned long msrpm_base; struct kvm_ldttss_desc { u16 limit0; u16 base0; unsigned base1 : 8, type : 5, dpl : 2, p : 1; unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8; u32 base3; u32 zero1; } __attribute__((packed)); struct svm_cpu_data { int cpu; u64 asid_generation; u32 max_asid; u32 next_asid; struct kvm_ldttss_desc *tss_desc; struct page *save_area; }; static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); static uint32_t svm_features; struct svm_init_data { int cpu; int r; }; static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) #define MSRS_RANGE_SIZE 2048 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) #define MAX_INST_SIZE 15 static inline u32 svm_has(u32 feat) { return svm_features & feat; } static inline u8 pop_irq(struct kvm_vcpu *vcpu) { int word_index = __ffs(vcpu->arch.irq_summary); int bit_index = __ffs(vcpu->arch.irq_pending[word_index]); int irq = word_index * BITS_PER_LONG + bit_index; clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]); if (!vcpu->arch.irq_pending[word_index]) clear_bit(word_index, &vcpu->arch.irq_summary); return irq; } static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq) { set_bit(irq, vcpu->arch.irq_pending); set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary); } static inline void clgi(void) { asm volatile (SVM_CLGI); } static inline void stgi(void) { asm volatile (SVM_STGI); } static inline void invlpga(unsigned long addr, u32 asid) { asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid)); } static inline unsigned long kvm_read_cr2(void) { unsigned long cr2; asm volatile ("mov %%cr2, %0" : "=r" (cr2)); return cr2; } static inline void kvm_write_cr2(unsigned long val) { asm volatile ("mov %0, %%cr2" :: "r" (val)); } static inline unsigned long read_dr6(void) { unsigned long dr6; asm volatile ("mov %%dr6, %0" : "=r" (dr6)); return dr6; } static inline void write_dr6(unsigned long val) { asm volatile ("mov %0, %%dr6" :: "r" (val)); } static inline unsigned long read_dr7(void) { unsigned long dr7; asm volatile ("mov %%dr7, %0" : "=r" (dr7)); return dr7; } static inline void write_dr7(unsigned long val) { asm volatile ("mov %0, %%dr7" :: "r" (val)); } static inline void force_new_asid(struct kvm_vcpu *vcpu) { to_svm(vcpu)->asid_generation--; } static inline void flush_guest_tlb(struct kvm_vcpu *vcpu) { force_new_asid(vcpu); } static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) { if (!npt_enabled && !(efer & EFER_LMA)) efer &= ~EFER_LME; to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK; vcpu->arch.shadow_efer = efer; } static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, bool has_error_code, u32 error_code) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.event_inj = nr | SVM_EVTINJ_VALID | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | SVM_EVTINJ_TYPE_EXEPT; svm->vmcb->control.event_inj_err = error_code; } static bool svm_exception_injected(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID); } static int is_external_interrupt(u32 info) { info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); } static void skip_emulated_instruction(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (!svm->next_rip) { printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__); return; } if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n", __FUNCTION__, svm->vmcb->save.rip, svm->next_rip); vcpu->arch.rip = svm->vmcb->save.rip = svm->next_rip; svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; vcpu->arch.interrupt_window_open = 1; } static int has_svm(void) { uint32_t eax, ebx, ecx, edx; if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) { printk(KERN_INFO "has_svm: not amd\n"); return 0; } cpuid(0x80000000, &eax, &ebx, &ecx, &edx); if (eax < SVM_CPUID_FUNC) { printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n"); return 0; } cpuid(0x80000001, &eax, &ebx, &ecx, &edx); if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) { printk(KERN_DEBUG "has_svm: svm not available\n"); return 0; } return 1; } static void svm_hardware_disable(void *garbage) { struct svm_cpu_data *svm_data = per_cpu(svm_data, raw_smp_processor_id()); if (svm_data) { uint64_t efer; wrmsrl(MSR_VM_HSAVE_PA, 0); rdmsrl(MSR_EFER, efer); wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK); per_cpu(svm_data, raw_smp_processor_id()) = NULL; __free_page(svm_data->save_area); kfree(svm_data); } } static void svm_hardware_enable(void *garbage) { struct svm_cpu_data *svm_data; uint64_t efer; #ifdef CONFIG_X86_64 struct desc_ptr gdt_descr; #else struct desc_ptr gdt_descr; #endif struct desc_struct *gdt; int me = raw_smp_processor_id(); if (!has_svm()) { printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me); return; } svm_data = per_cpu(svm_data, me); if (!svm_data) { printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n", me); return; } svm_data->asid_generation = 1; svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; svm_data->next_asid = svm_data->max_asid + 1; asm volatile ("sgdt %0" : "=m"(gdt_descr)); gdt = (struct desc_struct *)gdt_descr.address; svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); rdmsrl(MSR_EFER, efer); wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK); wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(svm_data->save_area) << PAGE_SHIFT); } static int svm_cpu_init(int cpu) { struct svm_cpu_data *svm_data; int r; svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); if (!svm_data) return -ENOMEM; svm_data->cpu = cpu; svm_data->save_area = alloc_page(GFP_KERNEL); r = -ENOMEM; if (!svm_data->save_area) goto err_1; per_cpu(svm_data, cpu) = svm_data; return 0; err_1: kfree(svm_data); return r; } static void set_msr_interception(u32 *msrpm, unsigned msr, int read, int write) { int i; for (i = 0; i < NUM_MSR_MAPS; i++) { if (msr >= msrpm_ranges[i] && msr < msrpm_ranges[i] + MSRS_IN_RANGE) { u32 msr_offset = (i * MSRS_IN_RANGE + msr - msrpm_ranges[i]) * 2; u32 *base = msrpm + (msr_offset / 32); u32 msr_shift = msr_offset % 32; u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1); *base = (*base & ~(0x3 << msr_shift)) | (mask << msr_shift); return; } } BUG(); } static __init int svm_hardware_setup(void) { int cpu; struct page *iopm_pages; struct page *msrpm_pages; void *iopm_va, *msrpm_va; int r; iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); if (!iopm_pages) return -ENOMEM; iopm_va = page_address(iopm_pages); memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */ iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); r = -ENOMEM; if (!msrpm_pages) goto err_1; msrpm_va = page_address(msrpm_pages); memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT; #ifdef CONFIG_X86_64 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1); set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1); set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1); set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1); set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1); set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1); #endif set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1); set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1); set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1); set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1); if (boot_cpu_has(X86_FEATURE_NX)) kvm_enable_efer_bits(EFER_NX); for_each_online_cpu(cpu) { r = svm_cpu_init(cpu); if (r) goto err_2; } svm_features = cpuid_edx(SVM_CPUID_FUNC); if (!svm_has(SVM_FEATURE_NPT)) npt_enabled = false; if (npt_enabled && !npt) { printk(KERN_INFO "kvm: Nested Paging disabled\n"); npt_enabled = false; } if (npt_enabled) { printk(KERN_INFO "kvm: Nested Paging enabled\n"); kvm_enable_tdp(); } return 0; err_2: __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); msrpm_base = 0; err_1: __free_pages(iopm_pages, IOPM_ALLOC_ORDER); iopm_base = 0; return r; } static __exit void svm_hardware_unsetup(void) { __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER); __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); iopm_base = msrpm_base = 0; } static void init_seg(struct vmcb_seg *seg) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ seg->limit = 0xffff; seg->base = 0; } static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | type; seg->limit = 0xffff; seg->base = 0; } static void init_vmcb(struct vcpu_svm *svm) { struct vmcb_control_area *control = &svm->vmcb->control; struct vmcb_save_area *save = &svm->vmcb->save; control->intercept_cr_read = INTERCEPT_CR0_MASK | INTERCEPT_CR3_MASK | INTERCEPT_CR4_MASK | INTERCEPT_CR8_MASK; control->intercept_cr_write = INTERCEPT_CR0_MASK | INTERCEPT_CR3_MASK | INTERCEPT_CR4_MASK | INTERCEPT_CR8_MASK; control->intercept_dr_read = INTERCEPT_DR0_MASK | INTERCEPT_DR1_MASK | INTERCEPT_DR2_MASK | INTERCEPT_DR3_MASK; control->intercept_dr_write = INTERCEPT_DR0_MASK | INTERCEPT_DR1_MASK | INTERCEPT_DR2_MASK | INTERCEPT_DR3_MASK | INTERCEPT_DR5_MASK | INTERCEPT_DR7_MASK; control->intercept_exceptions = (1 << PF_VECTOR) | (1 << UD_VECTOR); control->intercept = (1ULL << INTERCEPT_INTR) | (1ULL << INTERCEPT_NMI) | (1ULL << INTERCEPT_SMI) | /* * selective cr0 intercept bug? * 0: 0f 22 d8 mov %eax,%cr3 * 3: 0f 20 c0 mov %cr0,%eax * 6: 0d 00 00 00 80 or $0x80000000,%eax * b: 0f 22 c0 mov %eax,%cr0 * set cr3 ->interception * get cr0 ->interception * set cr0 -> no interception */ /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */ (1ULL << INTERCEPT_CPUID) | (1ULL << INTERCEPT_INVD) | (1ULL << INTERCEPT_HLT) | (1ULL << INTERCEPT_INVLPGA) | (1ULL << INTERCEPT_IOIO_PROT) | (1ULL << INTERCEPT_MSR_PROT) | (1ULL << INTERCEPT_TASK_SWITCH) | (1ULL << INTERCEPT_SHUTDOWN) | (1ULL << INTERCEPT_VMRUN) | (1ULL << INTERCEPT_VMMCALL) | (1ULL << INTERCEPT_VMLOAD) | (1ULL << INTERCEPT_VMSAVE) | (1ULL << INTERCEPT_STGI) | (1ULL << INTERCEPT_CLGI) | (1ULL << INTERCEPT_SKINIT) | (1ULL << INTERCEPT_WBINVD) | (1ULL << INTERCEPT_MONITOR) | (1ULL << INTERCEPT_MWAIT); control->iopm_base_pa = iopm_base; control->msrpm_base_pa = msrpm_base; control->tsc_offset = 0; control->int_ctl = V_INTR_MASKING_MASK; init_seg(&save->es); init_seg(&save->ss); init_seg(&save->ds); init_seg(&save->fs); init_seg(&save->gs); save->cs.selector = 0xf000; /* Executable/Readable Code Segment */ save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; save->cs.limit = 0xffff; /* * cs.base should really be 0xffff0000, but vmx can't handle that, so * be consistent with it. * * Replace when we have real mode working for vmx. */ save->cs.base = 0xf0000; save->gdtr.limit = 0xffff; save->idtr.limit = 0xffff; init_sys_seg(&save->ldtr, SEG_TYPE_LDT); init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); save->efer = MSR_EFER_SVME_MASK; save->dr6 = 0xffff0ff0; save->dr7 = 0x400; save->rflags = 2; save->rip = 0x0000fff0; /* * cr0 val on cpu init should be 0x60000010, we enable cpu * cache by default. the orderly way is to enable cache in bios. */ save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP; save->cr4 = X86_CR4_PAE; /* rdx = ?? */ if (npt_enabled) { /* Setup VMCB for Nested Paging */ control->nested_ctl = 1; control->intercept_exceptions &= ~(1 << PF_VECTOR); control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK| INTERCEPT_CR3_MASK); control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK| INTERCEPT_CR3_MASK); save->g_pat = 0x0007040600070406ULL; /* enable caching because the QEMU Bios doesn't enable it */ save->cr0 = X86_CR0_ET; save->cr3 = 0; save->cr4 = 0; } } static int svm_vcpu_reset(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); init_vmcb(svm); if (vcpu->vcpu_id != 0) { svm->vmcb->save.rip = 0; svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12; svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8; } return 0; } static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) { struct vcpu_svm *svm; struct page *page; int err; svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!svm) { err = -ENOMEM; goto out; } err = kvm_vcpu_init(&svm->vcpu, kvm, id); if (err) goto free_svm; page = alloc_page(GFP_KERNEL); if (!page) { err = -ENOMEM; goto uninit; } svm->vmcb = page_address(page); clear_page(svm->vmcb); svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; svm->asid_generation = 0; memset(svm->db_regs, 0, sizeof(svm->db_regs)); init_vmcb(svm); fx_init(&svm->vcpu); svm->vcpu.fpu_active = 1; svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; if (svm->vcpu.vcpu_id == 0) svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; return &svm->vcpu; uninit: kvm_vcpu_uninit(&svm->vcpu); free_svm: kmem_cache_free(kvm_vcpu_cache, svm); out: return ERR_PTR(err); } static void svm_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT)); kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, svm); } static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_svm *svm = to_svm(vcpu); int i; if (unlikely(cpu != vcpu->cpu)) { u64 tsc_this, delta; /* * Make sure that the guest sees a monotonically * increasing TSC. */ rdtscll(tsc_this); delta = vcpu->arch.host_tsc - tsc_this; svm->vmcb->control.tsc_offset += delta; vcpu->cpu = cpu; kvm_migrate_apic_timer(vcpu); } for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); } static void svm_vcpu_put(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); int i; ++vcpu->stat.host_state_reload; for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); rdtscll(vcpu->arch.host_tsc); } static void svm_vcpu_decache(struct kvm_vcpu *vcpu) { } static void svm_cache_regs(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; vcpu->arch.rip = svm->vmcb->save.rip; } static void svm_decache_regs(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; svm->vmcb->save.rip = vcpu->arch.rip; } static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) { return to_svm(vcpu)->vmcb->save.rflags; } static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { to_svm(vcpu)->vmcb->save.rflags = rflags; } static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; switch (seg) { case VCPU_SREG_CS: return &save->cs; case VCPU_SREG_DS: return &save->ds; case VCPU_SREG_ES: return &save->es; case VCPU_SREG_FS: return &save->fs; case VCPU_SREG_GS: return &save->gs; case VCPU_SREG_SS: return &save->ss; case VCPU_SREG_TR: return &save->tr; case VCPU_SREG_LDTR: return &save->ldtr; } BUG(); return NULL; } static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); return s->base; } static void svm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); var->base = s->base; var->limit = s->limit; var->selector = s->selector; var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1; var->unusable = !var->present; } static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->limit = svm->vmcb->save.idtr.limit; dt->base = svm->vmcb->save.idtr.base; } static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.idtr.limit = dt->limit; svm->vmcb->save.idtr.base = dt->base ; } static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->limit = svm->vmcb->save.gdtr.limit; dt->base = svm->vmcb->save.gdtr.base; } static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.gdtr.limit = dt->limit; svm->vmcb->save.gdtr.base = dt->base ; } static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) { } static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_svm *svm = to_svm(vcpu); #ifdef CONFIG_X86_64 if (vcpu->arch.shadow_efer & EFER_LME) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { vcpu->arch.shadow_efer |= EFER_LMA; svm->vmcb->save.efer |= EFER_LMA | EFER_LME; } if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { vcpu->arch.shadow_efer &= ~EFER_LMA; svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); } } #endif if (npt_enabled) goto set; if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) { svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR); vcpu->fpu_active = 1; } vcpu->arch.cr0 = cr0; cr0 |= X86_CR0_PG | X86_CR0_WP; if (!vcpu->fpu_active) { svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR); cr0 |= X86_CR0_TS; } set: /* * re-enable caching here because the QEMU bios * does not do it - this results in some delay at * reboot */ cr0 &= ~(X86_CR0_CD | X86_CR0_NW); svm->vmcb->save.cr0 = cr0; } static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { vcpu->arch.cr4 = cr4; if (!npt_enabled) cr4 |= X86_CR4_PAE; to_svm(vcpu)->vmcb->save.cr4 = cr4; } static void svm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_seg *s = svm_seg(vcpu, seg); s->base = var->base; s->limit = var->limit; s->selector = var->selector; if (var->unusable) s->attrib = 0; else { s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT; s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; } if (seg == VCPU_SREG_CS) svm->vmcb->save.cpl = (svm->vmcb->save.cs.attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; } /* FIXME: svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK; svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK); */ static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) { return -EOPNOTSUPP; } static int svm_get_irq(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 exit_int_info = svm->vmcb->control.exit_int_info; if (is_external_interrupt(exit_int_info)) return exit_int_info & SVM_EVTINJ_VEC_MASK; return -1; } static void load_host_msrs(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); #endif } static void save_host_msrs(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); #endif } static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data) { if (svm_data->next_asid > svm_data->max_asid) { ++svm_data->asid_generation; svm_data->next_asid = 1; svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; } svm->vcpu.cpu = svm_data->cpu; svm->asid_generation = svm_data->asid_generation; svm->vmcb->control.asid = svm_data->next_asid++; } static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr) { return to_svm(vcpu)->db_regs[dr]; } static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value, int *exception) { struct vcpu_svm *svm = to_svm(vcpu); *exception = 0; if (svm->vmcb->save.dr7 & DR7_GD_MASK) { svm->vmcb->save.dr7 &= ~DR7_GD_MASK; svm->vmcb->save.dr6 |= DR6_BD_MASK; *exception = DB_VECTOR; return; } switch (dr) { case 0 ... 3: svm->db_regs[dr] = value; return; case 4 ... 5: if (vcpu->arch.cr4 & X86_CR4_DE) { *exception = UD_VECTOR; return; } case 7: { if (value & ~((1ULL << 32) - 1)) { *exception = GP_VECTOR; return; } svm->vmcb->save.dr7 = value; return; } default: printk(KERN_DEBUG "%s: unexpected dr %u\n", __FUNCTION__, dr); *exception = UD_VECTOR; return; } } static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { u32 exit_int_info = svm->vmcb->control.exit_int_info; struct kvm *kvm = svm->vcpu.kvm; u64 fault_address; u32 error_code; if (!irqchip_in_kernel(kvm) && is_external_interrupt(exit_int_info)) push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK); fault_address = svm->vmcb->control.exit_info_2; error_code = svm->vmcb->control.exit_info_1; return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code); } static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { int er; er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD); if (er != EMULATE_DONE) kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR); if (!(svm->vcpu.arch.cr0 & X86_CR0_TS)) svm->vmcb->save.cr0 &= ~X86_CR0_TS; svm->vcpu.fpu_active = 1; return 1; } static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { /* * VMCB is undefined after a SHUTDOWN intercept * so reinitialize it. */ clear_page(svm->vmcb); init_vmcb(svm); kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; } static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ int size, down, in, string, rep; unsigned port; ++svm->vcpu.stat.io_exits; svm->next_rip = svm->vmcb->control.exit_info_2; string = (io_info & SVM_IOIO_STR_MASK) != 0; if (string) { if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) == EMULATE_DO_MMIO) return 0; return 1; } in = (io_info & SVM_IOIO_TYPE_MASK) != 0; port = io_info >> 16; size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; rep = (io_info & SVM_IOIO_REP_MASK) != 0; down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0; return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port); } static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { return 1; } static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { svm->next_rip = svm->vmcb->save.rip + 1; skip_emulated_instruction(&svm->vcpu); return kvm_emulate_halt(&svm->vcpu); } static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { svm->next_rip = svm->vmcb->save.rip + 3; skip_emulated_instruction(&svm->vcpu); kvm_emulate_hypercall(&svm->vcpu); return 1; } static int invalid_op_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { kvm_queue_exception(&svm->vcpu, UD_VECTOR); return 1; } static int task_switch_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__); kvm_run->exit_reason = KVM_EXIT_UNKNOWN; return 0; } static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { svm->next_rip = svm->vmcb->save.rip + 2; kvm_emulate_cpuid(&svm->vcpu); return 1; } static int emulate_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE) pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__); return 1; } static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { emulate_instruction(&svm->vcpu, NULL, 0, 0, 0); if (irqchip_in_kernel(svm->vcpu.kvm)) return 1; kvm_run->exit_reason = KVM_EXIT_SET_TPR; return 0; } static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data) { struct vcpu_svm *svm = to_svm(vcpu); switch (ecx) { case MSR_IA32_TIME_STAMP_COUNTER: { u64 tsc; rdtscll(tsc); *data = svm->vmcb->control.tsc_offset + tsc; break; } case MSR_K6_STAR: *data = svm->vmcb->save.star; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: *data = svm->vmcb->save.lstar; break; case MSR_CSTAR: *data = svm->vmcb->save.cstar; break; case MSR_KERNEL_GS_BASE: *data = svm->vmcb->save.kernel_gs_base; break; case MSR_SYSCALL_MASK: *data = svm->vmcb->save.sfmask; break; #endif case MSR_IA32_SYSENTER_CS: *data = svm->vmcb->save.sysenter_cs; break; case MSR_IA32_SYSENTER_EIP: *data = svm->vmcb->save.sysenter_eip; break; case MSR_IA32_SYSENTER_ESP: *data = svm->vmcb->save.sysenter_esp; break; /* Nobody will change the following 5 values in the VMCB so we can safely return them on rdmsr. They will always be 0 until LBRV is implemented. */ case MSR_IA32_DEBUGCTLMSR: *data = svm->vmcb->save.dbgctl; break; case MSR_IA32_LASTBRANCHFROMIP: *data = svm->vmcb->save.br_from; break; case MSR_IA32_LASTBRANCHTOIP: *data = svm->vmcb->save.br_to; break; case MSR_IA32_LASTINTFROMIP: *data = svm->vmcb->save.last_excp_from; break; case MSR_IA32_LASTINTTOIP: *data = svm->vmcb->save.last_excp_to; break; default: return kvm_get_msr_common(vcpu, ecx, data); } return 0; } static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; u64 data; if (svm_get_msr(&svm->vcpu, ecx, &data)) kvm_inject_gp(&svm->vcpu, 0); else { svm->vmcb->save.rax = data & 0xffffffff; svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32; svm->next_rip = svm->vmcb->save.rip + 2; skip_emulated_instruction(&svm->vcpu); } return 1; } static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data) { struct vcpu_svm *svm = to_svm(vcpu); switch (ecx) { case MSR_IA32_TIME_STAMP_COUNTER: { u64 tsc; rdtscll(tsc); svm->vmcb->control.tsc_offset = data - tsc; break; } case MSR_K6_STAR: svm->vmcb->save.star = data; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: svm->vmcb->save.lstar = data; break; case MSR_CSTAR: svm->vmcb->save.cstar = data; break; case MSR_KERNEL_GS_BASE: svm->vmcb->save.kernel_gs_base = data; break; case MSR_SYSCALL_MASK: svm->vmcb->save.sfmask = data; break; #endif case MSR_IA32_SYSENTER_CS: svm->vmcb->save.sysenter_cs = data; break; case MSR_IA32_SYSENTER_EIP: svm->vmcb->save.sysenter_eip = data; break; case MSR_IA32_SYSENTER_ESP: svm->vmcb->save.sysenter_esp = data; break; case MSR_IA32_DEBUGCTLMSR: pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", __FUNCTION__, data); break; case MSR_K7_EVNTSEL0: case MSR_K7_EVNTSEL1: case MSR_K7_EVNTSEL2: case MSR_K7_EVNTSEL3: /* * only support writing 0 to the performance counters for now * to make Windows happy. Should be replaced by a real * performance counter emulation later. */ if (data != 0) goto unhandled; break; default: unhandled: return kvm_set_msr_common(vcpu, ecx, data); } return 0; } static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; u64 data = (svm->vmcb->save.rax & -1u) | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32); svm->next_rip = svm->vmcb->save.rip + 2; if (svm_set_msr(&svm->vcpu, ecx, data)) kvm_inject_gp(&svm->vcpu, 0); else skip_emulated_instruction(&svm->vcpu); return 1; } static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { if (svm->vmcb->control.exit_info_1) return wrmsr_interception(svm, kvm_run); else return rdmsr_interception(svm, kvm_run); } static int interrupt_window_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) { svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR); svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; /* * If the user space waits to inject interrupts, exit as soon as * possible */ if (kvm_run->request_interrupt_window && !svm->vcpu.arch.irq_summary) { ++svm->vcpu.stat.irq_window_exits; kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; return 0; } return 1; } static int (*svm_exit_handlers[])(struct vcpu_svm *svm, struct kvm_run *kvm_run) = { [SVM_EXIT_READ_CR0] = emulate_on_interception, [SVM_EXIT_READ_CR3] = emulate_on_interception, [SVM_EXIT_READ_CR4] = emulate_on_interception, [SVM_EXIT_READ_CR8] = emulate_on_interception, /* for now: */ [SVM_EXIT_WRITE_CR0] = emulate_on_interception, [SVM_EXIT_WRITE_CR3] = emulate_on_interception, [SVM_EXIT_WRITE_CR4] = emulate_on_interception, [SVM_EXIT_WRITE_CR8] = cr8_write_interception, [SVM_EXIT_READ_DR0] = emulate_on_interception, [SVM_EXIT_READ_DR1] = emulate_on_interception, [SVM_EXIT_READ_DR2] = emulate_on_interception, [SVM_EXIT_READ_DR3] = emulate_on_interception, [SVM_EXIT_WRITE_DR0] = emulate_on_interception, [SVM_EXIT_WRITE_DR1] = emulate_on_interception, [SVM_EXIT_WRITE_DR2] = emulate_on_interception, [SVM_EXIT_WRITE_DR3] = emulate_on_interception, [SVM_EXIT_WRITE_DR5] = emulate_on_interception, [SVM_EXIT_WRITE_DR7] = emulate_on_interception, [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception, [SVM_EXIT_INTR] = nop_on_interception, [SVM_EXIT_NMI] = nop_on_interception, [SVM_EXIT_SMI] = nop_on_interception, [SVM_EXIT_INIT] = nop_on_interception, [SVM_EXIT_VINTR] = interrupt_window_interception, /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */ [SVM_EXIT_CPUID] = cpuid_interception, [SVM_EXIT_INVD] = emulate_on_interception, [SVM_EXIT_HLT] = halt_interception, [SVM_EXIT_INVLPG] = emulate_on_interception, [SVM_EXIT_INVLPGA] = invalid_op_interception, [SVM_EXIT_IOIO] = io_interception, [SVM_EXIT_MSR] = msr_interception, [SVM_EXIT_TASK_SWITCH] = task_switch_interception, [SVM_EXIT_SHUTDOWN] = shutdown_interception, [SVM_EXIT_VMRUN] = invalid_op_interception, [SVM_EXIT_VMMCALL] = vmmcall_interception, [SVM_EXIT_VMLOAD] = invalid_op_interception, [SVM_EXIT_VMSAVE] = invalid_op_interception, [SVM_EXIT_STGI] = invalid_op_interception, [SVM_EXIT_CLGI] = invalid_op_interception, [SVM_EXIT_SKINIT] = invalid_op_interception, [SVM_EXIT_WBINVD] = emulate_on_interception, [SVM_EXIT_MONITOR] = invalid_op_interception, [SVM_EXIT_MWAIT] = invalid_op_interception, [SVM_EXIT_NPF] = pf_interception, }; static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 exit_code = svm->vmcb->control.exit_code; if (npt_enabled) { int mmu_reload = 0; if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) { svm_set_cr0(vcpu, svm->vmcb->save.cr0); mmu_reload = 1; } vcpu->arch.cr0 = svm->vmcb->save.cr0; vcpu->arch.cr3 = svm->vmcb->save.cr3; if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { if (!load_pdptrs(vcpu, vcpu->arch.cr3)) { kvm_inject_gp(vcpu, 0); return 1; } } if (mmu_reload) { kvm_mmu_reset_context(vcpu); kvm_mmu_load(vcpu); } } kvm_reput_irq(svm); if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; kvm_run->fail_entry.hardware_entry_failure_reason = svm->vmcb->control.exit_code; return 0; } if (is_external_interrupt(svm->vmcb->control.exit_int_info) && exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && exit_code != SVM_EXIT_NPF) printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x " "exit_code 0x%x\n", __FUNCTION__, svm->vmcb->control.exit_int_info, exit_code); if (exit_code >= ARRAY_SIZE(svm_exit_handlers) || !svm_exit_handlers[exit_code]) { kvm_run->exit_reason = KVM_EXIT_UNKNOWN; kvm_run->hw.hardware_exit_reason = exit_code; return 0; } return svm_exit_handlers[exit_code](svm, kvm_run); } static void reload_tss(struct kvm_vcpu *vcpu) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */ load_TR_desc(); } static void pre_svm_run(struct vcpu_svm *svm) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; if (svm->vcpu.cpu != cpu || svm->asid_generation != svm_data->asid_generation) new_asid(svm, svm_data); } static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) { struct vmcb_control_area *control; control = &svm->vmcb->control; control->int_vector = irq; control->int_ctl &= ~V_INTR_PRIO_MASK; control->int_ctl |= V_IRQ_MASK | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); } static void svm_set_irq(struct kvm_vcpu *vcpu, int irq) { struct vcpu_svm *svm = to_svm(vcpu); svm_inject_irq(svm, irq); } static void svm_intr_assist(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; int intr_vector = -1; if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) && ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) { intr_vector = vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; vmcb->control.exit_int_info = 0; svm_inject_irq(svm, intr_vector); return; } if (vmcb->control.int_ctl & V_IRQ_MASK) return; if (!kvm_cpu_has_interrupt(vcpu)) return; if (!(vmcb->save.rflags & X86_EFLAGS_IF) || (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || (vmcb->control.event_inj & SVM_EVTINJ_VALID)) { /* unable to deliver irq, set pending irq */ vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR); svm_inject_irq(svm, 0x0); return; } /* Okay, we can deliver the interrupt: grab it and update PIC state. */ intr_vector = kvm_cpu_get_interrupt(vcpu); svm_inject_irq(svm, intr_vector); kvm_timer_intr_post(vcpu, intr_vector); } static void kvm_reput_irq(struct vcpu_svm *svm) { struct vmcb_control_area *control = &svm->vmcb->control; if ((control->int_ctl & V_IRQ_MASK) && !irqchip_in_kernel(svm->vcpu.kvm)) { control->int_ctl &= ~V_IRQ_MASK; push_irq(&svm->vcpu, control->int_vector); } svm->vcpu.arch.interrupt_window_open = !(control->int_state & SVM_INTERRUPT_SHADOW_MASK); } static void svm_do_inject_vector(struct vcpu_svm *svm) { struct kvm_vcpu *vcpu = &svm->vcpu; int word_index = __ffs(vcpu->arch.irq_summary); int bit_index = __ffs(vcpu->arch.irq_pending[word_index]); int irq = word_index * BITS_PER_LONG + bit_index; clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]); if (!vcpu->arch.irq_pending[word_index]) clear_bit(word_index, &vcpu->arch.irq_summary); svm_inject_irq(svm, irq); } static void do_interrupt_requests(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; svm->vcpu.arch.interrupt_window_open = (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) && (svm->vmcb->save.rflags & X86_EFLAGS_IF)); if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary) /* * If interrupts enabled, and not blocked by sti or mov ss. Good. */ svm_do_inject_vector(svm); /* * Interrupts blocked. Wait for unblock. */ if (!svm->vcpu.arch.interrupt_window_open && (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window)) control->intercept |= 1ULL << INTERCEPT_VINTR; else control->intercept &= ~(1ULL << INTERCEPT_VINTR); } static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) { return 0; } static void save_db_regs(unsigned long *db_regs) { asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0])); asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1])); asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2])); asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3])); } static void load_db_regs(unsigned long *db_regs) { asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0])); asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1])); asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2])); asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3])); } static void svm_flush_tlb(struct kvm_vcpu *vcpu) { force_new_asid(vcpu); } static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) { } static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { struct vcpu_svm *svm = to_svm(vcpu); u16 fs_selector; u16 gs_selector; u16 ldt_selector; pre_svm_run(svm); save_host_msrs(vcpu); fs_selector = read_fs(); gs_selector = read_gs(); ldt_selector = read_ldt(); svm->host_cr2 = kvm_read_cr2(); svm->host_dr6 = read_dr6(); svm->host_dr7 = read_dr7(); svm->vmcb->save.cr2 = vcpu->arch.cr2; /* required for live migration with NPT */ if (npt_enabled) svm->vmcb->save.cr3 = vcpu->arch.cr3; if (svm->vmcb->save.dr7 & 0xff) { write_dr7(0); save_db_regs(svm->host_db_regs); load_db_regs(svm->db_regs); } clgi(); local_irq_enable(); asm volatile ( #ifdef CONFIG_X86_64 "push %%rbp; \n\t" #else "push %%ebp; \n\t" #endif #ifdef CONFIG_X86_64 "mov %c[rbx](%[svm]), %%rbx \n\t" "mov %c[rcx](%[svm]), %%rcx \n\t" "mov %c[rdx](%[svm]), %%rdx \n\t" "mov %c[rsi](%[svm]), %%rsi \n\t" "mov %c[rdi](%[svm]), %%rdi \n\t" "mov %c[rbp](%[svm]), %%rbp \n\t" "mov %c[r8](%[svm]), %%r8 \n\t" "mov %c[r9](%[svm]), %%r9 \n\t" "mov %c[r10](%[svm]), %%r10 \n\t" "mov %c[r11](%[svm]), %%r11 \n\t" "mov %c[r12](%[svm]), %%r12 \n\t" "mov %c[r13](%[svm]), %%r13 \n\t" "mov %c[r14](%[svm]), %%r14 \n\t" "mov %c[r15](%[svm]), %%r15 \n\t" #else "mov %c[rbx](%[svm]), %%ebx \n\t" "mov %c[rcx](%[svm]), %%ecx \n\t" "mov %c[rdx](%[svm]), %%edx \n\t" "mov %c[rsi](%[svm]), %%esi \n\t" "mov %c[rdi](%[svm]), %%edi \n\t" "mov %c[rbp](%[svm]), %%ebp \n\t" #endif #ifdef CONFIG_X86_64 /* Enter guest mode */ "push %%rax \n\t" "mov %c[vmcb](%[svm]), %%rax \n\t" SVM_VMLOAD "\n\t" SVM_VMRUN "\n\t" SVM_VMSAVE "\n\t" "pop %%rax \n\t" #else /* Enter guest mode */ "push %%eax \n\t" "mov %c[vmcb](%[svm]), %%eax \n\t" SVM_VMLOAD "\n\t" SVM_VMRUN "\n\t" SVM_VMSAVE "\n\t" "pop %%eax \n\t" #endif /* Save guest registers, load host registers */ #ifdef CONFIG_X86_64 "mov %%rbx, %c[rbx](%[svm]) \n\t" "mov %%rcx, %c[rcx](%[svm]) \n\t" "mov %%rdx, %c[rdx](%[svm]) \n\t" "mov %%rsi, %c[rsi](%[svm]) \n\t" "mov %%rdi, %c[rdi](%[svm]) \n\t" "mov %%rbp, %c[rbp](%[svm]) \n\t" "mov %%r8, %c[r8](%[svm]) \n\t" "mov %%r9, %c[r9](%[svm]) \n\t" "mov %%r10, %c[r10](%[svm]) \n\t" "mov %%r11, %c[r11](%[svm]) \n\t" "mov %%r12, %c[r12](%[svm]) \n\t" "mov %%r13, %c[r13](%[svm]) \n\t" "mov %%r14, %c[r14](%[svm]) \n\t" "mov %%r15, %c[r15](%[svm]) \n\t" "pop %%rbp; \n\t" #else "mov %%ebx, %c[rbx](%[svm]) \n\t" "mov %%ecx, %c[rcx](%[svm]) \n\t" "mov %%edx, %c[rdx](%[svm]) \n\t" "mov %%esi, %c[rsi](%[svm]) \n\t" "mov %%edi, %c[rdi](%[svm]) \n\t" "mov %%ebp, %c[rbp](%[svm]) \n\t" "pop %%ebp; \n\t" #endif : : [svm]"a"(svm), [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) #ifdef CONFIG_X86_64 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) #endif : "cc", "memory" #ifdef CONFIG_X86_64 , "rbx", "rcx", "rdx", "rsi", "rdi" , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" #else , "ebx", "ecx", "edx" , "esi", "edi" #endif ); if ((svm->vmcb->save.dr7 & 0xff)) load_db_regs(svm->host_db_regs); vcpu->arch.cr2 = svm->vmcb->save.cr2; write_dr6(svm->host_dr6); write_dr7(svm->host_dr7); kvm_write_cr2(svm->host_cr2); load_fs(fs_selector); load_gs(gs_selector); load_ldt(ldt_selector); load_host_msrs(vcpu); reload_tss(vcpu); local_irq_disable(); stgi(); svm->next_rip = 0; } static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) { struct vcpu_svm *svm = to_svm(vcpu); if (npt_enabled) { svm->vmcb->control.nested_cr3 = root; force_new_asid(vcpu); return; } svm->vmcb->save.cr3 = root; force_new_asid(vcpu); if (vcpu->fpu_active) { svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR); svm->vmcb->save.cr0 |= X86_CR0_TS; vcpu->fpu_active = 0; } } static int is_disabled(void) { u64 vm_cr; rdmsrl(MSR_VM_CR, vm_cr); if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) return 1; return 0; } static void svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xd9; } static void svm_check_processor_compat(void *rtn) { *(int *)rtn = 0; } static bool svm_cpu_has_accelerated_tpr(void) { return false; } static struct kvm_x86_ops svm_x86_ops = { .cpu_has_kvm_support = has_svm, .disabled_by_bios = is_disabled, .hardware_setup = svm_hardware_setup, .hardware_unsetup = svm_hardware_unsetup, .check_processor_compatibility = svm_check_processor_compat, .hardware_enable = svm_hardware_enable, .hardware_disable = svm_hardware_disable, .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, .vcpu_create = svm_create_vcpu, .vcpu_free = svm_free_vcpu, .vcpu_reset = svm_vcpu_reset, .prepare_guest_switch = svm_prepare_guest_switch, .vcpu_load = svm_vcpu_load, .vcpu_put = svm_vcpu_put, .vcpu_decache = svm_vcpu_decache, .set_guest_debug = svm_guest_debug, .get_msr = svm_get_msr, .set_msr = svm_set_msr, .get_segment_base = svm_get_segment_base, .get_segment = svm_get_segment, .set_segment = svm_set_segment, .get_cs_db_l_bits = kvm_get_cs_db_l_bits, .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, .set_cr0 = svm_set_cr0, .set_cr3 = svm_set_cr3, .set_cr4 = svm_set_cr4, .set_efer = svm_set_efer, .get_idt = svm_get_idt, .set_idt = svm_set_idt, .get_gdt = svm_get_gdt, .set_gdt = svm_set_gdt, .get_dr = svm_get_dr, .set_dr = svm_set_dr, .cache_regs = svm_cache_regs, .decache_regs = svm_decache_regs, .get_rflags = svm_get_rflags, .set_rflags = svm_set_rflags, .tlb_flush = svm_flush_tlb, .run = svm_vcpu_run, .handle_exit = handle_exit, .skip_emulated_instruction = skip_emulated_instruction, .patch_hypercall = svm_patch_hypercall, .get_irq = svm_get_irq, .set_irq = svm_set_irq, .queue_exception = svm_queue_exception, .exception_injected = svm_exception_injected, .inject_pending_irq = svm_intr_assist, .inject_pending_vectors = do_interrupt_requests, .set_tss_addr = svm_set_tss_addr, }; static int __init svm_init(void) { return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), THIS_MODULE); } static void __exit svm_exit(void) { kvm_exit(); } module_init(svm_init) module_exit(svm_exit)