/* * Copyright (C) 2001, 2002 Jeff Dike (jdike@karaya.com) * Licensed under the GPL */ #include "linux/sched.h" #include "linux/slab.h" #include "linux/list.h" #include "linux/kd.h" #include "linux/interrupt.h" #include "asm/uaccess.h" #include "chan_kern.h" #include "irq_user.h" #include "line.h" #include "kern.h" #include "user_util.h" #include "kern_util.h" #include "os.h" #include "irq_kern.h" #define LINE_BUFSIZE 4096 static irqreturn_t line_interrupt(int irq, void *data) { struct chan *chan = data; struct line *line = chan->line; struct tty_struct *tty = line->tty; if (line) chan_interrupt(&line->chan_list, &line->task, tty, irq); return IRQ_HANDLED; } static void line_timer_cb(struct work_struct *work) { struct line *line = container_of(work, struct line, task.work); if(!line->throttled) chan_interrupt(&line->chan_list, &line->task, line->tty, line->driver->read_irq); } /* Returns the free space inside the ring buffer of this line. * * Should be called while holding line->lock (this does not modify datas). */ static int write_room(struct line *line) { int n; if (line->buffer == NULL) return LINE_BUFSIZE - 1; /* This is for the case where the buffer is wrapped! */ n = line->head - line->tail; if (n <= 0) n = LINE_BUFSIZE + n; /* The other case */ return n - 1; } int line_write_room(struct tty_struct *tty) { struct line *line = tty->driver_data; unsigned long flags; int room; if (tty->stopped) return 0; spin_lock_irqsave(&line->lock, flags); room = write_room(line); spin_unlock_irqrestore(&line->lock, flags); /*XXX: Warning to remove */ if (0 == room) printk(KERN_DEBUG "%s: %s: no room left in buffer\n", __FUNCTION__,tty->name); return room; } int line_chars_in_buffer(struct tty_struct *tty) { struct line *line = tty->driver_data; unsigned long flags; int ret; spin_lock_irqsave(&line->lock, flags); /*write_room subtracts 1 for the needed NULL, so we readd it.*/ ret = LINE_BUFSIZE - (write_room(line) + 1); spin_unlock_irqrestore(&line->lock, flags); return ret; } /* * This copies the content of buf into the circular buffer associated with * this line. * The return value is the number of characters actually copied, i.e. the ones * for which there was space: this function is not supposed to ever flush out * the circular buffer. * * Must be called while holding line->lock! */ static int buffer_data(struct line *line, const char *buf, int len) { int end, room; if(line->buffer == NULL){ line->buffer = kmalloc(LINE_BUFSIZE, GFP_ATOMIC); if (line->buffer == NULL) { printk("buffer_data - atomic allocation failed\n"); return(0); } line->head = line->buffer; line->tail = line->buffer; } room = write_room(line); len = (len > room) ? room : len; end = line->buffer + LINE_BUFSIZE - line->tail; if (len < end){ memcpy(line->tail, buf, len); line->tail += len; } else { /* The circular buffer is wrapping */ memcpy(line->tail, buf, end); buf += end; memcpy(line->buffer, buf, len - end); line->tail = line->buffer + len - end; } return len; } /* * Flushes the ring buffer to the output channels. That is, write_chan is * called, passing it line->head as buffer, and an appropriate count. * * On exit, returns 1 when the buffer is empty, * 0 when the buffer is not empty on exit, * and -errno when an error occurred. * * Must be called while holding line->lock!*/ static int flush_buffer(struct line *line) { int n, count; if ((line->buffer == NULL) || (line->head == line->tail)) return 1; if (line->tail < line->head) { /* line->buffer + LINE_BUFSIZE is the end of the buffer! */ count = line->buffer + LINE_BUFSIZE - line->head; n = write_chan(&line->chan_list, line->head, count, line->driver->write_irq); if (n < 0) return n; if (n == count) { /* We have flushed from ->head to buffer end, now we * must flush only from the beginning to ->tail.*/ line->head = line->buffer; } else { line->head += n; return 0; } } count = line->tail - line->head; n = write_chan(&line->chan_list, line->head, count, line->driver->write_irq); if(n < 0) return n; line->head += n; return line->head == line->tail; } void line_flush_buffer(struct tty_struct *tty) { struct line *line = tty->driver_data; unsigned long flags; int err; /*XXX: copied from line_write, verify if it is correct!*/ if(tty->stopped) return; spin_lock_irqsave(&line->lock, flags); err = flush_buffer(line); /*if (err == 1) err = 0;*/ spin_unlock_irqrestore(&line->lock, flags); //return err; } /* We map both ->flush_chars and ->put_char (which go in pair) onto ->flush_buffer * and ->write. Hope it's not that bad.*/ void line_flush_chars(struct tty_struct *tty) { line_flush_buffer(tty); } void line_put_char(struct tty_struct *tty, unsigned char ch) { line_write(tty, &ch, sizeof(ch)); } int line_write(struct tty_struct *tty, const unsigned char *buf, int len) { struct line *line = tty->driver_data; unsigned long flags; int n, err, ret = 0; if(tty->stopped) return 0; spin_lock_irqsave(&line->lock, flags); if (line->head != line->tail) { ret = buffer_data(line, buf, len); err = flush_buffer(line); if (err <= 0 && (err != -EAGAIN || !ret)) ret = err; } else { n = write_chan(&line->chan_list, buf, len, line->driver->write_irq); if (n < 0) { ret = n; goto out_up; } len -= n; ret += n; if (len > 0) ret += buffer_data(line, buf + n, len); } out_up: spin_unlock_irqrestore(&line->lock, flags); return ret; } void line_set_termios(struct tty_struct *tty, struct ktermios * old) { /* nothing */ } static const struct { int cmd; char *level; char *name; } tty_ioctls[] = { /* don't print these, they flood the log ... */ { TCGETS, NULL, "TCGETS" }, { TCSETS, NULL, "TCSETS" }, { TCSETSW, NULL, "TCSETSW" }, { TCFLSH, NULL, "TCFLSH" }, { TCSBRK, NULL, "TCSBRK" }, /* general tty stuff */ { TCSETSF, KERN_DEBUG, "TCSETSF" }, { TCGETA, KERN_DEBUG, "TCGETA" }, { TIOCMGET, KERN_DEBUG, "TIOCMGET" }, { TCSBRKP, KERN_DEBUG, "TCSBRKP" }, { TIOCMSET, KERN_DEBUG, "TIOCMSET" }, /* linux-specific ones */ { TIOCLINUX, KERN_INFO, "TIOCLINUX" }, { KDGKBMODE, KERN_INFO, "KDGKBMODE" }, { KDGKBTYPE, KERN_INFO, "KDGKBTYPE" }, { KDSIGACCEPT, KERN_INFO, "KDSIGACCEPT" }, }; int line_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int ret; int i; ret = 0; switch(cmd) { #ifdef TIOCGETP case TIOCGETP: case TIOCSETP: case TIOCSETN: #endif #ifdef TIOCGETC case TIOCGETC: case TIOCSETC: #endif #ifdef TIOCGLTC case TIOCGLTC: case TIOCSLTC: #endif case TCGETS: case TCSETSF: case TCSETSW: case TCSETS: case TCGETA: case TCSETAF: case TCSETAW: case TCSETA: case TCXONC: case TCFLSH: case TIOCOUTQ: case TIOCINQ: case TIOCGLCKTRMIOS: case TIOCSLCKTRMIOS: case TIOCPKT: case TIOCGSOFTCAR: case TIOCSSOFTCAR: return -ENOIOCTLCMD; #if 0 case TCwhatever: /* do something */ break; #endif default: for (i = 0; i < ARRAY_SIZE(tty_ioctls); i++) if (cmd == tty_ioctls[i].cmd) break; if (i < ARRAY_SIZE(tty_ioctls)) { if (NULL != tty_ioctls[i].level) printk("%s%s: %s: ioctl %s called\n", tty_ioctls[i].level, __FUNCTION__, tty->name, tty_ioctls[i].name); } else { printk(KERN_ERR "%s: %s: unknown ioctl: 0x%x\n", __FUNCTION__, tty->name, cmd); } ret = -ENOIOCTLCMD; break; } return ret; } void line_throttle(struct tty_struct *tty) { struct line *line = tty->driver_data; deactivate_chan(&line->chan_list, line->driver->read_irq); line->throttled = 1; } void line_unthrottle(struct tty_struct *tty) { struct line *line = tty->driver_data; line->throttled = 0; chan_interrupt(&line->chan_list, &line->task, tty, line->driver->read_irq); /* Maybe there is enough stuff pending that calling the interrupt * throttles us again. In this case, line->throttled will be 1 * again and we shouldn't turn the interrupt back on. */ if(!line->throttled) reactivate_chan(&line->chan_list, line->driver->read_irq); } static irqreturn_t line_write_interrupt(int irq, void *data) { struct chan *chan = data; struct line *line = chan->line; struct tty_struct *tty = line->tty; int err; /* Interrupts are enabled here because we registered the interrupt with * IRQF_DISABLED (see line_setup_irq).*/ spin_lock_irq(&line->lock); err = flush_buffer(line); if (err == 0) { return IRQ_NONE; } else if(err < 0) { line->head = line->buffer; line->tail = line->buffer; } spin_unlock_irq(&line->lock); if(tty == NULL) return IRQ_NONE; if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags) && (tty->ldisc.write_wakeup != NULL)) (tty->ldisc.write_wakeup)(tty); /* BLOCKING mode * In blocking mode, everything sleeps on tty->write_wait. * Sleeping in the console driver would break non-blocking * writes. */ if (waitqueue_active(&tty->write_wait)) wake_up_interruptible(&tty->write_wait); return IRQ_HANDLED; } int line_setup_irq(int fd, int input, int output, struct line *line, void *data) { const struct line_driver *driver = line->driver; int err = 0, flags = IRQF_DISABLED | IRQF_SHARED | IRQF_SAMPLE_RANDOM; if (input) err = um_request_irq(driver->read_irq, fd, IRQ_READ, line_interrupt, flags, driver->read_irq_name, data); if (err) return err; if (output) err = um_request_irq(driver->write_irq, fd, IRQ_WRITE, line_write_interrupt, flags, driver->write_irq_name, data); line->have_irq = 1; return err; } /* Normally, a driver like this can rely mostly on the tty layer * locking, particularly when it comes to the driver structure. * However, in this case, mconsole requests can come in "from the * side", and race with opens and closes. * * The problem comes from line_setup not wanting to sleep if * the device is open or being opened. This can happen because the * first opener of a device is responsible for setting it up on the * host, and that can sleep. The open of a port device will sleep * until someone telnets to it. * * The obvious solution of putting everything under a mutex fails * because then trying (and failing) to change the configuration of an * open(ing) device will block until the open finishes. The right * thing to happen is for it to fail immediately. * * We can put the opening (and closing) of the host device under a * separate lock, but that has to be taken before the count lock is * released. Otherwise, you open a window in which another open can * come through and assume that the host side is opened and working. * * So, if the tty count is one, open will take the open mutex * inside the count lock. Otherwise, it just returns. This will sleep * if the last close is pending, and will block a setup or get_config, * but that should not last long. * * So, what we end up with is that open and close take the count lock. * If the first open or last close are happening, then the open mutex * is taken inside the count lock and the host opening or closing is done. * * setup and get_config only take the count lock. setup modifies the * device configuration only if the open count is zero. Arbitrarily * long blocking of setup doesn't happen because something would have to be * waiting for an open to happen. However, a second open with * tty->count == 1 can't happen, and a close can't happen until the open * had finished. * * We can't maintain our own count here because the tty layer doesn't * match opens and closes. It will call close if an open failed, and * a tty hangup will result in excess closes. So, we rely on * tty->count instead. It is one on both the first open and last close. */ int line_open(struct line *lines, struct tty_struct *tty) { struct line *line = &lines[tty->index]; int err = -ENODEV; spin_lock(&line->count_lock); if(!line->valid) goto out_unlock; err = 0; if(tty->count > 1) goto out_unlock; mutex_lock(&line->open_mutex); spin_unlock(&line->count_lock); tty->driver_data = line; line->tty = tty; enable_chan(line); INIT_DELAYED_WORK(&line->task, line_timer_cb); if(!line->sigio){ chan_enable_winch(&line->chan_list, tty); line->sigio = 1; } chan_window_size(&line->chan_list, &tty->winsize.ws_row, &tty->winsize.ws_col); mutex_unlock(&line->open_mutex); return err; out_unlock: spin_unlock(&line->count_lock); return err; } static void unregister_winch(struct tty_struct *tty); void line_close(struct tty_struct *tty, struct file * filp) { struct line *line = tty->driver_data; /* If line_open fails (and tty->driver_data is never set), * tty_open will call line_close. So just return in this case. */ if(line == NULL) return; /* We ignore the error anyway! */ flush_buffer(line); spin_lock(&line->count_lock); if(!line->valid) goto out_unlock; if(tty->count > 1) goto out_unlock; mutex_lock(&line->open_mutex); spin_unlock(&line->count_lock); line->tty = NULL; tty->driver_data = NULL; if(line->sigio){ unregister_winch(tty); line->sigio = 0; } mutex_unlock(&line->open_mutex); return; out_unlock: spin_unlock(&line->count_lock); } void close_lines(struct line *lines, int nlines) { int i; for(i = 0; i < nlines; i++) close_chan(&lines[i].chan_list, 0); } static void setup_one_line(struct line *lines, int n, char *init, int init_prio) { struct line *line = &lines[n]; spin_lock(&line->count_lock); if(line->tty != NULL){ printk("line_setup - device %d is open\n", n); goto out; } if (line->init_pri <= init_prio){ line->init_pri = init_prio; if (!strcmp(init, "none")) line->valid = 0; else { line->init_str = init; line->valid = 1; } } out: spin_unlock(&line->count_lock); } /* Common setup code for both startup command line and mconsole initialization. * @lines contains the array (of size @num) to modify; * @init is the setup string; */ int line_setup(struct line *lines, unsigned int num, char *init) { int i, n; char *end; if(*init == '=') { /* We said con=/ssl= instead of con#=, so we are configuring all * consoles at once.*/ n = -1; } else { n = simple_strtoul(init, &end, 0); if(*end != '='){ printk(KERN_ERR "line_setup failed to parse \"%s\"\n", init); return 0; } init = end; } init++; if (n >= (signed int) num) { printk("line_setup - %d out of range ((0 ... %d) allowed)\n", n, num - 1); return 0; } else if (n >= 0) setup_one_line(lines, n, init, INIT_ONE); else { for(i = 0; i < num; i++) setup_one_line(lines, i, init, INIT_ALL); } return n == -1 ? num : n; } int line_config(struct line *lines, unsigned int num, char *str, const struct chan_opts *opts) { struct line *line; char *new; int n; if(*str == '='){ printk("line_config - can't configure all devices from " "mconsole\n"); return 1; } new = kstrdup(str, GFP_KERNEL); if(new == NULL){ printk("line_config - kstrdup failed\n"); return 1; } n = line_setup(lines, num, new); if(n < 0) return 1; line = &lines[n]; return parse_chan_pair(line->init_str, line, n, opts); } int line_get_config(char *name, struct line *lines, unsigned int num, char *str, int size, char **error_out) { struct line *line; char *end; int dev, n = 0; dev = simple_strtoul(name, &end, 0); if((*end != '\0') || (end == name)){ *error_out = "line_get_config failed to parse device number"; return 0; } if((dev < 0) || (dev >= num)){ *error_out = "device number out of range"; return 0; } line = &lines[dev]; spin_lock(&line->count_lock); if(!line->valid) CONFIG_CHUNK(str, size, n, "none", 1); else if(line->tty == NULL) CONFIG_CHUNK(str, size, n, line->init_str, 1); else n = chan_config_string(&line->chan_list, str, size, error_out); spin_unlock(&line->count_lock); return n; } int line_id(char **str, int *start_out, int *end_out) { char *end; int n; n = simple_strtoul(*str, &end, 0); if((*end != '\0') || (end == *str)) return -1; *str = end; *start_out = n; *end_out = n; return n; } int line_remove(struct line *lines, unsigned int num, int n) { int err; char config[sizeof("conxxxx=none\0")]; sprintf(config, "%d=none", n); err = line_setup(lines, num, config); if(err >= 0) err = 0; return err; } struct tty_driver *line_register_devfs(struct lines *set, struct line_driver *line_driver, const struct tty_operations *ops, struct line *lines, int nlines) { int i; struct tty_driver *driver = alloc_tty_driver(nlines); if (!driver) return NULL; driver->driver_name = line_driver->name; driver->name = line_driver->device_name; driver->major = line_driver->major; driver->minor_start = line_driver->minor_start; driver->type = line_driver->type; driver->subtype = line_driver->subtype; driver->flags = TTY_DRIVER_REAL_RAW; driver->init_termios = tty_std_termios; tty_set_operations(driver, ops); if (tty_register_driver(driver)) { printk("%s: can't register %s driver\n", __FUNCTION__,line_driver->name); put_tty_driver(driver); return NULL; } for(i = 0; i < nlines; i++){ if(!lines[i].valid) tty_unregister_device(driver, i); } mconsole_register_dev(&line_driver->mc); return driver; } static DEFINE_SPINLOCK(winch_handler_lock); static LIST_HEAD(winch_handlers); void lines_init(struct line *lines, int nlines, struct chan_opts *opts) { struct line *line; int i; for(i = 0; i < nlines; i++){ line = &lines[i]; INIT_LIST_HEAD(&line->chan_list); mutex_init(&line->open_mutex); if(line->init_str == NULL) continue; line->init_str = kstrdup(line->init_str, GFP_KERNEL); if(line->init_str == NULL) printk("lines_init - kstrdup returned NULL\n"); if(parse_chan_pair(line->init_str, line, i, opts)){ printk("parse_chan_pair failed for device %d\n", i); line->valid = 0; } } } struct winch { struct list_head list; int fd; int tty_fd; int pid; struct tty_struct *tty; }; static irqreturn_t winch_interrupt(int irq, void *data) { struct winch *winch = data; struct tty_struct *tty; struct line *line; int err; char c; if(winch->fd != -1){ err = generic_read(winch->fd, &c, NULL); if(err < 0){ if(err != -EAGAIN){ printk("winch_interrupt : read failed, " "errno = %d\n", -err); printk("fd %d is losing SIGWINCH support\n", winch->tty_fd); return IRQ_HANDLED; } goto out; } } tty = winch->tty; if (tty != NULL) { line = tty->driver_data; chan_window_size(&line->chan_list, &tty->winsize.ws_row, &tty->winsize.ws_col); kill_pg(tty->pgrp, SIGWINCH, 1); } out: if(winch->fd != -1) reactivate_fd(winch->fd, WINCH_IRQ); return IRQ_HANDLED; } void register_winch_irq(int fd, int tty_fd, int pid, struct tty_struct *tty) { struct winch *winch; winch = kmalloc(sizeof(*winch), GFP_KERNEL); if (winch == NULL) { printk("register_winch_irq - kmalloc failed\n"); return; } *winch = ((struct winch) { .list = LIST_HEAD_INIT(winch->list), .fd = fd, .tty_fd = tty_fd, .pid = pid, .tty = tty }); spin_lock(&winch_handler_lock); list_add(&winch->list, &winch_handlers); spin_unlock(&winch_handler_lock); if(um_request_irq(WINCH_IRQ, fd, IRQ_READ, winch_interrupt, IRQF_DISABLED | IRQF_SHARED | IRQF_SAMPLE_RANDOM, "winch", winch) < 0) printk("register_winch_irq - failed to register IRQ\n"); } static void free_winch(struct winch *winch) { list_del(&winch->list); if(winch->pid != -1) os_kill_process(winch->pid, 1); if(winch->fd != -1) os_close_file(winch->fd); free_irq(WINCH_IRQ, winch); kfree(winch); } static void unregister_winch(struct tty_struct *tty) { struct list_head *ele; struct winch *winch; spin_lock(&winch_handler_lock); list_for_each(ele, &winch_handlers){ winch = list_entry(ele, struct winch, list); if(winch->tty == tty){ free_winch(winch); break; } } spin_unlock(&winch_handler_lock); } static void winch_cleanup(void) { struct list_head *ele, *next; struct winch *winch; spin_lock(&winch_handler_lock); list_for_each_safe(ele, next, &winch_handlers){ winch = list_entry(ele, struct winch, list); free_winch(winch); } spin_unlock(&winch_handler_lock); } __uml_exitcall(winch_cleanup); char *add_xterm_umid(char *base) { char *umid, *title; int len; umid = get_umid(); if(*umid == '\0') return base; len = strlen(base) + strlen(" ()") + strlen(umid) + 1; title = kmalloc(len, GFP_KERNEL); if(title == NULL){ printk("Failed to allocate buffer for xterm title\n"); return base; } snprintf(title, len, "%s (%s)", base, umid); return title; }