/* * SGI UltraViolet TLB flush routines. * * (c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI. * * This code is released under the GNU General Public License version 2 or * later. */ #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/debugfs.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/delay.h> #include <asm/mmu_context.h> #include <asm/uv/uv.h> #include <asm/uv/uv_mmrs.h> #include <asm/uv/uv_hub.h> #include <asm/uv/uv_bau.h> #include <asm/apic.h> #include <asm/idle.h> #include <asm/tsc.h> #include <asm/irq_vectors.h> #include <asm/timer.h> /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */ static int timeout_base_ns[] = { 20, 160, 1280, 10240, 81920, 655360, 5242880, 167772160 }; static int timeout_us; static int nobau; static int baudisabled; static spinlock_t disable_lock; static cycles_t congested_cycles; /* tunables: */ static int max_bau_concurrent = MAX_BAU_CONCURRENT; static int max_bau_concurrent_constant = MAX_BAU_CONCURRENT; static int plugged_delay = PLUGGED_DELAY; static int plugsb4reset = PLUGSB4RESET; static int timeoutsb4reset = TIMEOUTSB4RESET; static int ipi_reset_limit = IPI_RESET_LIMIT; static int complete_threshold = COMPLETE_THRESHOLD; static int congested_response_us = CONGESTED_RESPONSE_US; static int congested_reps = CONGESTED_REPS; static int congested_period = CONGESTED_PERIOD; static struct dentry *tunables_dir; static struct dentry *tunables_file; static int __init setup_nobau(char *arg) { nobau = 1; return 0; } early_param("nobau", setup_nobau); /* base pnode in this partition */ static int uv_partition_base_pnode __read_mostly; /* position of pnode (which is nasid>>1): */ static int uv_nshift __read_mostly; static unsigned long uv_mmask __read_mostly; static DEFINE_PER_CPU(struct ptc_stats, ptcstats); static DEFINE_PER_CPU(struct bau_control, bau_control); static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); /* * Determine the first node on a uvhub. 'Nodes' are used for kernel * memory allocation. */ static int __init uvhub_to_first_node(int uvhub) { int node, b; for_each_online_node(node) { b = uv_node_to_blade_id(node); if (uvhub == b) return node; } return -1; } /* * Determine the apicid of the first cpu on a uvhub. */ static int __init uvhub_to_first_apicid(int uvhub) { int cpu; for_each_present_cpu(cpu) if (uvhub == uv_cpu_to_blade_id(cpu)) return per_cpu(x86_cpu_to_apicid, cpu); return -1; } /* * Free a software acknowledge hardware resource by clearing its Pending * bit. This will return a reply to the sender. * If the message has timed out, a reply has already been sent by the * hardware but the resource has not been released. In that case our * clear of the Timeout bit (as well) will free the resource. No reply will * be sent (the hardware will only do one reply per message). */ static inline void uv_reply_to_message(struct msg_desc *mdp, struct bau_control *bcp) { unsigned long dw; struct bau_payload_queue_entry *msg; msg = mdp->msg; if (!msg->canceled) { dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) | msg->sw_ack_vector; uv_write_local_mmr( UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); } msg->replied_to = 1; msg->sw_ack_vector = 0; } /* * Process the receipt of a RETRY message */ static inline void uv_bau_process_retry_msg(struct msg_desc *mdp, struct bau_control *bcp) { int i; int cancel_count = 0; int slot2; unsigned long msg_res; unsigned long mmr = 0; struct bau_payload_queue_entry *msg; struct bau_payload_queue_entry *msg2; struct ptc_stats *stat; msg = mdp->msg; stat = bcp->statp; stat->d_retries++; /* * cancel any message from msg+1 to the retry itself */ for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) { if (msg2 > mdp->va_queue_last) msg2 = mdp->va_queue_first; if (msg2 == msg) break; /* same conditions for cancellation as uv_do_reset */ if ((msg2->replied_to == 0) && (msg2->canceled == 0) && (msg2->sw_ack_vector) && ((msg2->sw_ack_vector & msg->sw_ack_vector) == 0) && (msg2->sending_cpu == msg->sending_cpu) && (msg2->msg_type != MSG_NOOP)) { slot2 = msg2 - mdp->va_queue_first; mmr = uv_read_local_mmr (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); msg_res = msg2->sw_ack_vector; /* * This is a message retry; clear the resources held * by the previous message only if they timed out. * If it has not timed out we have an unexpected * situation to report. */ if (mmr & (msg_res << UV_SW_ACK_NPENDING)) { /* * is the resource timed out? * make everyone ignore the cancelled message. */ msg2->canceled = 1; stat->d_canceled++; cancel_count++; uv_write_local_mmr( UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, (msg_res << UV_SW_ACK_NPENDING) | msg_res); } } } if (!cancel_count) stat->d_nocanceled++; } /* * Do all the things a cpu should do for a TLB shootdown message. * Other cpu's may come here at the same time for this message. */ static void uv_bau_process_message(struct msg_desc *mdp, struct bau_control *bcp) { int msg_ack_count; short socket_ack_count = 0; struct ptc_stats *stat; struct bau_payload_queue_entry *msg; struct bau_control *smaster = bcp->socket_master; /* * This must be a normal message, or retry of a normal message */ msg = mdp->msg; stat = bcp->statp; if (msg->address == TLB_FLUSH_ALL) { local_flush_tlb(); stat->d_alltlb++; } else { __flush_tlb_one(msg->address); stat->d_onetlb++; } stat->d_requestee++; /* * One cpu on each uvhub has the additional job on a RETRY * of releasing the resource held by the message that is * being retried. That message is identified by sending * cpu number. */ if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master) uv_bau_process_retry_msg(mdp, bcp); /* * This is a sw_ack message, so we have to reply to it. * Count each responding cpu on the socket. This avoids * pinging the count's cache line back and forth between * the sockets. */ socket_ack_count = atomic_add_short_return(1, (struct atomic_short *) &smaster->socket_acknowledge_count[mdp->msg_slot]); if (socket_ack_count == bcp->cpus_in_socket) { /* * Both sockets dump their completed count total into * the message's count. */ smaster->socket_acknowledge_count[mdp->msg_slot] = 0; msg_ack_count = atomic_add_short_return(socket_ack_count, (struct atomic_short *)&msg->acknowledge_count); if (msg_ack_count == bcp->cpus_in_uvhub) { /* * All cpus in uvhub saw it; reply */ uv_reply_to_message(mdp, bcp); } } return; } /* * Determine the first cpu on a uvhub. */ static int uvhub_to_first_cpu(int uvhub) { int cpu; for_each_present_cpu(cpu) if (uvhub == uv_cpu_to_blade_id(cpu)) return cpu; return -1; } /* * Last resort when we get a large number of destination timeouts is * to clear resources held by a given cpu. * Do this with IPI so that all messages in the BAU message queue * can be identified by their nonzero sw_ack_vector field. * * This is entered for a single cpu on the uvhub. * The sender want's this uvhub to free a specific message's * sw_ack resources. */ static void uv_do_reset(void *ptr) { int i; int slot; int count = 0; unsigned long mmr; unsigned long msg_res; struct bau_control *bcp; struct reset_args *rap; struct bau_payload_queue_entry *msg; struct ptc_stats *stat; bcp = &per_cpu(bau_control, smp_processor_id()); rap = (struct reset_args *)ptr; stat = bcp->statp; stat->d_resets++; /* * We're looking for the given sender, and * will free its sw_ack resource. * If all cpu's finally responded after the timeout, its * message 'replied_to' was set. */ for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) { /* uv_do_reset: same conditions for cancellation as uv_bau_process_retry_msg() */ if ((msg->replied_to == 0) && (msg->canceled == 0) && (msg->sending_cpu == rap->sender) && (msg->sw_ack_vector) && (msg->msg_type != MSG_NOOP)) { /* * make everyone else ignore this message */ msg->canceled = 1; slot = msg - bcp->va_queue_first; count++; /* * only reset the resource if it is still pending */ mmr = uv_read_local_mmr (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); msg_res = msg->sw_ack_vector; if (mmr & msg_res) { stat->d_rcanceled++; uv_write_local_mmr( UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, (msg_res << UV_SW_ACK_NPENDING) | msg_res); } } } return; } /* * Use IPI to get all target uvhubs to release resources held by * a given sending cpu number. */ static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution, int sender) { int uvhub; int cpu; cpumask_t mask; struct reset_args reset_args; reset_args.sender = sender; cpus_clear(mask); /* find a single cpu for each uvhub in this distribution mask */ for (uvhub = 0; uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE; uvhub++) { if (!bau_uvhub_isset(uvhub, distribution)) continue; /* find a cpu for this uvhub */ cpu = uvhub_to_first_cpu(uvhub); cpu_set(cpu, mask); } /* IPI all cpus; Preemption is already disabled */ smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1); return; } static inline unsigned long cycles_2_us(unsigned long long cyc) { unsigned long long ns; unsigned long us; ns = (cyc * per_cpu(cyc2ns, smp_processor_id())) >> CYC2NS_SCALE_FACTOR; us = ns / 1000; return us; } /* * wait for all cpus on this hub to finish their sends and go quiet * leaves uvhub_quiesce set so that no new broadcasts are started by * bau_flush_send_and_wait() */ static inline void quiesce_local_uvhub(struct bau_control *hmaster) { atomic_add_short_return(1, (struct atomic_short *) &hmaster->uvhub_quiesce); } /* * mark this quiet-requestor as done */ static inline void end_uvhub_quiesce(struct bau_control *hmaster) { atomic_add_short_return(-1, (struct atomic_short *) &hmaster->uvhub_quiesce); } /* * Wait for completion of a broadcast software ack message * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP */ static int uv_wait_completion(struct bau_desc *bau_desc, unsigned long mmr_offset, int right_shift, int this_cpu, struct bau_control *bcp, struct bau_control *smaster, long try) { unsigned long descriptor_status; cycles_t ttime; struct ptc_stats *stat = bcp->statp; struct bau_control *hmaster; hmaster = bcp->uvhub_master; /* spin on the status MMR, waiting for it to go idle */ while ((descriptor_status = (((unsigned long) uv_read_local_mmr(mmr_offset) >> right_shift) & UV_ACT_STATUS_MASK)) != DESC_STATUS_IDLE) { /* * Our software ack messages may be blocked because there are * no swack resources available. As long as none of them * has timed out hardware will NACK our message and its * state will stay IDLE. */ if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { stat->s_stimeout++; return FLUSH_GIVEUP; } else if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) { stat->s_dtimeout++; ttime = get_cycles(); /* * Our retries may be blocked by all destination * swack resources being consumed, and a timeout * pending. In that case hardware returns the * ERROR that looks like a destination timeout. */ if (cycles_2_us(ttime - bcp->send_message) < timeout_us) { bcp->conseccompletes = 0; return FLUSH_RETRY_PLUGGED; } bcp->conseccompletes = 0; return FLUSH_RETRY_TIMEOUT; } else { /* * descriptor_status is still BUSY */ cpu_relax(); } } bcp->conseccompletes++; return FLUSH_COMPLETE; } static inline cycles_t sec_2_cycles(unsigned long sec) { unsigned long ns; cycles_t cyc; ns = sec * 1000000000; cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); return cyc; } /* * conditionally add 1 to *v, unless *v is >= u * return 0 if we cannot add 1 to *v because it is >= u * return 1 if we can add 1 to *v because it is < u * the add is atomic * * This is close to atomic_add_unless(), but this allows the 'u' value * to be lowered below the current 'v'. atomic_add_unless can only stop * on equal. */ static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u) { spin_lock(lock); if (atomic_read(v) >= u) { spin_unlock(lock); return 0; } atomic_inc(v); spin_unlock(lock); return 1; } /* * Our retries are blocked by all destination swack resources being * in use, and a timeout is pending. In that case hardware immediately * returns the ERROR that looks like a destination timeout. */ static void destination_plugged(struct bau_desc *bau_desc, struct bau_control *bcp, struct bau_control *hmaster, struct ptc_stats *stat) { udelay(bcp->plugged_delay); bcp->plugged_tries++; if (bcp->plugged_tries >= bcp->plugsb4reset) { bcp->plugged_tries = 0; quiesce_local_uvhub(hmaster); spin_lock(&hmaster->queue_lock); uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu); spin_unlock(&hmaster->queue_lock); end_uvhub_quiesce(hmaster); bcp->ipi_attempts++; stat->s_resets_plug++; } } static void destination_timeout(struct bau_desc *bau_desc, struct bau_control *bcp, struct bau_control *hmaster, struct ptc_stats *stat) { hmaster->max_bau_concurrent = 1; bcp->timeout_tries++; if (bcp->timeout_tries >= bcp->timeoutsb4reset) { bcp->timeout_tries = 0; quiesce_local_uvhub(hmaster); spin_lock(&hmaster->queue_lock); uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu); spin_unlock(&hmaster->queue_lock); end_uvhub_quiesce(hmaster); bcp->ipi_attempts++; stat->s_resets_timeout++; } } /* * Completions are taking a very long time due to a congested numalink * network. */ static void disable_for_congestion(struct bau_control *bcp, struct ptc_stats *stat) { int tcpu; struct bau_control *tbcp; /* let only one cpu do this disabling */ spin_lock(&disable_lock); if (!baudisabled && bcp->period_requests && ((bcp->period_time / bcp->period_requests) > congested_cycles)) { /* it becomes this cpu's job to turn on the use of the BAU again */ baudisabled = 1; bcp->set_bau_off = 1; bcp->set_bau_on_time = get_cycles() + sec_2_cycles(bcp->congested_period); stat->s_bau_disabled++; for_each_present_cpu(tcpu) { tbcp = &per_cpu(bau_control, tcpu); tbcp->baudisabled = 1; } } spin_unlock(&disable_lock); } /** * uv_flush_send_and_wait * * Send a broadcast and wait for it to complete. * * The flush_mask contains the cpus the broadcast is to be sent to including * cpus that are on the local uvhub. * * Returns 0 if all flushing represented in the mask was done. * Returns 1 if it gives up entirely and the original cpu mask is to be * returned to the kernel. */ int uv_flush_send_and_wait(struct bau_desc *bau_desc, struct cpumask *flush_mask, struct bau_control *bcp) { int right_shift; int completion_status = 0; int seq_number = 0; long try = 0; int cpu = bcp->uvhub_cpu; int this_cpu = bcp->cpu; unsigned long mmr_offset; unsigned long index; cycles_t time1; cycles_t time2; cycles_t elapsed; struct ptc_stats *stat = bcp->statp; struct bau_control *smaster = bcp->socket_master; struct bau_control *hmaster = bcp->uvhub_master; if (!atomic_inc_unless_ge(&hmaster->uvhub_lock, &hmaster->active_descriptor_count, hmaster->max_bau_concurrent)) { stat->s_throttles++; do { cpu_relax(); } while (!atomic_inc_unless_ge(&hmaster->uvhub_lock, &hmaster->active_descriptor_count, hmaster->max_bau_concurrent)); } while (hmaster->uvhub_quiesce) cpu_relax(); if (cpu < UV_CPUS_PER_ACT_STATUS) { mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; right_shift = cpu * UV_ACT_STATUS_SIZE; } else { mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; right_shift = ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE); } time1 = get_cycles(); do { if (try == 0) { bau_desc->header.msg_type = MSG_REGULAR; seq_number = bcp->message_number++; } else { bau_desc->header.msg_type = MSG_RETRY; stat->s_retry_messages++; } bau_desc->header.sequence = seq_number; index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | bcp->uvhub_cpu; bcp->send_message = get_cycles(); uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); try++; completion_status = uv_wait_completion(bau_desc, mmr_offset, right_shift, this_cpu, bcp, smaster, try); if (completion_status == FLUSH_RETRY_PLUGGED) { destination_plugged(bau_desc, bcp, hmaster, stat); } else if (completion_status == FLUSH_RETRY_TIMEOUT) { destination_timeout(bau_desc, bcp, hmaster, stat); } if (bcp->ipi_attempts >= bcp->ipi_reset_limit) { bcp->ipi_attempts = 0; completion_status = FLUSH_GIVEUP; break; } cpu_relax(); } while ((completion_status == FLUSH_RETRY_PLUGGED) || (completion_status == FLUSH_RETRY_TIMEOUT)); time2 = get_cycles(); bcp->plugged_tries = 0; bcp->timeout_tries = 0; if ((completion_status == FLUSH_COMPLETE) && (bcp->conseccompletes > bcp->complete_threshold) && (hmaster->max_bau_concurrent < hmaster->max_bau_concurrent_constant)) hmaster->max_bau_concurrent++; while (hmaster->uvhub_quiesce) cpu_relax(); atomic_dec(&hmaster->active_descriptor_count); if (time2 > time1) { elapsed = time2 - time1; stat->s_time += elapsed; if ((completion_status == FLUSH_COMPLETE) && (try == 1)) { bcp->period_requests++; bcp->period_time += elapsed; if ((elapsed > congested_cycles) && (bcp->period_requests > bcp->congested_reps)) { disable_for_congestion(bcp, stat); } } } else stat->s_requestor--; if (completion_status == FLUSH_COMPLETE && try > 1) stat->s_retriesok++; else if (completion_status == FLUSH_GIVEUP) { stat->s_giveup++; return 1; } return 0; } /** * uv_flush_tlb_others - globally purge translation cache of a virtual * address or all TLB's * @cpumask: mask of all cpu's in which the address is to be removed * @mm: mm_struct containing virtual address range * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu) * @cpu: the current cpu * * This is the entry point for initiating any UV global TLB shootdown. * * Purges the translation caches of all specified processors of the given * virtual address, or purges all TLB's on specified processors. * * The caller has derived the cpumask from the mm_struct. This function * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) * * The cpumask is converted into a uvhubmask of the uvhubs containing * those cpus. * * Note that this function should be called with preemption disabled. * * Returns NULL if all remote flushing was done. * Returns pointer to cpumask if some remote flushing remains to be * done. The returned pointer is valid till preemption is re-enabled. */ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long va, unsigned int cpu) { int tcpu; int uvhub; int locals = 0; int remotes = 0; int hubs = 0; struct bau_desc *bau_desc; struct cpumask *flush_mask; struct ptc_stats *stat; struct bau_control *bcp; struct bau_control *tbcp; /* kernel was booted 'nobau' */ if (nobau) return cpumask; bcp = &per_cpu(bau_control, cpu); stat = bcp->statp; /* bau was disabled due to slow response */ if (bcp->baudisabled) { /* the cpu that disabled it must re-enable it */ if (bcp->set_bau_off) { if (get_cycles() >= bcp->set_bau_on_time) { stat->s_bau_reenabled++; baudisabled = 0; for_each_present_cpu(tcpu) { tbcp = &per_cpu(bau_control, tcpu); tbcp->baudisabled = 0; tbcp->period_requests = 0; tbcp->period_time = 0; } } } return cpumask; } /* * Each sending cpu has a per-cpu mask which it fills from the caller's * cpu mask. All cpus are converted to uvhubs and copied to the * activation descriptor. */ flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu); /* don't actually do a shootdown of the local cpu */ cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); if (cpu_isset(cpu, *cpumask)) stat->s_ntargself++; bau_desc = bcp->descriptor_base; bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu; bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); /* cpu statistics */ for_each_cpu(tcpu, flush_mask) { uvhub = uv_cpu_to_blade_id(tcpu); bau_uvhub_set(uvhub, &bau_desc->distribution); if (uvhub == bcp->uvhub) locals++; else remotes++; } if ((locals + remotes) == 0) return NULL; stat->s_requestor++; stat->s_ntargcpu += remotes + locals; stat->s_ntargremotes += remotes; stat->s_ntarglocals += locals; remotes = bau_uvhub_weight(&bau_desc->distribution); /* uvhub statistics */ hubs = bau_uvhub_weight(&bau_desc->distribution); if (locals) { stat->s_ntarglocaluvhub++; stat->s_ntargremoteuvhub += (hubs - 1); } else stat->s_ntargremoteuvhub += hubs; stat->s_ntarguvhub += hubs; if (hubs >= 16) stat->s_ntarguvhub16++; else if (hubs >= 8) stat->s_ntarguvhub8++; else if (hubs >= 4) stat->s_ntarguvhub4++; else if (hubs >= 2) stat->s_ntarguvhub2++; else stat->s_ntarguvhub1++; bau_desc->payload.address = va; bau_desc->payload.sending_cpu = cpu; /* * uv_flush_send_and_wait returns 0 if all cpu's were messaged, * or 1 if it gave up and the original cpumask should be returned. */ if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp)) return NULL; else return cpumask; } /* * The BAU message interrupt comes here. (registered by set_intr_gate) * See entry_64.S * * We received a broadcast assist message. * * Interrupts are disabled; this interrupt could represent * the receipt of several messages. * * All cores/threads on this hub get this interrupt. * The last one to see it does the software ack. * (the resource will not be freed until noninterruptable cpus see this * interrupt; hardware may timeout the s/w ack and reply ERROR) */ void uv_bau_message_interrupt(struct pt_regs *regs) { int count = 0; cycles_t time_start; struct bau_payload_queue_entry *msg; struct bau_control *bcp; struct ptc_stats *stat; struct msg_desc msgdesc; time_start = get_cycles(); bcp = &per_cpu(bau_control, smp_processor_id()); stat = bcp->statp; msgdesc.va_queue_first = bcp->va_queue_first; msgdesc.va_queue_last = bcp->va_queue_last; msg = bcp->bau_msg_head; while (msg->sw_ack_vector) { count++; msgdesc.msg_slot = msg - msgdesc.va_queue_first; msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1; msgdesc.msg = msg; uv_bau_process_message(&msgdesc, bcp); msg++; if (msg > msgdesc.va_queue_last) msg = msgdesc.va_queue_first; bcp->bau_msg_head = msg; } stat->d_time += (get_cycles() - time_start); if (!count) stat->d_nomsg++; else if (count > 1) stat->d_multmsg++; ack_APIC_irq(); } /* * uv_enable_timeouts * * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have * shootdown message timeouts enabled. The timeout does not cause * an interrupt, but causes an error message to be returned to * the sender. */ static void uv_enable_timeouts(void) { int uvhub; int nuvhubs; int pnode; unsigned long mmr_image; nuvhubs = uv_num_possible_blades(); for (uvhub = 0; uvhub < nuvhubs; uvhub++) { if (!uv_blade_nr_possible_cpus(uvhub)) continue; pnode = uv_blade_to_pnode(uvhub); mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL); /* * Set the timeout period and then lock it in, in three * steps; captures and locks in the period. * * To program the period, the SOFT_ACK_MODE must be off. */ mmr_image &= ~((unsigned long)1 << UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); uv_write_global_mmr64 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); /* * Set the 4-bit period. */ mmr_image &= ~((unsigned long)0xf << UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD << UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); uv_write_global_mmr64 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); /* * Subsequent reversals of the timebase bit (3) cause an * immediate timeout of one or all INTD resources as * indicated in bits 2:0 (7 causes all of them to timeout). */ mmr_image |= ((unsigned long)1 << UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); uv_write_global_mmr64 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); } } static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset) { if (*offset < num_possible_cpus()) return offset; return NULL; } static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) { (*offset)++; if (*offset < num_possible_cpus()) return offset; return NULL; } static void uv_ptc_seq_stop(struct seq_file *file, void *data) { } static inline unsigned long long microsec_2_cycles(unsigned long microsec) { unsigned long ns; unsigned long long cyc; ns = microsec * 1000; cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); return cyc; } /* * Display the statistics thru /proc. * 'data' points to the cpu number */ static int uv_ptc_seq_show(struct seq_file *file, void *data) { struct ptc_stats *stat; int cpu; cpu = *(loff_t *)data; if (!cpu) { seq_printf(file, "# cpu sent stime self locals remotes ncpus localhub "); seq_printf(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 "); seq_printf(file, "numuvhubs4 numuvhubs2 numuvhubs1 dto "); seq_printf(file, "retries rok resetp resett giveup sto bz throt "); seq_printf(file, "sw_ack recv rtime all "); seq_printf(file, "one mult none retry canc nocan reset rcan "); seq_printf(file, "disable enable\n"); } if (cpu < num_possible_cpus() && cpu_online(cpu)) { stat = &per_cpu(ptcstats, cpu); /* source side statistics */ seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", cpu, stat->s_requestor, cycles_2_us(stat->s_time), stat->s_ntargself, stat->s_ntarglocals, stat->s_ntargremotes, stat->s_ntargcpu, stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub, stat->s_ntarguvhub, stat->s_ntarguvhub16); seq_printf(file, "%ld %ld %ld %ld %ld ", stat->s_ntarguvhub8, stat->s_ntarguvhub4, stat->s_ntarguvhub2, stat->s_ntarguvhub1, stat->s_dtimeout); seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ", stat->s_retry_messages, stat->s_retriesok, stat->s_resets_plug, stat->s_resets_timeout, stat->s_giveup, stat->s_stimeout, stat->s_busy, stat->s_throttles); /* destination side statistics */ seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", uv_read_global_mmr64(uv_cpu_to_pnode(cpu), UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), stat->d_requestee, cycles_2_us(stat->d_time), stat->d_alltlb, stat->d_onetlb, stat->d_multmsg, stat->d_nomsg, stat->d_retries, stat->d_canceled, stat->d_nocanceled, stat->d_resets, stat->d_rcanceled); seq_printf(file, "%ld %ld\n", stat->s_bau_disabled, stat->s_bau_reenabled); } return 0; } /* * Display the tunables thru debugfs */ static ssize_t tunables_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf; int ret; buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n", "max_bau_concurrent plugged_delay plugsb4reset", "timeoutsb4reset ipi_reset_limit complete_threshold", "congested_response_us congested_reps congested_period", max_bau_concurrent, plugged_delay, plugsb4reset, timeoutsb4reset, ipi_reset_limit, complete_threshold, congested_response_us, congested_reps, congested_period); if (!buf) return -ENOMEM; ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf)); kfree(buf); return ret; } /* * -1: resetf the statistics * 0: display meaning of the statistics */ static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data) { int cpu; long input_arg; char optstr[64]; struct ptc_stats *stat; if (count == 0 || count > sizeof(optstr)) return -EINVAL; if (copy_from_user(optstr, user, count)) return -EFAULT; optstr[count - 1] = '\0'; if (strict_strtol(optstr, 10, &input_arg) < 0) { printk(KERN_DEBUG "%s is invalid\n", optstr); return -EINVAL; } if (input_arg == 0) { printk(KERN_DEBUG "# cpu: cpu number\n"); printk(KERN_DEBUG "Sender statistics:\n"); printk(KERN_DEBUG "sent: number of shootdown messages sent\n"); printk(KERN_DEBUG "stime: time spent sending messages\n"); printk(KERN_DEBUG "numuvhubs: number of hubs targeted with shootdown\n"); printk(KERN_DEBUG "numuvhubs16: number times 16 or more hubs targeted\n"); printk(KERN_DEBUG "numuvhubs8: number times 8 or more hubs targeted\n"); printk(KERN_DEBUG "numuvhubs4: number times 4 or more hubs targeted\n"); printk(KERN_DEBUG "numuvhubs2: number times 2 or more hubs targeted\n"); printk(KERN_DEBUG "numuvhubs1: number times 1 hub targeted\n"); printk(KERN_DEBUG "numcpus: number of cpus targeted with shootdown\n"); printk(KERN_DEBUG "dto: number of destination timeouts\n"); printk(KERN_DEBUG "retries: destination timeout retries sent\n"); printk(KERN_DEBUG "rok: : destination timeouts successfully retried\n"); printk(KERN_DEBUG "resetp: ipi-style resource resets for plugs\n"); printk(KERN_DEBUG "resett: ipi-style resource resets for timeouts\n"); printk(KERN_DEBUG "giveup: fall-backs to ipi-style shootdowns\n"); printk(KERN_DEBUG "sto: number of source timeouts\n"); printk(KERN_DEBUG "bz: number of stay-busy's\n"); printk(KERN_DEBUG "throt: number times spun in throttle\n"); printk(KERN_DEBUG "Destination side statistics:\n"); printk(KERN_DEBUG "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); printk(KERN_DEBUG "recv: shootdown messages received\n"); printk(KERN_DEBUG "rtime: time spent processing messages\n"); printk(KERN_DEBUG "all: shootdown all-tlb messages\n"); printk(KERN_DEBUG "one: shootdown one-tlb messages\n"); printk(KERN_DEBUG "mult: interrupts that found multiple messages\n"); printk(KERN_DEBUG "none: interrupts that found no messages\n"); printk(KERN_DEBUG "retry: number of retry messages processed\n"); printk(KERN_DEBUG "canc: number messages canceled by retries\n"); printk(KERN_DEBUG "nocan: number retries that found nothing to cancel\n"); printk(KERN_DEBUG "reset: number of ipi-style reset requests processed\n"); printk(KERN_DEBUG "rcan: number messages canceled by reset requests\n"); printk(KERN_DEBUG "disable: number times use of the BAU was disabled\n"); printk(KERN_DEBUG "enable: number times use of the BAU was re-enabled\n"); } else if (input_arg == -1) { for_each_present_cpu(cpu) { stat = &per_cpu(ptcstats, cpu); memset(stat, 0, sizeof(struct ptc_stats)); } } return count; } static int local_atoi(const char *name) { int val = 0; for (;; name++) { switch (*name) { case '0' ... '9': val = 10*val+(*name-'0'); break; default: return val; } } } /* * set the tunables * 0 values reset them to defaults */ static ssize_t tunables_write(struct file *file, const char __user *user, size_t count, loff_t *data) { int cpu; int cnt = 0; int val; char *p; char *q; char instr[64]; struct bau_control *bcp; if (count == 0 || count > sizeof(instr)-1) return -EINVAL; if (copy_from_user(instr, user, count)) return -EFAULT; instr[count] = '\0'; /* count the fields */ p = instr + strspn(instr, WHITESPACE); q = p; for (; *p; p = q + strspn(q, WHITESPACE)) { q = p + strcspn(p, WHITESPACE); cnt++; if (q == p) break; } if (cnt != 9) { printk(KERN_INFO "bau tunable error: should be 9 numbers\n"); return -EINVAL; } p = instr + strspn(instr, WHITESPACE); q = p; for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) { q = p + strcspn(p, WHITESPACE); val = local_atoi(p); switch (cnt) { case 0: if (val == 0) { max_bau_concurrent = MAX_BAU_CONCURRENT; max_bau_concurrent_constant = MAX_BAU_CONCURRENT; continue; } bcp = &per_cpu(bau_control, smp_processor_id()); if (val < 1 || val > bcp->cpus_in_uvhub) { printk(KERN_DEBUG "Error: BAU max concurrent %d is invalid\n", val); return -EINVAL; } max_bau_concurrent = val; max_bau_concurrent_constant = val; continue; case 1: if (val == 0) plugged_delay = PLUGGED_DELAY; else plugged_delay = val; continue; case 2: if (val == 0) plugsb4reset = PLUGSB4RESET; else plugsb4reset = val; continue; case 3: if (val == 0) timeoutsb4reset = TIMEOUTSB4RESET; else timeoutsb4reset = val; continue; case 4: if (val == 0) ipi_reset_limit = IPI_RESET_LIMIT; else ipi_reset_limit = val; continue; case 5: if (val == 0) complete_threshold = COMPLETE_THRESHOLD; else complete_threshold = val; continue; case 6: if (val == 0) congested_response_us = CONGESTED_RESPONSE_US; else congested_response_us = val; continue; case 7: if (val == 0) congested_reps = CONGESTED_REPS; else congested_reps = val; continue; case 8: if (val == 0) congested_period = CONGESTED_PERIOD; else congested_period = val; continue; } if (q == p) break; } for_each_present_cpu(cpu) { bcp = &per_cpu(bau_control, cpu); bcp->max_bau_concurrent = max_bau_concurrent; bcp->max_bau_concurrent_constant = max_bau_concurrent; bcp->plugged_delay = plugged_delay; bcp->plugsb4reset = plugsb4reset; bcp->timeoutsb4reset = timeoutsb4reset; bcp->ipi_reset_limit = ipi_reset_limit; bcp->complete_threshold = complete_threshold; bcp->congested_response_us = congested_response_us; bcp->congested_reps = congested_reps; bcp->congested_period = congested_period; } return count; } static const struct seq_operations uv_ptc_seq_ops = { .start = uv_ptc_seq_start, .next = uv_ptc_seq_next, .stop = uv_ptc_seq_stop, .show = uv_ptc_seq_show }; static int uv_ptc_proc_open(struct inode *inode, struct file *file) { return seq_open(file, &uv_ptc_seq_ops); } static int tunables_open(struct inode *inode, struct file *file) { return 0; } static const struct file_operations proc_uv_ptc_operations = { .open = uv_ptc_proc_open, .read = seq_read, .write = uv_ptc_proc_write, .llseek = seq_lseek, .release = seq_release, }; static const struct file_operations tunables_fops = { .open = tunables_open, .read = tunables_read, .write = tunables_write, .llseek = default_llseek, }; static int __init uv_ptc_init(void) { struct proc_dir_entry *proc_uv_ptc; if (!is_uv_system()) return 0; proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL, &proc_uv_ptc_operations); if (!proc_uv_ptc) { printk(KERN_ERR "unable to create %s proc entry\n", UV_PTC_BASENAME); return -EINVAL; } tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL); if (!tunables_dir) { printk(KERN_ERR "unable to create debugfs directory %s\n", UV_BAU_TUNABLES_DIR); return -EINVAL; } tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600, tunables_dir, NULL, &tunables_fops); if (!tunables_file) { printk(KERN_ERR "unable to create debugfs file %s\n", UV_BAU_TUNABLES_FILE); return -EINVAL; } return 0; } /* * initialize the sending side's sending buffers */ static void uv_activation_descriptor_init(int node, int pnode) { int i; int cpu; unsigned long pa; unsigned long m; unsigned long n; struct bau_desc *bau_desc; struct bau_desc *bd2; struct bau_control *bcp; /* * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR) * per cpu; and one per cpu on the uvhub (UV_ADP_SIZE) */ bau_desc = kmalloc_node(sizeof(struct bau_desc) * UV_ADP_SIZE * UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node); BUG_ON(!bau_desc); pa = uv_gpa(bau_desc); /* need the real nasid*/ n = pa >> uv_nshift; m = pa & uv_mmask; uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE, (n << UV_DESC_BASE_PNODE_SHIFT | m)); /* * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each * cpu even though we only use the first one; one descriptor can * describe a broadcast to 256 uv hubs. */ for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR); i++, bd2++) { memset(bd2, 0, sizeof(struct bau_desc)); bd2->header.sw_ack_flag = 1; /* * base_dest_nodeid is the nasid of the first uvhub * in the partition. The bit map will indicate uvhub numbers, * which are 0-N in a partition. Pnodes are unique system-wide. */ bd2->header.base_dest_nodeid = UV_PNODE_TO_NASID(uv_partition_base_pnode); bd2->header.dest_subnodeid = 0x10; /* the LB */ bd2->header.command = UV_NET_ENDPOINT_INTD; bd2->header.int_both = 1; /* * all others need to be set to zero: * fairness chaining multilevel count replied_to */ } for_each_present_cpu(cpu) { if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu))) continue; bcp = &per_cpu(bau_control, cpu); bcp->descriptor_base = bau_desc; } } /* * initialize the destination side's receiving buffers * entered for each uvhub in the partition * - node is first node (kernel memory notion) on the uvhub * - pnode is the uvhub's physical identifier */ static void uv_payload_queue_init(int node, int pnode) { int pn; int cpu; char *cp; unsigned long pa; struct bau_payload_queue_entry *pqp; struct bau_payload_queue_entry *pqp_malloc; struct bau_control *bcp; pqp = kmalloc_node((DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry), GFP_KERNEL, node); BUG_ON(!pqp); pqp_malloc = pqp; cp = (char *)pqp + 31; pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); for_each_present_cpu(cpu) { if (pnode != uv_cpu_to_pnode(cpu)) continue; /* for every cpu on this pnode: */ bcp = &per_cpu(bau_control, cpu); bcp->va_queue_first = pqp; bcp->bau_msg_head = pqp; bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1); } /* * need the pnode of where the memory was really allocated */ pa = uv_gpa(pqp); pn = pa >> uv_nshift; uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | uv_physnodeaddr(pqp)); uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, uv_physnodeaddr(pqp)); uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, (unsigned long) uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1))); /* in effect, all msg_type's are set to MSG_NOOP */ memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); } /* * Initialization of each UV hub's structures */ static void __init uv_init_uvhub(int uvhub, int vector) { int node; int pnode; unsigned long apicid; node = uvhub_to_first_node(uvhub); pnode = uv_blade_to_pnode(uvhub); uv_activation_descriptor_init(node, pnode); uv_payload_queue_init(node, pnode); /* * the below initialization can't be in firmware because the * messaging IRQ will be determined by the OS */ apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits; uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, ((apicid << 32) | vector)); } /* * We will set BAU_MISC_CONTROL with a timeout period. * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT. * So the destination timeout period has be be calculated from them. */ static int calculate_destination_timeout(void) { unsigned long mmr_image; int mult1; int mult2; int index; int base; int ret; unsigned long ts_ns; mult1 = UV_INTD_SOFT_ACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK; mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL); index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK; mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT); mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK; base = timeout_base_ns[index]; ts_ns = base * mult1 * mult2; ret = ts_ns / 1000; return ret; } /* * initialize the bau_control structure for each cpu */ static int __init uv_init_per_cpu(int nuvhubs) { int i; int cpu; int pnode; int uvhub; int have_hmaster; short socket = 0; unsigned short socket_mask; unsigned char *uvhub_mask; struct bau_control *bcp; struct uvhub_desc *bdp; struct socket_desc *sdp; struct bau_control *hmaster = NULL; struct bau_control *smaster = NULL; struct socket_desc { short num_cpus; short cpu_number[MAX_CPUS_PER_SOCKET]; }; struct uvhub_desc { unsigned short socket_mask; short num_cpus; short uvhub; short pnode; struct socket_desc socket[2]; }; struct uvhub_desc *uvhub_descs; timeout_us = calculate_destination_timeout(); uvhub_descs = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL); memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc)); uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL); for_each_present_cpu(cpu) { bcp = &per_cpu(bau_control, cpu); memset(bcp, 0, sizeof(struct bau_control)); pnode = uv_cpu_hub_info(cpu)->pnode; uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8)); bdp = &uvhub_descs[uvhub]; bdp->num_cpus++; bdp->uvhub = uvhub; bdp->pnode = pnode; /* kludge: 'assuming' one node per socket, and assuming that disabling a socket just leaves a gap in node numbers */ socket = (cpu_to_node(cpu) & 1); bdp->socket_mask |= (1 << socket); sdp = &bdp->socket[socket]; sdp->cpu_number[sdp->num_cpus] = cpu; sdp->num_cpus++; if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) { printk(KERN_EMERG "%d cpus per socket invalid\n", sdp->num_cpus); return 1; } } for (uvhub = 0; uvhub < nuvhubs; uvhub++) { if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8)))) continue; have_hmaster = 0; bdp = &uvhub_descs[uvhub]; socket_mask = bdp->socket_mask; socket = 0; while (socket_mask) { if (!(socket_mask & 1)) goto nextsocket; sdp = &bdp->socket[socket]; for (i = 0; i < sdp->num_cpus; i++) { cpu = sdp->cpu_number[i]; bcp = &per_cpu(bau_control, cpu); bcp->cpu = cpu; if (i == 0) { smaster = bcp; if (!have_hmaster) { have_hmaster++; hmaster = bcp; } } bcp->cpus_in_uvhub = bdp->num_cpus; bcp->cpus_in_socket = sdp->num_cpus; bcp->socket_master = smaster; bcp->uvhub = bdp->uvhub; bcp->uvhub_master = hmaster; bcp->uvhub_cpu = uv_cpu_hub_info(cpu)-> blade_processor_id; if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) { printk(KERN_EMERG "%d cpus per uvhub invalid\n", bcp->uvhub_cpu); return 1; } } nextsocket: socket++; socket_mask = (socket_mask >> 1); } } kfree(uvhub_descs); kfree(uvhub_mask); for_each_present_cpu(cpu) { bcp = &per_cpu(bau_control, cpu); bcp->baudisabled = 0; bcp->statp = &per_cpu(ptcstats, cpu); /* time interval to catch a hardware stay-busy bug */ bcp->timeout_interval = microsec_2_cycles(2*timeout_us); bcp->max_bau_concurrent = max_bau_concurrent; bcp->max_bau_concurrent_constant = max_bau_concurrent; bcp->plugged_delay = plugged_delay; bcp->plugsb4reset = plugsb4reset; bcp->timeoutsb4reset = timeoutsb4reset; bcp->ipi_reset_limit = ipi_reset_limit; bcp->complete_threshold = complete_threshold; bcp->congested_response_us = congested_response_us; bcp->congested_reps = congested_reps; bcp->congested_period = congested_period; } return 0; } /* * Initialization of BAU-related structures */ static int __init uv_bau_init(void) { int uvhub; int pnode; int nuvhubs; int cur_cpu; int vector; unsigned long mmr; if (!is_uv_system()) return 0; if (nobau) return 0; for_each_possible_cpu(cur_cpu) zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu), GFP_KERNEL, cpu_to_node(cur_cpu)); uv_nshift = uv_hub_info->m_val; uv_mmask = (1UL << uv_hub_info->m_val) - 1; nuvhubs = uv_num_possible_blades(); spin_lock_init(&disable_lock); congested_cycles = microsec_2_cycles(congested_response_us); if (uv_init_per_cpu(nuvhubs)) { nobau = 1; return 0; } uv_partition_base_pnode = 0x7fffffff; for (uvhub = 0; uvhub < nuvhubs; uvhub++) if (uv_blade_nr_possible_cpus(uvhub) && (uv_blade_to_pnode(uvhub) < uv_partition_base_pnode)) uv_partition_base_pnode = uv_blade_to_pnode(uvhub); vector = UV_BAU_MESSAGE; for_each_possible_blade(uvhub) if (uv_blade_nr_possible_cpus(uvhub)) uv_init_uvhub(uvhub, vector); uv_enable_timeouts(); alloc_intr_gate(vector, uv_bau_message_intr1); for_each_possible_blade(uvhub) { if (uv_blade_nr_possible_cpus(uvhub)) { pnode = uv_blade_to_pnode(uvhub); /* INIT the bau */ uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL, ((unsigned long)1 << 63)); mmr = 1; /* should be 1 to broadcast to both sockets */ uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, mmr); } } return 0; } core_initcall(uv_bau_init); fs_initcall(uv_ptc_init);