/* * Driver for Xceive XC5000 "QAM/8VSB single chip tuner" * * Copyright (c) 2007 Xceive Corporation * Copyright (c) 2007 Steven Toth * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "dvb_frontend.h" #include "xc5000.h" #include "tuner-i2c.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); static int xc5000_load_fw_on_attach; module_param_named(init_fw, xc5000_load_fw_on_attach, int, 0644); MODULE_PARM_DESC(init_fw, "Load firmware during driver initialization."); static DEFINE_MUTEX(xc5000_list_mutex); static LIST_HEAD(hybrid_tuner_instance_list); #define dprintk(level,fmt, arg...) if (debug >= level) \ printk(KERN_INFO "%s: " fmt, "xc5000", ## arg) #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw" #define XC5000_DEFAULT_FIRMWARE_SIZE 12332 struct xc5000_priv { struct tuner_i2c_props i2c_props; struct list_head hybrid_tuner_instance_list; u32 if_khz; u32 freq_hz; u32 bandwidth; u8 video_standard; u8 rf_mode; int (*tuner_callback) (void *priv, int command, int arg); }; /* Misc Defines */ #define MAX_TV_STANDARD 23 #define XC_MAX_I2C_WRITE_LENGTH 64 /* Signal Types */ #define XC_RF_MODE_AIR 0 #define XC_RF_MODE_CABLE 1 /* Result codes */ #define XC_RESULT_SUCCESS 0 #define XC_RESULT_RESET_FAILURE 1 #define XC_RESULT_I2C_WRITE_FAILURE 2 #define XC_RESULT_I2C_READ_FAILURE 3 #define XC_RESULT_OUT_OF_RANGE 5 /* Product id */ #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000 #define XC_PRODUCT_ID_FW_LOADED 0x1388 /* Registers */ #define XREG_INIT 0x00 #define XREG_VIDEO_MODE 0x01 #define XREG_AUDIO_MODE 0x02 #define XREG_RF_FREQ 0x03 #define XREG_D_CODE 0x04 #define XREG_IF_OUT 0x05 #define XREG_SEEK_MODE 0x07 #define XREG_POWER_DOWN 0x0A #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */ #define XREG_SMOOTHEDCVBS 0x0E #define XREG_XTALFREQ 0x0F #define XREG_FINERFFREQ 0x10 #define XREG_DDIMODE 0x11 #define XREG_ADC_ENV 0x00 #define XREG_QUALITY 0x01 #define XREG_FRAME_LINES 0x02 #define XREG_HSYNC_FREQ 0x03 #define XREG_LOCK 0x04 #define XREG_FREQ_ERROR 0x05 #define XREG_SNR 0x06 #define XREG_VERSION 0x07 #define XREG_PRODUCT_ID 0x08 #define XREG_BUSY 0x09 /* Basic firmware description. This will remain with the driver for documentation purposes. This represents an I2C firmware file encoded as a string of unsigned char. Format is as follows: char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB char[1 ]=len0_LSB -> length of first write transaction char[2 ]=data0 -> first byte to be sent char[3 ]=data1 char[4 ]=data2 char[ ]=... char[M ]=dataN -> last byte to be sent char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB char[M+2]=len1_LSB -> length of second write transaction char[M+3]=data0 char[M+4]=data1 ... etc. The [len] value should be interpreted as follows: len= len_MSB _ len_LSB len=1111_1111_1111_1111 : End of I2C_SEQUENCE len=0000_0000_0000_0000 : Reset command: Do hardware reset len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767) len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms For the RESET and WAIT commands, the two following bytes will contain immediately the length of the following transaction. */ typedef struct { char *Name; u16 AudioMode; u16 VideoMode; } XC_TV_STANDARD; /* Tuner standards */ #define MN_NTSC_PAL_BTSC 0 #define MN_NTSC_PAL_A2 1 #define MN_NTSC_PAL_EIAJ 2 #define MN_NTSC_PAL_Mono 3 #define BG_PAL_A2 4 #define BG_PAL_NICAM 5 #define BG_PAL_MONO 6 #define I_PAL_NICAM 7 #define I_PAL_NICAM_MONO 8 #define DK_PAL_A2 9 #define DK_PAL_NICAM 10 #define DK_PAL_MONO 11 #define DK_SECAM_A2DK1 12 #define DK_SECAM_A2LDK3 13 #define DK_SECAM_A2MONO 14 #define L_SECAM_NICAM 15 #define LC_SECAM_NICAM 16 #define DTV6 17 #define DTV8 18 #define DTV7_8 19 #define DTV7 20 #define FM_Radio_INPUT2 21 #define FM_Radio_INPUT1 22 static XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = { {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, {"M/N-NTSC/PAL-A2", 0x0600, 0x8020}, {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, {"B/G-PAL-A2", 0x0A00, 0x8049}, {"B/G-PAL-NICAM", 0x0C04, 0x8049}, {"B/G-PAL-MONO", 0x0878, 0x8059}, {"I-PAL-NICAM", 0x1080, 0x8009}, {"I-PAL-NICAM-MONO", 0x0E78, 0x8009}, {"D/K-PAL-A2", 0x1600, 0x8009}, {"D/K-PAL-NICAM", 0x0E80, 0x8009}, {"D/K-PAL-MONO", 0x1478, 0x8009}, {"D/K-SECAM-A2 DK1", 0x1200, 0x8009}, {"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009}, {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, {"L-SECAM-NICAM", 0x8E82, 0x0009}, {"L'-SECAM-NICAM", 0x8E82, 0x4009}, {"DTV6", 0x00C0, 0x8002}, {"DTV8", 0x00C0, 0x800B}, {"DTV7/8", 0x00C0, 0x801B}, {"DTV7", 0x00C0, 0x8007}, {"FM Radio-INPUT2", 0x9802, 0x9002}, {"FM Radio-INPUT1", 0x0208, 0x9002} }; static int xc5000_is_firmware_loaded(struct dvb_frontend *fe); static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len); static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len); static void xc5000_TunerReset(struct dvb_frontend *fe); static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) { return xc5000_writeregs(priv, buf, len) ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS; } static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) { return xc5000_readregs(priv, buf, len) ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS; } static int xc_reset(struct dvb_frontend *fe) { xc5000_TunerReset(fe); return XC_RESULT_SUCCESS; } static void xc_wait(int wait_ms) { msleep(wait_ms); } static void xc5000_TunerReset(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; int ret; dprintk(1, "%s()\n", __func__); if (priv->tuner_callback) { ret = priv->tuner_callback(((fe->dvb) && (fe->dvb->priv)) ? fe->dvb->priv : priv->i2c_props.adap->algo_data, XC5000_TUNER_RESET, 0); if (ret) printk(KERN_ERR "xc5000: reset failed\n"); } else printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n"); } static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData) { u8 buf[4]; int WatchDogTimer = 5; int result; buf[0] = (regAddr >> 8) & 0xFF; buf[1] = regAddr & 0xFF; buf[2] = (i2cData >> 8) & 0xFF; buf[3] = i2cData & 0xFF; result = xc_send_i2c_data(priv, buf, 4); if (result == XC_RESULT_SUCCESS) { /* wait for busy flag to clear */ while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) { buf[0] = 0; buf[1] = XREG_BUSY; result = xc_send_i2c_data(priv, buf, 2); if (result == XC_RESULT_SUCCESS) { result = xc_read_i2c_data(priv, buf, 2); if (result == XC_RESULT_SUCCESS) { if ((buf[0] == 0) && (buf[1] == 0)) { /* busy flag cleared */ break; } else { xc_wait(100); /* wait 5 ms */ WatchDogTimer--; } } } } } if (WatchDogTimer < 0) result = XC_RESULT_I2C_WRITE_FAILURE; return result; } static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData) { u8 buf[2]; int result; buf[0] = (regAddr >> 8) & 0xFF; buf[1] = regAddr & 0xFF; result = xc_send_i2c_data(priv, buf, 2); if (result != XC_RESULT_SUCCESS) return result; result = xc_read_i2c_data(priv, buf, 2); if (result != XC_RESULT_SUCCESS) return result; *i2cData = buf[0] * 256 + buf[1]; return result; } static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence) { struct xc5000_priv *priv = fe->tuner_priv; int i, nbytes_to_send, result; unsigned int len, pos, index; u8 buf[XC_MAX_I2C_WRITE_LENGTH]; index=0; while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) { len = i2c_sequence[index]* 256 + i2c_sequence[index+1]; if (len == 0x0000) { /* RESET command */ result = xc_reset(fe); index += 2; if (result != XC_RESULT_SUCCESS) return result; } else if (len & 0x8000) { /* WAIT command */ xc_wait(len & 0x7FFF); index += 2; } else { /* Send i2c data whilst ensuring individual transactions * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. */ index += 2; buf[0] = i2c_sequence[index]; buf[1] = i2c_sequence[index + 1]; pos = 2; while (pos < len) { if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) { nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH; } else { nbytes_to_send = (len - pos + 2); } for (i=2; ivideo_standard].Name); ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode); if (ret == XC_RESULT_SUCCESS) ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode); return ret; } static int xc_shutdown(struct xc5000_priv *priv) { return XC_RESULT_SUCCESS; /* Fixme: cannot bring tuner back alive once shutdown * without reloading the driver modules. * return xc_write_reg(priv, XREG_POWER_DOWN, 0); */ } static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode) { dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode, rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE"); if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) { rf_mode = XC_RF_MODE_CABLE; printk(KERN_ERR "%s(), Invalid mode, defaulting to CABLE", __func__); } return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode); } static const struct dvb_tuner_ops xc5000_tuner_ops; static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz) { u16 freq_code; dprintk(1, "%s(%u)\n", __func__, freq_hz); if ((freq_hz > xc5000_tuner_ops.info.frequency_max) || (freq_hz < xc5000_tuner_ops.info.frequency_min)) return XC_RESULT_OUT_OF_RANGE; freq_code = (u16)(freq_hz / 15625); return xc_write_reg(priv, XREG_RF_FREQ, freq_code); } static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz) { u32 freq_code = (freq_khz * 1024)/1000; dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n", __func__, freq_khz, freq_code); return xc_write_reg(priv, XREG_IF_OUT, freq_code); } static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope) { return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope); } static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz) { int result; u16 regData; u32 tmp; result = xc_read_reg(priv, XREG_FREQ_ERROR, ®Data); if (result) return result; tmp = (u32)regData; (*freq_error_hz) = (tmp * 15625) / 1000; return result; } static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status) { return xc_read_reg(priv, XREG_LOCK, lock_status); } static int xc_get_version(struct xc5000_priv *priv, u8 *hw_majorversion, u8 *hw_minorversion, u8 *fw_majorversion, u8 *fw_minorversion) { u16 data; int result; result = xc_read_reg(priv, XREG_VERSION, &data); if (result) return result; (*hw_majorversion) = (data >> 12) & 0x0F; (*hw_minorversion) = (data >> 8) & 0x0F; (*fw_majorversion) = (data >> 4) & 0x0F; (*fw_minorversion) = data & 0x0F; return 0; } static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz) { u16 regData; int result; result = xc_read_reg(priv, XREG_HSYNC_FREQ, ®Data); if (result) return result; (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100; return result; } static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines) { return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines); } static int xc_get_quality(struct xc5000_priv *priv, u16 *quality) { return xc_read_reg(priv, XREG_QUALITY, quality); } static u16 WaitForLock(struct xc5000_priv *priv) { u16 lockState = 0; int watchDogCount = 40; while ((lockState == 0) && (watchDogCount > 0)) { xc_get_lock_status(priv, &lockState); if (lockState != 1) { xc_wait(5); watchDogCount--; } } return lockState; } static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz) { int found = 0; dprintk(1, "%s(%u)\n", __func__, freq_hz); if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS) return 0; if (WaitForLock(priv) == 1) found = 1; return found; } static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val) { u8 buf[2] = { reg >> 8, reg & 0xff }; u8 bval[2] = { 0, 0 }; struct i2c_msg msg[2] = { { .addr = priv->i2c_props.addr, .flags = 0, .buf = &buf[0], .len = 2 }, { .addr = priv->i2c_props.addr, .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, }; if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) { printk(KERN_WARNING "xc5000: I2C read failed\n"); return -EREMOTEIO; } *val = (bval[0] << 8) | bval[1]; return 0; } static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len) { struct i2c_msg msg = { .addr = priv->i2c_props.addr, .flags = 0, .buf = buf, .len = len }; if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", (int)len); return -EREMOTEIO; } return 0; } static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len) { struct i2c_msg msg = { .addr = priv->i2c_props.addr, .flags = I2C_M_RD, .buf = buf, .len = len }; if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len); return -EREMOTEIO; } return 0; } static int xc5000_fwupload(struct dvb_frontend* fe) { struct xc5000_priv *priv = fe->tuner_priv; const struct firmware *fw; int ret; /* request the firmware, this will block and timeout */ printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n", XC5000_DEFAULT_FIRMWARE); ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, &priv->i2c_props.adap->dev); if (ret) { printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n"); ret = XC_RESULT_RESET_FAILURE; goto out; } else { printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n", fw->size); ret = XC_RESULT_SUCCESS; } if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) { printk(KERN_ERR "xc5000: firmware incorrect size\n"); ret = XC_RESULT_RESET_FAILURE; } else { printk(KERN_INFO "xc5000: firmware upload\n"); ret = xc_load_i2c_sequence(fe, fw->data ); } out: release_firmware(fw); return ret; } static void xc_debug_dump(struct xc5000_priv *priv) { u16 adc_envelope; u32 freq_error_hz = 0; u16 lock_status; u32 hsync_freq_hz = 0; u16 frame_lines; u16 quality; u8 hw_majorversion = 0, hw_minorversion = 0; u8 fw_majorversion = 0, fw_minorversion = 0; /* Wait for stats to stabilize. * Frame Lines needs two frame times after initial lock * before it is valid. */ xc_wait(100); xc_get_ADC_Envelope(priv, &adc_envelope); dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope); xc_get_frequency_error(priv, &freq_error_hz); dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz); xc_get_lock_status(priv, &lock_status); dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n", lock_status); xc_get_version(priv, &hw_majorversion, &hw_minorversion, &fw_majorversion, &fw_minorversion); dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n", hw_majorversion, hw_minorversion, fw_majorversion, fw_minorversion); xc_get_hsync_freq(priv, &hsync_freq_hz); dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz); xc_get_frame_lines(priv, &frame_lines); dprintk(1, "*** Frame lines = %d\n", frame_lines); xc_get_quality(priv, &quality); dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality); } static int xc5000_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params) { struct xc5000_priv *priv = fe->tuner_priv; int ret; dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency); switch(params->u.vsb.modulation) { case VSB_8: case VSB_16: dprintk(1, "%s() VSB modulation\n", __func__); priv->rf_mode = XC_RF_MODE_AIR; priv->freq_hz = params->frequency - 1750000; priv->bandwidth = BANDWIDTH_6_MHZ; priv->video_standard = DTV6; break; case QAM_64: case QAM_256: case QAM_AUTO: dprintk(1, "%s() QAM modulation\n", __func__); priv->rf_mode = XC_RF_MODE_CABLE; priv->freq_hz = params->frequency - 1750000; priv->bandwidth = BANDWIDTH_6_MHZ; priv->video_standard = DTV6; break; default: return -EINVAL; } dprintk(1, "%s() frequency=%d (compensated)\n", __func__, priv->freq_hz); ret = xc_SetSignalSource(priv, priv->rf_mode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetSignalSource(%d) failed\n", priv->rf_mode); return -EREMOTEIO; } ret = xc_SetTVStandard(priv, XC5000_Standard[priv->video_standard].VideoMode, XC5000_Standard[priv->video_standard].AudioMode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); return -EREMOTEIO; } ret = xc_set_IF_frequency(priv, priv->if_khz); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n", priv->if_khz); return -EIO; } xc_tune_channel(priv, priv->freq_hz); if (debug) xc_debug_dump(priv); return 0; } static int xc5000_is_firmware_loaded(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; int ret; u16 id; ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id); if (ret == XC_RESULT_SUCCESS) { if (id == XC_PRODUCT_ID_FW_NOT_LOADED) ret = XC_RESULT_RESET_FAILURE; else ret = XC_RESULT_SUCCESS; } dprintk(1, "%s() returns %s id = 0x%x\n", __func__, ret == XC_RESULT_SUCCESS ? "True" : "False", id); return ret; } static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe); static int xc5000_set_analog_params(struct dvb_frontend *fe, struct analog_parameters *params) { struct xc5000_priv *priv = fe->tuner_priv; int ret; if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) xc_load_fw_and_init_tuner(fe); dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n", __func__, params->frequency); priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */ /* params->frequency is in units of 62.5khz */ priv->freq_hz = params->frequency * 62500; /* FIX ME: Some video standards may have several possible audio standards. We simply default to one of them here. */ if(params->std & V4L2_STD_MN) { /* default to BTSC audio standard */ priv->video_standard = MN_NTSC_PAL_BTSC; goto tune_channel; } if(params->std & V4L2_STD_PAL_BG) { /* default to NICAM audio standard */ priv->video_standard = BG_PAL_NICAM; goto tune_channel; } if(params->std & V4L2_STD_PAL_I) { /* default to NICAM audio standard */ priv->video_standard = I_PAL_NICAM; goto tune_channel; } if(params->std & V4L2_STD_PAL_DK) { /* default to NICAM audio standard */ priv->video_standard = DK_PAL_NICAM; goto tune_channel; } if(params->std & V4L2_STD_SECAM_DK) { /* default to A2 DK1 audio standard */ priv->video_standard = DK_SECAM_A2DK1; goto tune_channel; } if(params->std & V4L2_STD_SECAM_L) { priv->video_standard = L_SECAM_NICAM; goto tune_channel; } if(params->std & V4L2_STD_SECAM_LC) { priv->video_standard = LC_SECAM_NICAM; goto tune_channel; } tune_channel: ret = xc_SetSignalSource(priv, priv->rf_mode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetSignalSource(%d) failed\n", priv->rf_mode); return -EREMOTEIO; } ret = xc_SetTVStandard(priv, XC5000_Standard[priv->video_standard].VideoMode, XC5000_Standard[priv->video_standard].AudioMode); if (ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); return -EREMOTEIO; } xc_tune_channel(priv, priv->freq_hz); if (debug) xc_debug_dump(priv); return 0; } static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq) { struct xc5000_priv *priv = fe->tuner_priv; dprintk(1, "%s()\n", __func__); *freq = priv->freq_hz; return 0; } static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) { struct xc5000_priv *priv = fe->tuner_priv; dprintk(1, "%s()\n", __func__); *bw = priv->bandwidth; return 0; } static int xc5000_get_status(struct dvb_frontend *fe, u32 *status) { struct xc5000_priv *priv = fe->tuner_priv; u16 lock_status = 0; xc_get_lock_status(priv, &lock_status); dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status); *status = lock_status; return 0; } static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; int ret = 0; if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) { ret = xc5000_fwupload(fe); if (ret != XC_RESULT_SUCCESS) return ret; } /* Start the tuner self-calibration process */ ret |= xc_initialize(priv); /* Wait for calibration to complete. * We could continue but XC5000 will clock stretch subsequent * I2C transactions until calibration is complete. This way we * don't have to rely on clock stretching working. */ xc_wait( 100 ); /* Default to "CABLE" mode */ ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE); return ret; } static int xc5000_sleep(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; int ret; dprintk(1, "%s()\n", __func__); /* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized * once shutdown without reloading the driver. Maybe I am not * doing something right. * */ ret = xc_shutdown(priv); if(ret != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: %s() unable to shutdown tuner\n", __func__); return -EREMOTEIO; } else { return XC_RESULT_SUCCESS; } } static int xc5000_init(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; dprintk(1, "%s()\n", __func__); if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) { printk(KERN_ERR "xc5000: Unable to initialise tuner\n"); return -EREMOTEIO; } if (debug) xc_debug_dump(priv); return 0; } static int xc5000_release(struct dvb_frontend *fe) { struct xc5000_priv *priv = fe->tuner_priv; dprintk(1, "%s()\n", __func__); mutex_lock(&xc5000_list_mutex); if (priv) hybrid_tuner_release_state(priv); mutex_unlock(&xc5000_list_mutex); fe->tuner_priv = NULL; return 0; } static const struct dvb_tuner_ops xc5000_tuner_ops = { .info = { .name = "Xceive XC5000", .frequency_min = 1000000, .frequency_max = 1023000000, .frequency_step = 50000, }, .release = xc5000_release, .init = xc5000_init, .sleep = xc5000_sleep, .set_params = xc5000_set_params, .set_analog_params = xc5000_set_analog_params, .get_frequency = xc5000_get_frequency, .get_bandwidth = xc5000_get_bandwidth, .get_status = xc5000_get_status }; struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct xc5000_config *cfg) { struct xc5000_priv *priv = NULL; int instance; u16 id = 0; dprintk(1, "%s(%d-%04x)\n", __func__, i2c ? i2c_adapter_id(i2c) : -1, cfg ? cfg->i2c_address : -1); mutex_lock(&xc5000_list_mutex); instance = hybrid_tuner_request_state(struct xc5000_priv, priv, hybrid_tuner_instance_list, i2c, cfg->i2c_address, "xc5000"); switch (instance) { case 0: goto fail; break; case 1: /* new tuner instance */ priv->bandwidth = BANDWIDTH_6_MHZ; priv->if_khz = cfg->if_khz; priv->tuner_callback = cfg->tuner_callback; fe->tuner_priv = priv; break; default: /* existing tuner instance */ fe->tuner_priv = priv; break; } /* Check if firmware has been loaded. It is possible that another instance of the driver has loaded the firmware. */ if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) goto fail; switch(id) { case XC_PRODUCT_ID_FW_LOADED: printk(KERN_INFO "xc5000: Successfully identified at address 0x%02x\n", cfg->i2c_address); printk(KERN_INFO "xc5000: Firmware has been loaded previously\n"); break; case XC_PRODUCT_ID_FW_NOT_LOADED: printk(KERN_INFO "xc5000: Successfully identified at address 0x%02x\n", cfg->i2c_address); printk(KERN_INFO "xc5000: Firmware has not been loaded previously\n"); break; default: printk(KERN_ERR "xc5000: Device not found at addr 0x%02x (0x%x)\n", cfg->i2c_address, id); goto fail; } mutex_unlock(&xc5000_list_mutex); memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops, sizeof(struct dvb_tuner_ops)); if (xc5000_load_fw_on_attach) xc5000_init(fe); return fe; fail: mutex_unlock(&xc5000_list_mutex); xc5000_release(fe); return NULL; } EXPORT_SYMBOL(xc5000_attach); MODULE_AUTHOR("Steven Toth"); MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver"); MODULE_LICENSE("GPL");