/* * toshiba_acpi.c - Toshiba Laptop ACPI Extras * * * Copyright (C) 2002-2004 John Belmonte * Copyright (C) 2008 Philip Langdale * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * The devolpment page for this driver is located at * http://memebeam.org/toys/ToshibaAcpiDriver. * * Credits: * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse * engineering the Windows drivers * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5 * Rob Miller - TV out and hotkeys help * * * TODO * */ #define TOSHIBA_ACPI_VERSION "0.19" #define PROC_INTERFACE_VERSION 1 #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("John Belmonte"); MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver"); MODULE_LICENSE("GPL"); #define MY_LOGPREFIX "toshiba_acpi: " #define MY_ERR KERN_ERR MY_LOGPREFIX #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX #define MY_INFO KERN_INFO MY_LOGPREFIX /* Toshiba ACPI method paths */ #define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM" #define TOSH_INTERFACE_1 "\\_SB_.VALD" #define TOSH_INTERFACE_2 "\\_SB_.VALZ" #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX" #define GHCI_METHOD ".GHCI" /* Toshiba HCI interface definitions * * HCI is Toshiba's "Hardware Control Interface" which is supposed to * be uniform across all their models. Ideally we would just call * dedicated ACPI methods instead of using this primitive interface. * However the ACPI methods seem to be incomplete in some areas (for * example they allow setting, but not reading, the LCD brightness value), * so this is still useful. */ #define HCI_WORDS 6 /* operations */ #define HCI_SET 0xff00 #define HCI_GET 0xfe00 /* return codes */ #define HCI_SUCCESS 0x0000 #define HCI_FAILURE 0x1000 #define HCI_NOT_SUPPORTED 0x8000 #define HCI_EMPTY 0x8c00 /* registers */ #define HCI_FAN 0x0004 #define HCI_SYSTEM_EVENT 0x0016 #define HCI_VIDEO_OUT 0x001c #define HCI_HOTKEY_EVENT 0x001e #define HCI_LCD_BRIGHTNESS 0x002a #define HCI_WIRELESS 0x0056 /* field definitions */ #define HCI_LCD_BRIGHTNESS_BITS 3 #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS) #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS) #define HCI_VIDEO_OUT_LCD 0x1 #define HCI_VIDEO_OUT_CRT 0x2 #define HCI_VIDEO_OUT_TV 0x4 #define HCI_WIRELESS_KILL_SWITCH 0x01 #define HCI_WIRELESS_BT_PRESENT 0x0f #define HCI_WIRELESS_BT_ATTACH 0x40 #define HCI_WIRELESS_BT_POWER 0x80 static const struct acpi_device_id toshiba_device_ids[] = { {"TOS6200", 0}, {"TOS6208", 0}, {"TOS1900", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, toshiba_device_ids); struct key_entry { char type; u16 code; u16 keycode; }; enum {KE_KEY, KE_END}; static struct key_entry toshiba_acpi_keymap[] = { {KE_KEY, 0x101, KEY_MUTE}, {KE_KEY, 0x102, KEY_ZOOMOUT}, {KE_KEY, 0x103, KEY_ZOOMIN}, {KE_KEY, 0x13b, KEY_COFFEE}, {KE_KEY, 0x13c, KEY_BATTERY}, {KE_KEY, 0x13d, KEY_SLEEP}, {KE_KEY, 0x13e, KEY_SUSPEND}, {KE_KEY, 0x13f, KEY_SWITCHVIDEOMODE}, {KE_KEY, 0x140, KEY_BRIGHTNESSDOWN}, {KE_KEY, 0x141, KEY_BRIGHTNESSUP}, {KE_KEY, 0x142, KEY_WLAN}, {KE_KEY, 0x143, KEY_PROG1}, {KE_KEY, 0xb05, KEY_PROG2}, {KE_KEY, 0xb06, KEY_WWW}, {KE_KEY, 0xb07, KEY_MAIL}, {KE_KEY, 0xb30, KEY_STOP}, {KE_KEY, 0xb31, KEY_PREVIOUSSONG}, {KE_KEY, 0xb32, KEY_NEXTSONG}, {KE_KEY, 0xb33, KEY_PLAYPAUSE}, {KE_KEY, 0xb5a, KEY_MEDIA}, {KE_END, 0, 0}, }; /* utility */ static __inline__ void _set_bit(u32 * word, u32 mask, int value) { *word = (*word & ~mask) | (mask * value); } /* acpi interface wrappers */ static int is_valid_acpi_path(const char *methodName) { acpi_handle handle; acpi_status status; status = acpi_get_handle(NULL, (char *)methodName, &handle); return !ACPI_FAILURE(status); } static int write_acpi_int(const char *methodName, int val) { struct acpi_object_list params; union acpi_object in_objs[1]; acpi_status status; params.count = ARRAY_SIZE(in_objs); params.pointer = in_objs; in_objs[0].type = ACPI_TYPE_INTEGER; in_objs[0].integer.value = val; status = acpi_evaluate_object(NULL, (char *)methodName, ¶ms, NULL); return (status == AE_OK); } #if 0 static int read_acpi_int(const char *methodName, int *pVal) { struct acpi_buffer results; union acpi_object out_objs[1]; acpi_status status; results.length = sizeof(out_objs); results.pointer = out_objs; status = acpi_evaluate_object(0, (char *)methodName, 0, &results); *pVal = out_objs[0].integer.value; return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER); } #endif static const char *method_hci /*= 0*/ ; /* Perform a raw HCI call. Here we don't care about input or output buffer * format. */ static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS]) { struct acpi_object_list params; union acpi_object in_objs[HCI_WORDS]; struct acpi_buffer results; union acpi_object out_objs[HCI_WORDS + 1]; acpi_status status; int i; params.count = HCI_WORDS; params.pointer = in_objs; for (i = 0; i < HCI_WORDS; ++i) { in_objs[i].type = ACPI_TYPE_INTEGER; in_objs[i].integer.value = in[i]; } results.length = sizeof(out_objs); results.pointer = out_objs; status = acpi_evaluate_object(NULL, (char *)method_hci, ¶ms, &results); if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) { for (i = 0; i < out_objs->package.count; ++i) { out[i] = out_objs->package.elements[i].integer.value; } } return status; } /* common hci tasks (get or set one or two value) * * In addition to the ACPI status, the HCI system returns a result which * may be useful (such as "not supported"). */ static acpi_status hci_write1(u32 reg, u32 in1, u32 * result) { u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(in, out); *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result) { u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(in, out); *out1 = out[2]; *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result) { u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(in, out); *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result) { u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 }; u32 out[HCI_WORDS]; acpi_status status = hci_raw(in, out); *out1 = out[2]; *out2 = out[3]; *result = (status == AE_OK) ? out[0] : HCI_FAILURE; return status; } struct toshiba_acpi_dev { struct platform_device *p_dev; struct rfkill *bt_rfk; struct input_dev *hotkey_dev; acpi_handle handle; const char *bt_name; struct mutex mutex; }; static struct toshiba_acpi_dev toshiba_acpi = { .bt_name = "Toshiba Bluetooth", }; /* Bluetooth rfkill handlers */ static u32 hci_get_bt_present(bool *present) { u32 hci_result; u32 value, value2; value = 0; value2 = 0; hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); if (hci_result == HCI_SUCCESS) *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false; return hci_result; } static u32 hci_get_radio_state(bool *radio_state) { u32 hci_result; u32 value, value2; value = 0; value2 = 0x0001; hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); *radio_state = value & HCI_WIRELESS_KILL_SWITCH; return hci_result; } static int bt_rfkill_set_block(void *data, bool blocked) { struct toshiba_acpi_dev *dev = data; u32 result1, result2; u32 value; int err; bool radio_state; value = (blocked == false); mutex_lock(&dev->mutex); if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) { err = -EBUSY; goto out; } if (!radio_state) { err = 0; goto out; } hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1); hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2); if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS) err = -EBUSY; else err = 0; out: mutex_unlock(&dev->mutex); return err; } static void bt_rfkill_poll(struct rfkill *rfkill, void *data) { bool new_rfk_state; bool value; u32 hci_result; struct toshiba_acpi_dev *dev = data; mutex_lock(&dev->mutex); hci_result = hci_get_radio_state(&value); if (hci_result != HCI_SUCCESS) { /* Can't do anything useful */ mutex_unlock(&dev->mutex); return; } new_rfk_state = value; mutex_unlock(&dev->mutex); if (rfkill_set_hw_state(rfkill, !new_rfk_state)) bt_rfkill_set_block(data, true); } static const struct rfkill_ops toshiba_rfk_ops = { .set_block = bt_rfkill_set_block, .poll = bt_rfkill_poll, }; static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ; static struct backlight_device *toshiba_backlight_device; static int force_fan; static int last_key_event; static int key_event_valid; static int get_lcd(struct backlight_device *bd) { u32 hci_result; u32 value; hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result); if (hci_result == HCI_SUCCESS) { return (value >> HCI_LCD_BRIGHTNESS_SHIFT); } else return -EFAULT; } static int lcd_proc_show(struct seq_file *m, void *v) { int value = get_lcd(NULL); if (value >= 0) { seq_printf(m, "brightness: %d\n", value); seq_printf(m, "brightness_levels: %d\n", HCI_LCD_BRIGHTNESS_LEVELS); } else { printk(MY_ERR "Error reading LCD brightness\n"); } return 0; } static int lcd_proc_open(struct inode *inode, struct file *file) { return single_open(file, lcd_proc_show, NULL); } static int set_lcd(int value) { u32 hci_result; value = value << HCI_LCD_BRIGHTNESS_SHIFT; hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result); if (hci_result != HCI_SUCCESS) return -EFAULT; return 0; } static int set_lcd_status(struct backlight_device *bd) { return set_lcd(bd->props.brightness); } static ssize_t lcd_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { char cmd[42]; size_t len; int value; int ret; len = min(count, sizeof(cmd) - 1); if (copy_from_user(cmd, buf, len)) return -EFAULT; cmd[len] = '\0'; if (sscanf(cmd, " brightness : %i", &value) == 1 && value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) { ret = set_lcd(value); if (ret == 0) ret = count; } else { ret = -EINVAL; } return ret; } static const struct file_operations lcd_proc_fops = { .owner = THIS_MODULE, .open = lcd_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = lcd_proc_write, }; static int video_proc_show(struct seq_file *m, void *v) { u32 hci_result; u32 value; hci_read1(HCI_VIDEO_OUT, &value, &hci_result); if (hci_result == HCI_SUCCESS) { int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0; int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0; int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0; seq_printf(m, "lcd_out: %d\n", is_lcd); seq_printf(m, "crt_out: %d\n", is_crt); seq_printf(m, "tv_out: %d\n", is_tv); } else { printk(MY_ERR "Error reading video out status\n"); } return 0; } static int video_proc_open(struct inode *inode, struct file *file) { return single_open(file, video_proc_show, NULL); } static ssize_t video_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { char *cmd, *buffer; int value; int remain = count; int lcd_out = -1; int crt_out = -1; int tv_out = -1; u32 hci_result; u32 video_out; cmd = kmalloc(count + 1, GFP_KERNEL); if (!cmd) return -ENOMEM; if (copy_from_user(cmd, buf, count)) { kfree(cmd); return -EFAULT; } cmd[count] = '\0'; buffer = cmd; /* scan expression. Multiple expressions may be delimited with ; * * NOTE: to keep scanning simple, invalid fields are ignored */ while (remain) { if (sscanf(buffer, " lcd_out : %i", &value) == 1) lcd_out = value & 1; else if (sscanf(buffer, " crt_out : %i", &value) == 1) crt_out = value & 1; else if (sscanf(buffer, " tv_out : %i", &value) == 1) tv_out = value & 1; /* advance to one character past the next ; */ do { ++buffer; --remain; } while (remain && *(buffer - 1) != ';'); } kfree(cmd); hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result); if (hci_result == HCI_SUCCESS) { unsigned int new_video_out = video_out; if (lcd_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out); if (crt_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out); if (tv_out != -1) _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out); /* To avoid unnecessary video disruption, only write the new * video setting if something changed. */ if (new_video_out != video_out) write_acpi_int(METHOD_VIDEO_OUT, new_video_out); } else { return -EFAULT; } return count; } static const struct file_operations video_proc_fops = { .owner = THIS_MODULE, .open = video_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = video_proc_write, }; static int fan_proc_show(struct seq_file *m, void *v) { u32 hci_result; u32 value; hci_read1(HCI_FAN, &value, &hci_result); if (hci_result == HCI_SUCCESS) { seq_printf(m, "running: %d\n", (value > 0)); seq_printf(m, "force_on: %d\n", force_fan); } else { printk(MY_ERR "Error reading fan status\n"); } return 0; } static int fan_proc_open(struct inode *inode, struct file *file) { return single_open(file, fan_proc_show, NULL); } static ssize_t fan_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { char cmd[42]; size_t len; int value; u32 hci_result; len = min(count, sizeof(cmd) - 1); if (copy_from_user(cmd, buf, len)) return -EFAULT; cmd[len] = '\0'; if (sscanf(cmd, " force_on : %i", &value) == 1 && value >= 0 && value <= 1) { hci_write1(HCI_FAN, value, &hci_result); if (hci_result != HCI_SUCCESS) return -EFAULT; else force_fan = value; } else { return -EINVAL; } return count; } static const struct file_operations fan_proc_fops = { .owner = THIS_MODULE, .open = fan_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = fan_proc_write, }; static int keys_proc_show(struct seq_file *m, void *v) { u32 hci_result; u32 value; if (!key_event_valid) { hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result); if (hci_result == HCI_SUCCESS) { key_event_valid = 1; last_key_event = value; } else if (hci_result == HCI_EMPTY) { /* better luck next time */ } else if (hci_result == HCI_NOT_SUPPORTED) { /* This is a workaround for an unresolved issue on * some machines where system events sporadically * become disabled. */ hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); printk(MY_NOTICE "Re-enabled hotkeys\n"); } else { printk(MY_ERR "Error reading hotkey status\n"); goto end; } } seq_printf(m, "hotkey_ready: %d\n", key_event_valid); seq_printf(m, "hotkey: 0x%04x\n", last_key_event); end: return 0; } static int keys_proc_open(struct inode *inode, struct file *file) { return single_open(file, keys_proc_show, NULL); } static ssize_t keys_proc_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { char cmd[42]; size_t len; int value; len = min(count, sizeof(cmd) - 1); if (copy_from_user(cmd, buf, len)) return -EFAULT; cmd[len] = '\0'; if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) { key_event_valid = 0; } else { return -EINVAL; } return count; } static const struct file_operations keys_proc_fops = { .owner = THIS_MODULE, .open = keys_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = keys_proc_write, }; static int version_proc_show(struct seq_file *m, void *v) { seq_printf(m, "driver: %s\n", TOSHIBA_ACPI_VERSION); seq_printf(m, "proc_interface: %d\n", PROC_INTERFACE_VERSION); return 0; } static int version_proc_open(struct inode *inode, struct file *file) { return single_open(file, version_proc_show, PDE(inode)->data); } static const struct file_operations version_proc_fops = { .owner = THIS_MODULE, .open = version_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* proc and module init */ #define PROC_TOSHIBA "toshiba" static void __init create_toshiba_proc_entries(void) { proc_create("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops); proc_create("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops); proc_create("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops); proc_create("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops); proc_create("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops); } static void remove_toshiba_proc_entries(void) { remove_proc_entry("lcd", toshiba_proc_dir); remove_proc_entry("video", toshiba_proc_dir); remove_proc_entry("fan", toshiba_proc_dir); remove_proc_entry("keys", toshiba_proc_dir); remove_proc_entry("version", toshiba_proc_dir); } static struct backlight_ops toshiba_backlight_data = { .get_brightness = get_lcd, .update_status = set_lcd_status, }; static struct key_entry *toshiba_acpi_get_entry_by_scancode(unsigned int code) { struct key_entry *key; for (key = toshiba_acpi_keymap; key->type != KE_END; key++) if (code == key->code) return key; return NULL; } static struct key_entry *toshiba_acpi_get_entry_by_keycode(unsigned int code) { struct key_entry *key; for (key = toshiba_acpi_keymap; key->type != KE_END; key++) if (code == key->keycode && key->type == KE_KEY) return key; return NULL; } static int toshiba_acpi_getkeycode(struct input_dev *dev, unsigned int scancode, unsigned int *keycode) { struct key_entry *key = toshiba_acpi_get_entry_by_scancode(scancode); if (key && key->type == KE_KEY) { *keycode = key->keycode; return 0; } return -EINVAL; } static int toshiba_acpi_setkeycode(struct input_dev *dev, unsigned int scancode, unsigned int keycode) { struct key_entry *key; unsigned int old_keycode; key = toshiba_acpi_get_entry_by_scancode(scancode); if (key && key->type == KE_KEY) { old_keycode = key->keycode; key->keycode = keycode; set_bit(keycode, dev->keybit); if (!toshiba_acpi_get_entry_by_keycode(old_keycode)) clear_bit(old_keycode, dev->keybit); return 0; } return -EINVAL; } static void toshiba_acpi_notify(acpi_handle handle, u32 event, void *context) { u32 hci_result, value; struct key_entry *key; if (event != 0x80) return; do { hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result); if (hci_result == HCI_SUCCESS) { if (value == 0x100) continue; /* act on key press; ignore key release */ if (value & 0x80) continue; key = toshiba_acpi_get_entry_by_scancode (value); if (!key) { printk(MY_INFO "Unknown key %x\n", value); continue; } input_report_key(toshiba_acpi.hotkey_dev, key->keycode, 1); input_sync(toshiba_acpi.hotkey_dev); input_report_key(toshiba_acpi.hotkey_dev, key->keycode, 0); input_sync(toshiba_acpi.hotkey_dev); } else if (hci_result == HCI_NOT_SUPPORTED) { /* This is a workaround for an unresolved issue on * some machines where system events sporadically * become disabled. */ hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); printk(MY_NOTICE "Re-enabled hotkeys\n"); } } while (hci_result != HCI_EMPTY); } static int toshiba_acpi_setup_keyboard(char *device) { acpi_status status; acpi_handle handle; int result; const struct key_entry *key; status = acpi_get_handle(NULL, device, &handle); if (ACPI_FAILURE(status)) { printk(MY_INFO "Unable to get notification device\n"); return -ENODEV; } toshiba_acpi.handle = handle; status = acpi_evaluate_object(handle, "ENAB", NULL, NULL); if (ACPI_FAILURE(status)) { printk(MY_INFO "Unable to enable hotkeys\n"); return -ENODEV; } status = acpi_install_notify_handler(handle, ACPI_DEVICE_NOTIFY, toshiba_acpi_notify, NULL); if (ACPI_FAILURE(status)) { printk(MY_INFO "Unable to install hotkey notification\n"); return -ENODEV; } toshiba_acpi.hotkey_dev = input_allocate_device(); if (!toshiba_acpi.hotkey_dev) { printk(MY_INFO "Unable to register input device\n"); return -ENOMEM; } toshiba_acpi.hotkey_dev->name = "Toshiba input device"; toshiba_acpi.hotkey_dev->phys = device; toshiba_acpi.hotkey_dev->id.bustype = BUS_HOST; toshiba_acpi.hotkey_dev->getkeycode = toshiba_acpi_getkeycode; toshiba_acpi.hotkey_dev->setkeycode = toshiba_acpi_setkeycode; for (key = toshiba_acpi_keymap; key->type != KE_END; key++) { set_bit(EV_KEY, toshiba_acpi.hotkey_dev->evbit); set_bit(key->keycode, toshiba_acpi.hotkey_dev->keybit); } result = input_register_device(toshiba_acpi.hotkey_dev); if (result) { printk(MY_INFO "Unable to register input device\n"); return result; } return 0; } static void toshiba_acpi_exit(void) { if (toshiba_acpi.hotkey_dev) input_unregister_device(toshiba_acpi.hotkey_dev); if (toshiba_acpi.bt_rfk) { rfkill_unregister(toshiba_acpi.bt_rfk); rfkill_destroy(toshiba_acpi.bt_rfk); } if (toshiba_backlight_device) backlight_device_unregister(toshiba_backlight_device); remove_toshiba_proc_entries(); if (toshiba_proc_dir) remove_proc_entry(PROC_TOSHIBA, acpi_root_dir); acpi_remove_notify_handler(toshiba_acpi.handle, ACPI_DEVICE_NOTIFY, toshiba_acpi_notify); platform_device_unregister(toshiba_acpi.p_dev); return; } static int __init toshiba_acpi_init(void) { u32 hci_result; bool bt_present; int ret = 0; struct backlight_properties props; if (acpi_disabled) return -ENODEV; /* simple device detection: look for HCI method */ if (is_valid_acpi_path(TOSH_INTERFACE_1 GHCI_METHOD)) { method_hci = TOSH_INTERFACE_1 GHCI_METHOD; if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_1)) printk(MY_INFO "Unable to activate hotkeys\n"); } else if (is_valid_acpi_path(TOSH_INTERFACE_2 GHCI_METHOD)) { method_hci = TOSH_INTERFACE_2 GHCI_METHOD; if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_2)) printk(MY_INFO "Unable to activate hotkeys\n"); } else return -ENODEV; printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n", TOSHIBA_ACPI_VERSION); printk(MY_INFO " HCI method: %s\n", method_hci); mutex_init(&toshiba_acpi.mutex); toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi", -1, NULL, 0); if (IS_ERR(toshiba_acpi.p_dev)) { ret = PTR_ERR(toshiba_acpi.p_dev); printk(MY_ERR "unable to register platform device\n"); toshiba_acpi.p_dev = NULL; toshiba_acpi_exit(); return ret; } force_fan = 0; key_event_valid = 0; /* enable event fifo */ hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir); if (!toshiba_proc_dir) { toshiba_acpi_exit(); return -ENODEV; } else { create_toshiba_proc_entries(); } props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1; toshiba_backlight_device = backlight_device_register("toshiba", &toshiba_acpi.p_dev->dev, NULL, &toshiba_backlight_data, &props); if (IS_ERR(toshiba_backlight_device)) { ret = PTR_ERR(toshiba_backlight_device); printk(KERN_ERR "Could not register toshiba backlight device\n"); toshiba_backlight_device = NULL; toshiba_acpi_exit(); return ret; } /* Register rfkill switch for Bluetooth */ if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) { toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name, &toshiba_acpi.p_dev->dev, RFKILL_TYPE_BLUETOOTH, &toshiba_rfk_ops, &toshiba_acpi); if (!toshiba_acpi.bt_rfk) { printk(MY_ERR "unable to allocate rfkill device\n"); toshiba_acpi_exit(); return -ENOMEM; } ret = rfkill_register(toshiba_acpi.bt_rfk); if (ret) { printk(MY_ERR "unable to register rfkill device\n"); rfkill_destroy(toshiba_acpi.bt_rfk); toshiba_acpi_exit(); return ret; } } return 0; } module_init(toshiba_acpi_init); module_exit(toshiba_acpi_exit);