/* * Driver for the ov9650 sensor * * Copyright (C) 2008 Erik Andrén * Copyright (C) 2007 Ilyes Gouta. Based on the m5603x Linux Driver Project. * Copyright (C) 2005 m5603x Linux Driver Project * * Portions of code to USB interface and ALi driver software, * Copyright (c) 2006 Willem Duinker * v4l2 interface modeled after the V4L2 driver * for SN9C10x PC Camera Controllers * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. * */ #include "m5602_ov9650.h" /* Vertically and horizontally flips the image if matched, needed for machines where the sensor is mounted upside down */ static const struct dmi_system_id ov9650_flip_dmi_table[] = { { .ident = "ASUS A6VC", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6VC") } }, { .ident = "ASUS A6VM", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6VM") } }, { .ident = "ASUS A6JC", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6JC") } }, { .ident = "ASUS A6Ja", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6J") } }, { .ident = "ASUS A6Kt", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "A6Kt") } }, { .ident = "Alienware Aurora m9700", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "alienware"), DMI_MATCH(DMI_PRODUCT_NAME, "Aurora m9700") } }, {} }; const static struct ctrl ov9650_ctrls[] = { #define EXPOSURE_IDX 0 { { .id = V4L2_CID_EXPOSURE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "exposure", .minimum = 0x00, .maximum = 0x1ff, .step = 0x4, .default_value = EXPOSURE_DEFAULT, .flags = V4L2_CTRL_FLAG_SLIDER }, .set = ov9650_set_exposure, .get = ov9650_get_exposure }, #define GAIN_IDX 1 { { .id = V4L2_CID_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "gain", .minimum = 0x00, .maximum = 0x3ff, .step = 0x1, .default_value = GAIN_DEFAULT, .flags = V4L2_CTRL_FLAG_SLIDER }, .set = ov9650_set_gain, .get = ov9650_get_gain }, #define RED_BALANCE_IDX 2 { { .type = V4L2_CTRL_TYPE_INTEGER, .name = "red balance", .minimum = 0x00, .maximum = 0xff, .step = 0x1, .default_value = RED_GAIN_DEFAULT, .flags = V4L2_CTRL_FLAG_SLIDER }, .set = ov9650_set_red_balance, .get = ov9650_get_red_balance }, #define BLUE_BALANCE_IDX 3 { { .type = V4L2_CTRL_TYPE_INTEGER, .name = "blue balance", .minimum = 0x00, .maximum = 0xff, .step = 0x1, .default_value = BLUE_GAIN_DEFAULT, .flags = V4L2_CTRL_FLAG_SLIDER }, .set = ov9650_set_blue_balance, .get = ov9650_get_blue_balance }, #define HFLIP_IDX 4 { { .id = V4L2_CID_HFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "horizontal flip", .minimum = 0, .maximum = 1, .step = 1, .default_value = 0 }, .set = ov9650_set_hflip, .get = ov9650_get_hflip }, #define VFLIP_IDX 5 { { .id = V4L2_CID_VFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "vertical flip", .minimum = 0, .maximum = 1, .step = 1, .default_value = 0 }, .set = ov9650_set_vflip, .get = ov9650_get_vflip }, #define AUTO_WHITE_BALANCE_IDX 6 { { .id = V4L2_CID_AUTO_WHITE_BALANCE, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "auto white balance", .minimum = 0, .maximum = 1, .step = 1, .default_value = 1 }, .set = ov9650_set_auto_white_balance, .get = ov9650_get_auto_white_balance }, #define AUTO_GAIN_CTRL_IDX 7 { { .id = V4L2_CID_AUTOGAIN, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "auto gain control", .minimum = 0, .maximum = 1, .step = 1, .default_value = 1 }, .set = ov9650_set_auto_gain, .get = ov9650_get_auto_gain } }; static struct v4l2_pix_format ov9650_modes[] = { { 176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 176 * 144, .bytesperline = 176, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 9 }, { 320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 320 * 240, .bytesperline = 320, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 8 }, { 352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 352 * 288, .bytesperline = 352, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 9 }, { 640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, .sizeimage = 640 * 480, .bytesperline = 640, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 9 } }; static void ov9650_dump_registers(struct sd *sd); int ov9650_probe(struct sd *sd) { int err = 0; u8 prod_id = 0, ver_id = 0, i; s32 *sensor_settings; if (force_sensor) { if (force_sensor == OV9650_SENSOR) { info("Forcing an %s sensor", ov9650.name); goto sensor_found; } /* If we want to force another sensor, don't try to probe this one */ return -ENODEV; } info("Probing for an ov9650 sensor"); /* Run the pre-init before probing the sensor */ for (i = 0; i < ARRAY_SIZE(preinit_ov9650) && !err; i++) { u8 data = preinit_ov9650[i][2]; if (preinit_ov9650[i][0] == SENSOR) err = m5602_write_sensor(sd, preinit_ov9650[i][1], &data, 1); else err = m5602_write_bridge(sd, preinit_ov9650[i][1], data); } if (err < 0) return err; if (m5602_read_sensor(sd, OV9650_PID, &prod_id, 1)) return -ENODEV; if (m5602_read_sensor(sd, OV9650_VER, &ver_id, 1)) return -ENODEV; if ((prod_id == 0x96) && (ver_id == 0x52)) { info("Detected an ov9650 sensor"); goto sensor_found; } return -ENODEV; sensor_found: sensor_settings = kmalloc( ARRAY_SIZE(ov9650_ctrls) * sizeof(s32), GFP_KERNEL); if (!sensor_settings) return -ENOMEM; sd->gspca_dev.cam.cam_mode = ov9650_modes; sd->gspca_dev.cam.nmodes = ARRAY_SIZE(ov9650_modes); sd->desc->ctrls = ov9650_ctrls; sd->desc->nctrls = ARRAY_SIZE(ov9650_ctrls); for (i = 0; i < ARRAY_SIZE(ov9650_ctrls); i++) sensor_settings[i] = ov9650_ctrls[i].qctrl.default_value; sd->sensor_priv = sensor_settings; return 0; } int ov9650_init(struct sd *sd) { int i, err = 0; u8 data; s32 *sensor_settings = sd->sensor_priv; if (dump_sensor) ov9650_dump_registers(sd); for (i = 0; i < ARRAY_SIZE(init_ov9650) && !err; i++) { data = init_ov9650[i][2]; if (init_ov9650[i][0] == SENSOR) err = m5602_write_sensor(sd, init_ov9650[i][1], &data, 1); else err = m5602_write_bridge(sd, init_ov9650[i][1], data); } err = ov9650_set_exposure(&sd->gspca_dev, sensor_settings[EXPOSURE_IDX]); if (err < 0) return err; err = ov9650_set_gain(&sd->gspca_dev, sensor_settings[GAIN_IDX]); if (err < 0) return err; err = ov9650_set_red_balance(&sd->gspca_dev, sensor_settings[RED_BALANCE_IDX]); if (err < 0) return err; err = ov9650_set_blue_balance(&sd->gspca_dev, sensor_settings[BLUE_BALANCE_IDX]); if (err < 0) return err; err = ov9650_set_hflip(&sd->gspca_dev, sensor_settings[HFLIP_IDX]); if (err < 0) return err; err = ov9650_set_vflip(&sd->gspca_dev, sensor_settings[VFLIP_IDX]); if (err < 0) return err; err = ov9650_set_auto_white_balance(&sd->gspca_dev, sensor_settings[AUTO_WHITE_BALANCE_IDX]); if (err < 0) return err; err = ov9650_set_auto_gain(&sd->gspca_dev, sensor_settings[AUTO_GAIN_CTRL_IDX]); return err; } int ov9650_start(struct sd *sd) { u8 data; int i, err = 0; struct cam *cam = &sd->gspca_dev.cam; s32 *sensor_settings = sd->sensor_priv; int width = cam->cam_mode[sd->gspca_dev.curr_mode].width; int height = cam->cam_mode[sd->gspca_dev.curr_mode].height; int ver_offs = cam->cam_mode[sd->gspca_dev.curr_mode].priv; int hor_offs = OV9650_LEFT_OFFSET; if ((!dmi_check_system(ov9650_flip_dmi_table) && sensor_settings[VFLIP_IDX]) || (dmi_check_system(ov9650_flip_dmi_table) && !sensor_settings[VFLIP_IDX])) ver_offs--; if (width <= 320) hor_offs /= 2; /* Synthesize the vsync/hsync setup */ for (i = 0; i < ARRAY_SIZE(res_init_ov9650) && !err; i++) { if (res_init_ov9650[i][0] == BRIDGE) err = m5602_write_bridge(sd, res_init_ov9650[i][1], res_init_ov9650[i][2]); else if (res_init_ov9650[i][0] == SENSOR) { u8 data = res_init_ov9650[i][2]; err = m5602_write_sensor(sd, res_init_ov9650[i][1], &data, 1); } } if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, ((ver_offs >> 8) & 0xff)); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (ver_offs & 0xff)); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, 0); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (height >> 8) & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (height & 0xff)); if (err < 0) return err; for (i = 0; i < 2 && !err; i++) err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, 0); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, (hor_offs >> 8) & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, hor_offs & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, ((width + hor_offs) >> 8) & 0xff); if (err < 0) return err; err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, ((width + hor_offs) & 0xff)); if (err < 0) return err; switch (width) { case 640: PDEBUG(D_V4L2, "Configuring camera for VGA mode"); data = OV9650_VGA_SELECT | OV9650_RGB_SELECT | OV9650_RAW_RGB_SELECT; err = m5602_write_sensor(sd, OV9650_COM7, &data, 1); break; case 352: PDEBUG(D_V4L2, "Configuring camera for CIF mode"); data = OV9650_CIF_SELECT | OV9650_RGB_SELECT | OV9650_RAW_RGB_SELECT; err = m5602_write_sensor(sd, OV9650_COM7, &data, 1); break; case 320: PDEBUG(D_V4L2, "Configuring camera for QVGA mode"); data = OV9650_QVGA_SELECT | OV9650_RGB_SELECT | OV9650_RAW_RGB_SELECT; err = m5602_write_sensor(sd, OV9650_COM7, &data, 1); break; case 176: PDEBUG(D_V4L2, "Configuring camera for QCIF mode"); data = OV9650_QCIF_SELECT | OV9650_RGB_SELECT | OV9650_RAW_RGB_SELECT; err = m5602_write_sensor(sd, OV9650_COM7, &data, 1); break; } return err; } int ov9650_stop(struct sd *sd) { u8 data = OV9650_SOFT_SLEEP | OV9650_OUTPUT_DRIVE_2X; return m5602_write_sensor(sd, OV9650_COM2, &data, 1); } void ov9650_disconnect(struct sd *sd) { ov9650_stop(sd); sd->sensor = NULL; kfree(sd->sensor_priv); } int ov9650_get_exposure(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[EXPOSURE_IDX]; PDEBUG(D_V4L2, "Read exposure %d", *val); return 0; } int ov9650_set_exposure(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; u8 i2c_data; int err; PDEBUG(D_V4L2, "Set exposure to %d", val); sensor_settings[EXPOSURE_IDX] = val; /* The 6 MSBs */ i2c_data = (val >> 10) & 0x3f; err = m5602_write_sensor(sd, OV9650_AECHM, &i2c_data, 1); if (err < 0) return err; /* The 8 middle bits */ i2c_data = (val >> 2) & 0xff; err = m5602_write_sensor(sd, OV9650_AECH, &i2c_data, 1); if (err < 0) return err; /* The 2 LSBs */ i2c_data = val & 0x03; err = m5602_write_sensor(sd, OV9650_COM1, &i2c_data, 1); return err; } int ov9650_get_gain(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[GAIN_IDX]; PDEBUG(D_V4L2, "Read gain %d", *val); return 0; } int ov9650_set_gain(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Setting gain to %d", val); sensor_settings[GAIN_IDX] = val; /* The 2 MSB */ /* Read the OV9650_VREF register first to avoid corrupting the VREF high and low bits */ err = m5602_read_sensor(sd, OV9650_VREF, &i2c_data, 1); if (err < 0) return err; /* Mask away all uninteresting bits */ i2c_data = ((val & 0x0300) >> 2) | (i2c_data & 0x3F); err = m5602_write_sensor(sd, OV9650_VREF, &i2c_data, 1); if (err < 0) return err; /* The 8 LSBs */ i2c_data = val & 0xff; err = m5602_write_sensor(sd, OV9650_GAIN, &i2c_data, 1); return err; } int ov9650_get_red_balance(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[RED_BALANCE_IDX]; PDEBUG(D_V4L2, "Read red gain %d", *val); return 0; } int ov9650_set_red_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Set red gain to %d", val); sensor_settings[RED_BALANCE_IDX] = val; i2c_data = val & 0xff; err = m5602_write_sensor(sd, OV9650_RED, &i2c_data, 1); return err; } int ov9650_get_blue_balance(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[BLUE_BALANCE_IDX]; PDEBUG(D_V4L2, "Read blue gain %d", *val); return 0; } int ov9650_set_blue_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Set blue gain to %d", val); sensor_settings[BLUE_BALANCE_IDX] = val; i2c_data = val & 0xff; err = m5602_write_sensor(sd, OV9650_BLUE, &i2c_data, 1); return err; } int ov9650_get_hflip(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[HFLIP_IDX]; PDEBUG(D_V4L2, "Read horizontal flip %d", *val); return 0; } int ov9650_set_hflip(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Set horizontal flip to %d", val); sensor_settings[HFLIP_IDX] = val; if (!dmi_check_system(ov9650_flip_dmi_table)) i2c_data = ((val & 0x01) << 5) | (sensor_settings[VFLIP_IDX] << 4); else i2c_data = ((val & 0x01) << 5) | (!sensor_settings[VFLIP_IDX] << 4); err = m5602_write_sensor(sd, OV9650_MVFP, &i2c_data, 1); return err; } int ov9650_get_vflip(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[VFLIP_IDX]; PDEBUG(D_V4L2, "Read vertical flip %d", *val); return 0; } int ov9650_set_vflip(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Set vertical flip to %d", val); sensor_settings[VFLIP_IDX] = val; if (dmi_check_system(ov9650_flip_dmi_table)) val = !val; i2c_data = ((val & 0x01) << 4) | (sensor_settings[VFLIP_IDX] << 5); err = m5602_write_sensor(sd, OV9650_MVFP, &i2c_data, 1); if (err < 0) return err; /* When vflip is toggled we need to readjust the bridge hsync/vsync */ if (gspca_dev->streaming) err = ov9650_start(sd); return err; } int ov9650_get_brightness(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[GAIN_IDX]; PDEBUG(D_V4L2, "Read gain %d", *val); return 0; } int ov9650_set_brightness(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Set gain to %d", val); sensor_settings[GAIN_IDX] = val; /* Read the OV9650_VREF register first to avoid corrupting the VREF high and low bits */ err = m5602_read_sensor(sd, OV9650_VREF, &i2c_data, 1); if (err < 0) return err; /* Mask away all uninteresting bits */ i2c_data = ((val & 0x0300) >> 2) | (i2c_data & 0x3F); err = m5602_write_sensor(sd, OV9650_VREF, &i2c_data, 1); if (err < 0) return err; /* The 8 LSBs */ i2c_data = val & 0xff; err = m5602_write_sensor(sd, OV9650_GAIN, &i2c_data, 1); return err; } int ov9650_get_auto_white_balance(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[AUTO_WHITE_BALANCE_IDX]; return 0; } int ov9650_set_auto_white_balance(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Set auto white balance to %d", val); sensor_settings[AUTO_WHITE_BALANCE_IDX] = val; err = m5602_read_sensor(sd, OV9650_COM8, &i2c_data, 1); if (err < 0) return err; i2c_data = ((i2c_data & 0xfd) | ((val & 0x01) << 1)); err = m5602_write_sensor(sd, OV9650_COM8, &i2c_data, 1); return err; } int ov9650_get_auto_gain(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; *val = sensor_settings[AUTO_GAIN_CTRL_IDX]; PDEBUG(D_V4L2, "Read auto gain control %d", *val); return 0; } int ov9650_set_auto_gain(struct gspca_dev *gspca_dev, __s32 val) { int err; u8 i2c_data; struct sd *sd = (struct sd *) gspca_dev; s32 *sensor_settings = sd->sensor_priv; PDEBUG(D_V4L2, "Set auto gain control to %d", val); sensor_settings[AUTO_GAIN_CTRL_IDX] = val; err = m5602_read_sensor(sd, OV9650_COM8, &i2c_data, 1); if (err < 0) return err; i2c_data = ((i2c_data & 0xfb) | ((val & 0x01) << 2)); err = m5602_write_sensor(sd, OV9650_COM8, &i2c_data, 1); return err; } static void ov9650_dump_registers(struct sd *sd) { int address; info("Dumping the ov9650 register state"); for (address = 0; address < 0xa9; address++) { u8 value; m5602_read_sensor(sd, address, &value, 1); info("register 0x%x contains 0x%x", address, value); } info("ov9650 register state dump complete"); info("Probing for which registers that are read/write"); for (address = 0; address < 0xff; address++) { u8 old_value, ctrl_value; u8 test_value[2] = {0xff, 0xff}; m5602_read_sensor(sd, address, &old_value, 1); m5602_write_sensor(sd, address, test_value, 1); m5602_read_sensor(sd, address, &ctrl_value, 1); if (ctrl_value == test_value[0]) info("register 0x%x is writeable", address); else info("register 0x%x is read only", address); /* Restore original value */ m5602_write_sensor(sd, address, &old_value, 1); } }