#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_LOCAL_APIC #include #include #include #endif #include #include #include #include #include #include #include #include #include #include "cpu.h" /* We need valid kernel segments for data and code in long mode too * IRET will check the segment types kkeil 2000/10/28 * Also sysret mandates a special GDT layout */ /* The TLS descriptors are currently at a different place compared to i386. Hopefully nobody expects them at a fixed place (Wine?) */ DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = { [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } }, [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } }, [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } }, [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } }, [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } }, [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } }, } }; EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata; /* Current gdt points %fs at the "master" per-cpu area: after this, * it's on the real one. */ void switch_to_new_gdt(void) { struct desc_ptr gdt_descr; gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id()); gdt_descr.size = GDT_SIZE - 1; load_gdt(&gdt_descr); } struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; static void __cpuinit default_init(struct cpuinfo_x86 *c) { display_cacheinfo(c); } static struct cpu_dev __cpuinitdata default_cpu = { .c_init = default_init, .c_vendor = "Unknown", }; static struct cpu_dev *this_cpu __cpuinitdata = &default_cpu; int __cpuinit get_model_name(struct cpuinfo_x86 *c) { unsigned int *v; if (c->extended_cpuid_level < 0x80000004) return 0; v = (unsigned int *) c->x86_model_id; cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); c->x86_model_id[48] = 0; return 1; } void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c) { unsigned int n, dummy, eax, ebx, ecx, edx; n = c->extended_cpuid_level; if (n >= 0x80000005) { cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), " "D cache %dK (%d bytes/line)\n", edx>>24, edx&0xFF, ecx>>24, ecx&0xFF); c->x86_cache_size = (ecx>>24) + (edx>>24); /* On K8 L1 TLB is inclusive, so don't count it */ c->x86_tlbsize = 0; } if (n >= 0x80000006) { cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); ecx = cpuid_ecx(0x80000006); c->x86_cache_size = ecx >> 16; c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n", c->x86_cache_size, ecx & 0xFF); } if (n >= 0x80000008) { cpuid(0x80000008, &eax, &dummy, &dummy, &dummy); c->x86_virt_bits = (eax >> 8) & 0xff; c->x86_phys_bits = eax & 0xff; } } void __cpuinit detect_ht(struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP u32 eax, ebx, ecx, edx; int index_msb, core_bits; cpuid(1, &eax, &ebx, &ecx, &edx); if (!cpu_has(c, X86_FEATURE_HT)) return; if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) goto out; smp_num_siblings = (ebx & 0xff0000) >> 16; if (smp_num_siblings == 1) { printk(KERN_INFO "CPU: Hyper-Threading is disabled\n"); } else if (smp_num_siblings > 1) { if (smp_num_siblings > NR_CPUS) { printk(KERN_WARNING "CPU: Unsupported number of " "siblings %d", smp_num_siblings); smp_num_siblings = 1; return; } index_msb = get_count_order(smp_num_siblings); c->phys_proc_id = phys_pkg_id(index_msb); smp_num_siblings = smp_num_siblings / c->x86_max_cores; index_msb = get_count_order(smp_num_siblings); core_bits = get_count_order(c->x86_max_cores); c->cpu_core_id = phys_pkg_id(index_msb) & ((1 << core_bits) - 1); } out: if ((c->x86_max_cores * smp_num_siblings) > 1) { printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id); printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id); } #endif } static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c) { char *v = c->x86_vendor_id; int i; static int printed; for (i = 0; i < X86_VENDOR_NUM; i++) { if (cpu_devs[i]) { if (!strcmp(v, cpu_devs[i]->c_ident[0]) || (cpu_devs[i]->c_ident[1] && !strcmp(v, cpu_devs[i]->c_ident[1]))) { c->x86_vendor = i; this_cpu = cpu_devs[i]; return; } } } if (!printed) { printed++; printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n"); printk(KERN_ERR "CPU: Your system may be unstable.\n"); } c->x86_vendor = X86_VENDOR_UNKNOWN; } static void __init early_cpu_support_print(void) { int i,j; struct cpu_dev *cpu_devx; printk("KERNEL supported cpus:\n"); for (i = 0; i < X86_VENDOR_NUM; i++) { cpu_devx = cpu_devs[i]; if (!cpu_devx) continue; for (j = 0; j < 2; j++) { if (!cpu_devx->c_ident[j]) continue; printk(" %s %s\n", cpu_devx->c_vendor, cpu_devx->c_ident[j]); } } } static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c); void __init early_cpu_init(void) { struct cpu_vendor_dev *cvdev; for (cvdev = __x86cpuvendor_start ; cvdev < __x86cpuvendor_end ; cvdev++) cpu_devs[cvdev->vendor] = cvdev->cpu_dev; early_cpu_support_print(); early_identify_cpu(&boot_cpu_data); } /* Do some early cpuid on the boot CPU to get some parameter that are needed before check_bugs. Everything advanced is in identify_cpu below. */ static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c) { u32 tfms, xlvl; c->loops_per_jiffy = loops_per_jiffy; c->x86_cache_size = -1; c->x86_vendor = X86_VENDOR_UNKNOWN; c->x86_model = c->x86_mask = 0; /* So far unknown... */ c->x86_vendor_id[0] = '\0'; /* Unset */ c->x86_model_id[0] = '\0'; /* Unset */ c->x86_clflush_size = 64; c->x86_cache_alignment = c->x86_clflush_size; c->x86_max_cores = 1; c->x86_coreid_bits = 0; c->extended_cpuid_level = 0; memset(&c->x86_capability, 0, sizeof c->x86_capability); /* Get vendor name */ cpuid(0x00000000, (unsigned int *)&c->cpuid_level, (unsigned int *)&c->x86_vendor_id[0], (unsigned int *)&c->x86_vendor_id[8], (unsigned int *)&c->x86_vendor_id[4]); get_cpu_vendor(c); /* Initialize the standard set of capabilities */ /* Note that the vendor-specific code below might override */ /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { __u32 misc; cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4], &c->x86_capability[0]); c->x86 = (tfms >> 8) & 0xf; c->x86_model = (tfms >> 4) & 0xf; c->x86_mask = tfms & 0xf; if (c->x86 == 0xf) c->x86 += (tfms >> 20) & 0xff; if (c->x86 >= 0x6) c->x86_model += ((tfms >> 16) & 0xF) << 4; if (test_cpu_cap(c, X86_FEATURE_CLFLSH)) c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; } else { /* Have CPUID level 0 only - unheard of */ c->x86 = 4; } c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xff; #ifdef CONFIG_SMP c->phys_proc_id = c->initial_apicid; #endif /* AMD-defined flags: level 0x80000001 */ xlvl = cpuid_eax(0x80000000); c->extended_cpuid_level = xlvl; if ((xlvl & 0xffff0000) == 0x80000000) { if (xlvl >= 0x80000001) { c->x86_capability[1] = cpuid_edx(0x80000001); c->x86_capability[6] = cpuid_ecx(0x80000001); } if (xlvl >= 0x80000004) get_model_name(c); /* Default name */ } /* Transmeta-defined flags: level 0x80860001 */ xlvl = cpuid_eax(0x80860000); if ((xlvl & 0xffff0000) == 0x80860000) { /* Don't set x86_cpuid_level here for now to not confuse. */ if (xlvl >= 0x80860001) c->x86_capability[2] = cpuid_edx(0x80860001); } c->extended_cpuid_level = cpuid_eax(0x80000000); if (c->extended_cpuid_level >= 0x80000007) c->x86_power = cpuid_edx(0x80000007); if (c->x86_vendor != X86_VENDOR_UNKNOWN && cpu_devs[c->x86_vendor]->c_early_init) cpu_devs[c->x86_vendor]->c_early_init(c); validate_pat_support(c); /* early_param could clear that, but recall get it set again */ if (disable_apic) clear_cpu_cap(c, X86_FEATURE_APIC); } /* * This does the hard work of actually picking apart the CPU stuff... */ static void __cpuinit identify_cpu(struct cpuinfo_x86 *c) { int i; early_identify_cpu(c); init_scattered_cpuid_features(c); c->apicid = phys_pkg_id(0); /* * Vendor-specific initialization. In this section we * canonicalize the feature flags, meaning if there are * features a certain CPU supports which CPUID doesn't * tell us, CPUID claiming incorrect flags, or other bugs, * we handle them here. * * At the end of this section, c->x86_capability better * indicate the features this CPU genuinely supports! */ if (this_cpu->c_init) this_cpu->c_init(c); detect_ht(c); /* * On SMP, boot_cpu_data holds the common feature set between * all CPUs; so make sure that we indicate which features are * common between the CPUs. The first time this routine gets * executed, c == &boot_cpu_data. */ if (c != &boot_cpu_data) { /* AND the already accumulated flags with these */ for (i = 0; i < NCAPINTS; i++) boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; } /* Clear all flags overriden by options */ for (i = 0; i < NCAPINTS; i++) c->x86_capability[i] &= ~cleared_cpu_caps[i]; #ifdef CONFIG_X86_MCE mcheck_init(c); #endif select_idle_routine(c); #ifdef CONFIG_NUMA numa_add_cpu(smp_processor_id()); #endif } void __cpuinit identify_boot_cpu(void) { identify_cpu(&boot_cpu_data); } void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c) { BUG_ON(c == &boot_cpu_data); identify_cpu(c); mtrr_ap_init(); } static __init int setup_noclflush(char *arg) { setup_clear_cpu_cap(X86_FEATURE_CLFLSH); return 1; } __setup("noclflush", setup_noclflush); void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) { if (c->x86_model_id[0]) printk(KERN_CONT "%s", c->x86_model_id); if (c->x86_mask || c->cpuid_level >= 0) printk(KERN_CONT " stepping %02x\n", c->x86_mask); else printk(KERN_CONT "\n"); } static __init int setup_disablecpuid(char *arg) { int bit; if (get_option(&arg, &bit) && bit < NCAPINTS*32) setup_clear_cpu_cap(bit); else return 0; return 1; } __setup("clearcpuid=", setup_disablecpuid); cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE; struct x8664_pda **_cpu_pda __read_mostly; EXPORT_SYMBOL(_cpu_pda); struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table }; char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss; unsigned long __supported_pte_mask __read_mostly = ~0UL; EXPORT_SYMBOL_GPL(__supported_pte_mask); static int do_not_nx __cpuinitdata; /* noexec=on|off Control non executable mappings for 64bit processes. on Enable(default) off Disable */ static int __init nonx_setup(char *str) { if (!str) return -EINVAL; if (!strncmp(str, "on", 2)) { __supported_pte_mask |= _PAGE_NX; do_not_nx = 0; } else if (!strncmp(str, "off", 3)) { do_not_nx = 1; __supported_pte_mask &= ~_PAGE_NX; } return 0; } early_param("noexec", nonx_setup); int force_personality32; /* noexec32=on|off Control non executable heap for 32bit processes. To control the stack too use noexec=off on PROT_READ does not imply PROT_EXEC for 32bit processes (default) off PROT_READ implies PROT_EXEC */ static int __init nonx32_setup(char *str) { if (!strcmp(str, "on")) force_personality32 &= ~READ_IMPLIES_EXEC; else if (!strcmp(str, "off")) force_personality32 |= READ_IMPLIES_EXEC; return 1; } __setup("noexec32=", nonx32_setup); void pda_init(int cpu) { struct x8664_pda *pda = cpu_pda(cpu); /* Setup up data that may be needed in __get_free_pages early */ asm volatile("movl %0,%%fs ; movl %0,%%gs" :: "r" (0)); /* Memory clobbers used to order PDA accessed */ mb(); wrmsrl(MSR_GS_BASE, pda); mb(); pda->cpunumber = cpu; pda->irqcount = -1; pda->kernelstack = (unsigned long)stack_thread_info() - PDA_STACKOFFSET + THREAD_SIZE; pda->active_mm = &init_mm; pda->mmu_state = 0; if (cpu == 0) { /* others are initialized in smpboot.c */ pda->pcurrent = &init_task; pda->irqstackptr = boot_cpu_stack; } else { pda->irqstackptr = (char *) __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER); if (!pda->irqstackptr) panic("cannot allocate irqstack for cpu %d", cpu); if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE) pda->nodenumber = cpu_to_node(cpu); } pda->irqstackptr += IRQSTACKSIZE-64; } char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ] __attribute__((section(".bss.page_aligned"))); extern asmlinkage void ignore_sysret(void); /* May not be marked __init: used by software suspend */ void syscall_init(void) { /* * LSTAR and STAR live in a bit strange symbiosis. * They both write to the same internal register. STAR allows to * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip. */ wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32); wrmsrl(MSR_LSTAR, system_call); wrmsrl(MSR_CSTAR, ignore_sysret); #ifdef CONFIG_IA32_EMULATION syscall32_cpu_init(); #endif /* Flags to clear on syscall */ wrmsrl(MSR_SYSCALL_MASK, X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL); } void __cpuinit check_efer(void) { unsigned long efer; rdmsrl(MSR_EFER, efer); if (!(efer & EFER_NX) || do_not_nx) __supported_pte_mask &= ~_PAGE_NX; } unsigned long kernel_eflags; /* * Copies of the original ist values from the tss are only accessed during * debugging, no special alignment required. */ DEFINE_PER_CPU(struct orig_ist, orig_ist); /* * cpu_init() initializes state that is per-CPU. Some data is already * initialized (naturally) in the bootstrap process, such as the GDT * and IDT. We reload them nevertheless, this function acts as a * 'CPU state barrier', nothing should get across. * A lot of state is already set up in PDA init. */ void __cpuinit cpu_init(void) { int cpu = stack_smp_processor_id(); struct tss_struct *t = &per_cpu(init_tss, cpu); struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu); unsigned long v; char *estacks = NULL; struct task_struct *me; int i; /* CPU 0 is initialised in head64.c */ if (cpu != 0) pda_init(cpu); else estacks = boot_exception_stacks; me = current; if (cpu_test_and_set(cpu, cpu_initialized)) panic("CPU#%d already initialized!\n", cpu); printk(KERN_INFO "Initializing CPU#%d\n", cpu); clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); /* * Initialize the per-CPU GDT with the boot GDT, * and set up the GDT descriptor: */ switch_to_new_gdt(); load_idt((const struct desc_ptr *)&idt_descr); memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); syscall_init(); wrmsrl(MSR_FS_BASE, 0); wrmsrl(MSR_KERNEL_GS_BASE, 0); barrier(); check_efer(); /* * set up and load the per-CPU TSS */ for (v = 0; v < N_EXCEPTION_STACKS; v++) { static const unsigned int order[N_EXCEPTION_STACKS] = { [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER, [DEBUG_STACK - 1] = DEBUG_STACK_ORDER }; if (cpu) { estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]); if (!estacks) panic("Cannot allocate exception stack %ld %d\n", v, cpu); } estacks += PAGE_SIZE << order[v]; orig_ist->ist[v] = t->x86_tss.ist[v] = (unsigned long)estacks; } t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); /* * <= is required because the CPU will access up to * 8 bits beyond the end of the IO permission bitmap. */ for (i = 0; i <= IO_BITMAP_LONGS; i++) t->io_bitmap[i] = ~0UL; atomic_inc(&init_mm.mm_count); me->active_mm = &init_mm; if (me->mm) BUG(); enter_lazy_tlb(&init_mm, me); load_sp0(t, ¤t->thread); set_tss_desc(cpu, t); load_TR_desc(); load_LDT(&init_mm.context); #ifdef CONFIG_KGDB /* * If the kgdb is connected no debug regs should be altered. This * is only applicable when KGDB and a KGDB I/O module are built * into the kernel and you are using early debugging with * kgdbwait. KGDB will control the kernel HW breakpoint registers. */ if (kgdb_connected && arch_kgdb_ops.correct_hw_break) arch_kgdb_ops.correct_hw_break(); else { #endif /* * Clear all 6 debug registers: */ set_debugreg(0UL, 0); set_debugreg(0UL, 1); set_debugreg(0UL, 2); set_debugreg(0UL, 3); set_debugreg(0UL, 6); set_debugreg(0UL, 7); #ifdef CONFIG_KGDB /* If the kgdb is connected no debug regs should be altered. */ } #endif fpu_init(); raw_local_save_flags(kernel_eflags); if (is_uv_system()) uv_cpu_init(); }