/* Common capabilities, needed by capability.o. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ANDROID_PARANOID_NETWORK #include #endif /* * If a non-root user executes a setuid-root binary in * !secure(SECURE_NOROOT) mode, then we raise capabilities. * However if fE is also set, then the intent is for only * the file capabilities to be applied, and the setuid-root * bit is left on either to change the uid (plausible) or * to get full privilege on a kernel without file capabilities * support. So in that case we do not raise capabilities. * * Warn if that happens, once per boot. */ static void warn_setuid_and_fcaps_mixed(const char *fname) { static int warned; if (!warned) { printk(KERN_INFO "warning: `%s' has both setuid-root and" " effective capabilities. Therefore not raising all" " capabilities.\n", fname); warned = 1; } } /** * __cap_capable - Determine whether a task has a particular effective capability * @cred: The credentials to use * @ns: The user namespace in which we need the capability * @cap: The capability to check for * @audit: Whether to write an audit message or not * * Determine whether the nominated task has the specified capability amongst * its effective set, returning 0 if it does, -ve if it does not. * * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() * and has_capability() functions. That is, it has the reverse semantics: * cap_has_capability() returns 0 when a task has a capability, but the * kernel's capable() and has_capability() returns 1 for this case. */ int __cap_capable(const struct cred *cred, struct user_namespace *targ_ns, int cap, int audit) { struct user_namespace *ns = targ_ns; /* See if cred has the capability in the target user namespace * by examining the target user namespace and all of the target * user namespace's parents. */ for (;;) { /* Do we have the necessary capabilities? */ if (ns == cred->user_ns) return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; /* * If we're already at a lower level than we're looking for, * we're done searching. */ if (ns->level <= cred->user_ns->level) return -EPERM; /* * The owner of the user namespace in the parent of the * user namespace has all caps. */ if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) return 0; /* * If you have a capability in a parent user ns, then you have * it over all children user namespaces as well. */ ns = ns->parent; } /* We never get here */ } int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, int cap, int audit) { int ret = __cap_capable(cred, targ_ns, cap, audit); #ifdef CONFIG_ANDROID_PARANOID_NETWORK if (ret != 0 && cap == CAP_NET_RAW && in_egroup_p(AID_NET_RAW)) { printk("Process %s granted CAP_NET_RAW from Android group net_raw.\n", current->comm); printk(" Please update the .rc file to explictly set 'capabilities NET_RAW'\n"); printk(" Implicit grants are deprecated and will be removed in the future.\n"); return 0; } if (ret != 0 && cap == CAP_NET_ADMIN && in_egroup_p(AID_NET_ADMIN)) { printk("Process %s granted CAP_NET_ADMIN from Android group net_admin.\n", current->comm); printk(" Please update the .rc file to explictly set 'capabilities NET_ADMIN'\n"); printk(" Implicit grants are deprecated and will be removed in the future.\n"); return 0; } #endif return ret; } /** * cap_settime - Determine whether the current process may set the system clock * @ts: The time to set * @tz: The timezone to set * * Determine whether the current process may set the system clock and timezone * information, returning 0 if permission granted, -ve if denied. */ int cap_settime(const struct timespec64 *ts, const struct timezone *tz) { if (!capable(CAP_SYS_TIME)) return -EPERM; return 0; } /** * cap_ptrace_access_check - Determine whether the current process may access * another * @child: The process to be accessed * @mode: The mode of attachment. * * If we are in the same or an ancestor user_ns and have all the target * task's capabilities, then ptrace access is allowed. * If we have the ptrace capability to the target user_ns, then ptrace * access is allowed. * Else denied. * * Determine whether a process may access another, returning 0 if permission * granted, -ve if denied. */ int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) { int ret = 0; const struct cred *cred, *child_cred; const kernel_cap_t *caller_caps; rcu_read_lock(); cred = current_cred(); child_cred = __task_cred(child); if (mode & PTRACE_MODE_FSCREDS) caller_caps = &cred->cap_effective; else caller_caps = &cred->cap_permitted; if (cred->user_ns == child_cred->user_ns && cap_issubset(child_cred->cap_permitted, *caller_caps)) goto out; if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) goto out; ret = -EPERM; out: rcu_read_unlock(); return ret; } /** * cap_ptrace_traceme - Determine whether another process may trace the current * @parent: The task proposed to be the tracer * * If parent is in the same or an ancestor user_ns and has all current's * capabilities, then ptrace access is allowed. * If parent has the ptrace capability to current's user_ns, then ptrace * access is allowed. * Else denied. * * Determine whether the nominated task is permitted to trace the current * process, returning 0 if permission is granted, -ve if denied. */ int cap_ptrace_traceme(struct task_struct *parent) { int ret = 0; const struct cred *cred, *child_cred; rcu_read_lock(); cred = __task_cred(parent); child_cred = current_cred(); if (cred->user_ns == child_cred->user_ns && cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) goto out; if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) goto out; ret = -EPERM; out: rcu_read_unlock(); return ret; } /** * cap_capget - Retrieve a task's capability sets * @target: The task from which to retrieve the capability sets * @effective: The place to record the effective set * @inheritable: The place to record the inheritable set * @permitted: The place to record the permitted set * * This function retrieves the capabilities of the nominated task and returns * them to the caller. */ int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { const struct cred *cred; /* Derived from kernel/capability.c:sys_capget. */ rcu_read_lock(); cred = __task_cred(target); *effective = cred->cap_effective; *inheritable = cred->cap_inheritable; *permitted = cred->cap_permitted; rcu_read_unlock(); return 0; } /* * Determine whether the inheritable capabilities are limited to the old * permitted set. Returns 1 if they are limited, 0 if they are not. */ static inline int cap_inh_is_capped(void) { /* they are so limited unless the current task has the CAP_SETPCAP * capability */ if (cap_capable(current_cred(), current_cred()->user_ns, CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0) return 0; return 1; } /** * cap_capset - Validate and apply proposed changes to current's capabilities * @new: The proposed new credentials; alterations should be made here * @old: The current task's current credentials * @effective: A pointer to the proposed new effective capabilities set * @inheritable: A pointer to the proposed new inheritable capabilities set * @permitted: A pointer to the proposed new permitted capabilities set * * This function validates and applies a proposed mass change to the current * process's capability sets. The changes are made to the proposed new * credentials, and assuming no error, will be committed by the caller of LSM. */ int cap_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted) { if (cap_inh_is_capped() && !cap_issubset(*inheritable, cap_combine(old->cap_inheritable, old->cap_permitted))) /* incapable of using this inheritable set */ return -EPERM; if (!cap_issubset(*inheritable, cap_combine(old->cap_inheritable, old->cap_bset))) /* no new pI capabilities outside bounding set */ return -EPERM; /* verify restrictions on target's new Permitted set */ if (!cap_issubset(*permitted, old->cap_permitted)) return -EPERM; /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ if (!cap_issubset(*effective, *permitted)) return -EPERM; new->cap_effective = *effective; new->cap_inheritable = *inheritable; new->cap_permitted = *permitted; /* * Mask off ambient bits that are no longer both permitted and * inheritable. */ new->cap_ambient = cap_intersect(new->cap_ambient, cap_intersect(*permitted, *inheritable)); if (WARN_ON(!cap_ambient_invariant_ok(new))) return -EINVAL; return 0; } /** * cap_inode_need_killpriv - Determine if inode change affects privileges * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV * * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV * affects the security markings on that inode, and if it is, should * inode_killpriv() be invoked or the change rejected. * * Returns 1 if security.capability has a value, meaning inode_killpriv() * is required, 0 otherwise, meaning inode_killpriv() is not required. */ int cap_inode_need_killpriv(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); int error; error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0); return error > 0; } /** * cap_inode_killpriv - Erase the security markings on an inode * @dentry: The inode/dentry to alter * * Erase the privilege-enhancing security markings on an inode. * * Returns 0 if successful, -ve on error. */ int cap_inode_killpriv(struct dentry *dentry) { int error; error = __vfs_removexattr(dentry, XATTR_NAME_CAPS); if (error == -EOPNOTSUPP) error = 0; return error; } static bool rootid_owns_currentns(kuid_t kroot) { struct user_namespace *ns; if (!uid_valid(kroot)) return false; for (ns = current_user_ns(); ; ns = ns->parent) { if (from_kuid(ns, kroot) == 0) return true; if (ns == &init_user_ns) break; } return false; } static __u32 sansflags(__u32 m) { return m & ~VFS_CAP_FLAGS_EFFECTIVE; } static bool is_v2header(size_t size, const struct vfs_cap_data *cap) { if (size != XATTR_CAPS_SZ_2) return false; return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2; } static bool is_v3header(size_t size, const struct vfs_cap_data *cap) { if (size != XATTR_CAPS_SZ_3) return false; return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3; } /* * getsecurity: We are called for security.* before any attempt to read the * xattr from the inode itself. * * This gives us a chance to read the on-disk value and convert it. If we * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler. * * Note we are not called by vfs_getxattr_alloc(), but that is only called * by the integrity subsystem, which really wants the unconverted values - * so that's good. */ int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) { int size, ret; kuid_t kroot; uid_t root, mappedroot; char *tmpbuf = NULL; struct vfs_cap_data *cap; struct vfs_ns_cap_data *nscap; struct dentry *dentry; struct user_namespace *fs_ns; if (strcmp(name, "capability") != 0) return -EOPNOTSUPP; dentry = d_find_any_alias(inode); if (!dentry) return -EINVAL; size = sizeof(struct vfs_ns_cap_data); ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS, &tmpbuf, size, GFP_NOFS); dput(dentry); if (ret < 0) return ret; fs_ns = inode->i_sb->s_user_ns; cap = (struct vfs_cap_data *) tmpbuf; if (is_v2header((size_t) ret, cap)) { /* If this is sizeof(vfs_cap_data) then we're ok with the * on-disk value, so return that. */ if (alloc) *buffer = tmpbuf; else kfree(tmpbuf); return ret; } else if (!is_v3header((size_t) ret, cap)) { kfree(tmpbuf); return -EINVAL; } nscap = (struct vfs_ns_cap_data *) tmpbuf; root = le32_to_cpu(nscap->rootid); kroot = make_kuid(fs_ns, root); /* If the root kuid maps to a valid uid in current ns, then return * this as a nscap. */ mappedroot = from_kuid(current_user_ns(), kroot); if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) { if (alloc) { *buffer = tmpbuf; nscap->rootid = cpu_to_le32(mappedroot); } else kfree(tmpbuf); return size; } if (!rootid_owns_currentns(kroot)) { kfree(tmpbuf); return -EOPNOTSUPP; } /* This comes from a parent namespace. Return as a v2 capability */ size = sizeof(struct vfs_cap_data); if (alloc) { *buffer = kmalloc(size, GFP_ATOMIC); if (*buffer) { struct vfs_cap_data *cap = *buffer; __le32 nsmagic, magic; magic = VFS_CAP_REVISION_2; nsmagic = le32_to_cpu(nscap->magic_etc); if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE) magic |= VFS_CAP_FLAGS_EFFECTIVE; memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32); cap->magic_etc = cpu_to_le32(magic); } else { size = -ENOMEM; } } kfree(tmpbuf); return size; } static kuid_t rootid_from_xattr(const void *value, size_t size, struct user_namespace *task_ns) { const struct vfs_ns_cap_data *nscap = value; uid_t rootid = 0; if (size == XATTR_CAPS_SZ_3) rootid = le32_to_cpu(nscap->rootid); return make_kuid(task_ns, rootid); } static bool validheader(size_t size, const struct vfs_cap_data *cap) { return is_v2header(size, cap) || is_v3header(size, cap); } /* * User requested a write of security.capability. If needed, update the * xattr to change from v2 to v3, or to fixup the v3 rootid. * * If all is ok, we return the new size, on error return < 0. */ int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size) { struct vfs_ns_cap_data *nscap; uid_t nsrootid; const struct vfs_cap_data *cap = *ivalue; __u32 magic, nsmagic; struct inode *inode = d_backing_inode(dentry); struct user_namespace *task_ns = current_user_ns(), *fs_ns = inode->i_sb->s_user_ns; kuid_t rootid; size_t newsize; if (!*ivalue) return -EINVAL; if (!validheader(size, cap)) return -EINVAL; if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) return -EPERM; if (size == XATTR_CAPS_SZ_2) if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP)) /* user is privileged, just write the v2 */ return size; rootid = rootid_from_xattr(*ivalue, size, task_ns); if (!uid_valid(rootid)) return -EINVAL; nsrootid = from_kuid(fs_ns, rootid); if (nsrootid == -1) return -EINVAL; newsize = sizeof(struct vfs_ns_cap_data); nscap = kmalloc(newsize, GFP_ATOMIC); if (!nscap) return -ENOMEM; nscap->rootid = cpu_to_le32(nsrootid); nsmagic = VFS_CAP_REVISION_3; magic = le32_to_cpu(cap->magic_etc); if (magic & VFS_CAP_FLAGS_EFFECTIVE) nsmagic |= VFS_CAP_FLAGS_EFFECTIVE; nscap->magic_etc = cpu_to_le32(nsmagic); memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32); kvfree(*ivalue); *ivalue = nscap; return newsize; } /* * Calculate the new process capability sets from the capability sets attached * to a file. */ static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, struct linux_binprm *bprm, bool *effective, bool *has_fcap) { struct cred *new = bprm->cred; unsigned i; int ret = 0; if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) *effective = true; if (caps->magic_etc & VFS_CAP_REVISION_MASK) *has_fcap = true; CAP_FOR_EACH_U32(i) { __u32 permitted = caps->permitted.cap[i]; __u32 inheritable = caps->inheritable.cap[i]; /* * pP' = (X & fP) | (pI & fI) * The addition of pA' is handled later. */ new->cap_permitted.cap[i] = (new->cap_bset.cap[i] & permitted) | (new->cap_inheritable.cap[i] & inheritable); if (permitted & ~new->cap_permitted.cap[i]) /* insufficient to execute correctly */ ret = -EPERM; } /* * For legacy apps, with no internal support for recognizing they * do not have enough capabilities, we return an error if they are * missing some "forced" (aka file-permitted) capabilities. */ return *effective ? ret : 0; } /* * Extract the on-exec-apply capability sets for an executable file. */ int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) { struct inode *inode = d_backing_inode(dentry); __u32 magic_etc; unsigned tocopy, i; int size; struct vfs_ns_cap_data data, *nscaps = &data; struct vfs_cap_data *caps = (struct vfs_cap_data *) &data; kuid_t rootkuid; struct user_namespace *fs_ns; memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); if (!inode) return -ENODATA; fs_ns = inode->i_sb->s_user_ns; size = __vfs_getxattr((struct dentry *)dentry, inode, XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ); if (size == -ENODATA || size == -EOPNOTSUPP) /* no data, that's ok */ return -ENODATA; if (size < 0) return size; if (size < sizeof(magic_etc)) return -EINVAL; cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc); rootkuid = make_kuid(fs_ns, 0); switch (magic_etc & VFS_CAP_REVISION_MASK) { case VFS_CAP_REVISION_1: if (size != XATTR_CAPS_SZ_1) return -EINVAL; tocopy = VFS_CAP_U32_1; break; case VFS_CAP_REVISION_2: if (size != XATTR_CAPS_SZ_2) return -EINVAL; tocopy = VFS_CAP_U32_2; break; case VFS_CAP_REVISION_3: if (size != XATTR_CAPS_SZ_3) return -EINVAL; tocopy = VFS_CAP_U32_3; rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid)); break; default: return -EINVAL; } /* Limit the caps to the mounter of the filesystem * or the more limited uid specified in the xattr. */ if (!rootid_owns_currentns(rootkuid)) return -ENODATA; CAP_FOR_EACH_U32(i) { if (i >= tocopy) break; cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted); cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable); } cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; return 0; } /* * Attempt to get the on-exec apply capability sets for an executable file from * its xattrs and, if present, apply them to the proposed credentials being * constructed by execve(). */ static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap) { int rc = 0; struct cpu_vfs_cap_data vcaps; cap_clear(bprm->cred->cap_permitted); if (!file_caps_enabled) return 0; if (!mnt_may_suid(bprm->file->f_path.mnt)) return 0; /* * This check is redundant with mnt_may_suid() but is kept to make * explicit that capability bits are limited to s_user_ns and its * descendants. */ if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns)) return 0; rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); if (rc < 0) { if (rc == -EINVAL) printk(KERN_NOTICE "Invalid argument reading file caps for %s\n", bprm->filename); else if (rc == -ENODATA) rc = 0; goto out; } rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap); if (rc == -EINVAL) printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", __func__, rc, bprm->filename); out: if (rc) cap_clear(bprm->cred->cap_permitted); return rc; } static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); } static inline bool __is_real(kuid_t uid, struct cred *cred) { return uid_eq(cred->uid, uid); } static inline bool __is_eff(kuid_t uid, struct cred *cred) { return uid_eq(cred->euid, uid); } static inline bool __is_suid(kuid_t uid, struct cred *cred) { return !__is_real(uid, cred) && __is_eff(uid, cred); } /* * handle_privileged_root - Handle case of privileged root * @bprm: The execution parameters, including the proposed creds * @has_fcap: Are any file capabilities set? * @effective: Do we have effective root privilege? * @root_uid: This namespace' root UID WRT initial USER namespace * * Handle the case where root is privileged and hasn't been neutered by * SECURE_NOROOT. If file capabilities are set, they won't be combined with * set UID root and nothing is changed. If we are root, cap_permitted is * updated. If we have become set UID root, the effective bit is set. */ static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap, bool *effective, kuid_t root_uid) { const struct cred *old = current_cred(); struct cred *new = bprm->cred; if (!root_privileged()) return; /* * If the legacy file capability is set, then don't set privs * for a setuid root binary run by a non-root user. Do set it * for a root user just to cause least surprise to an admin. */ if (has_fcap && __is_suid(root_uid, new)) { warn_setuid_and_fcaps_mixed(bprm->filename); return; } /* * To support inheritance of root-permissions and suid-root * executables under compatibility mode, we override the * capability sets for the file. */ if (__is_eff(root_uid, new) || __is_real(root_uid, new)) { /* pP' = (cap_bset & ~0) | (pI & ~0) */ new->cap_permitted = cap_combine(old->cap_bset, old->cap_inheritable); } /* * If only the real uid is 0, we do not set the effective bit. */ if (__is_eff(root_uid, new)) *effective = true; } #define __cap_gained(field, target, source) \ !cap_issubset(target->cap_##field, source->cap_##field) #define __cap_grew(target, source, cred) \ !cap_issubset(cred->cap_##target, cred->cap_##source) #define __cap_full(field, cred) \ cap_issubset(CAP_FULL_SET, cred->cap_##field) static inline bool __is_setuid(struct cred *new, const struct cred *old) { return !uid_eq(new->euid, old->uid); } static inline bool __is_setgid(struct cred *new, const struct cred *old) { return !gid_eq(new->egid, old->gid); } /* * 1) Audit candidate if current->cap_effective is set * * We do not bother to audit if 3 things are true: * 1) cap_effective has all caps * 2) we became root *OR* are were already root * 3) root is supposed to have all caps (SECURE_NOROOT) * Since this is just a normal root execing a process. * * Number 1 above might fail if you don't have a full bset, but I think * that is interesting information to audit. * * A number of other conditions require logging: * 2) something prevented setuid root getting all caps * 3) non-setuid root gets fcaps * 4) non-setuid root gets ambient */ static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old, kuid_t root, bool has_fcap) { bool ret = false; if ((__cap_grew(effective, ambient, new) && !(__cap_full(effective, new) && (__is_eff(root, new) || __is_real(root, new)) && root_privileged())) || (root_privileged() && __is_suid(root, new) && !__cap_full(effective, new)) || (!__is_setuid(new, old) && ((has_fcap && __cap_gained(permitted, new, old)) || __cap_gained(ambient, new, old)))) ret = true; return ret; } /** * cap_bprm_set_creds - Set up the proposed credentials for execve(). * @bprm: The execution parameters, including the proposed creds * * Set up the proposed credentials for a new execution context being * constructed by execve(). The proposed creds in @bprm->cred is altered, * which won't take effect immediately. Returns 0 if successful, -ve on error. */ int cap_bprm_set_creds(struct linux_binprm *bprm) { const struct cred *old = current_cred(); struct cred *new = bprm->cred; bool effective = false, has_fcap = false, is_setid; int ret; kuid_t root_uid; if (WARN_ON(!cap_ambient_invariant_ok(old))) return -EPERM; ret = get_file_caps(bprm, &effective, &has_fcap); if (ret < 0) return ret; root_uid = make_kuid(new->user_ns, 0); handle_privileged_root(bprm, has_fcap, &effective, root_uid); /* if we have fs caps, clear dangerous personality flags */ if (__cap_gained(permitted, new, old)) bprm->per_clear |= PER_CLEAR_ON_SETID; /* Don't let someone trace a set[ug]id/setpcap binary with the revised * credentials unless they have the appropriate permit. * * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. */ is_setid = __is_setuid(new, old) || __is_setgid(new, old); if ((is_setid || __cap_gained(permitted, new, old)) && ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) || !ptracer_capable(current, new->user_ns))) { /* downgrade; they get no more than they had, and maybe less */ if (!ns_capable(new->user_ns, CAP_SETUID) || (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { new->euid = new->uid; new->egid = new->gid; } new->cap_permitted = cap_intersect(new->cap_permitted, old->cap_permitted); } new->suid = new->fsuid = new->euid; new->sgid = new->fsgid = new->egid; /* File caps or setid cancels ambient. */ if (has_fcap || is_setid) cap_clear(new->cap_ambient); /* * Now that we've computed pA', update pP' to give: * pP' = (X & fP) | (pI & fI) | pA' */ new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient); /* * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set, * this is the same as pE' = (fE ? pP' : 0) | pA'. */ if (effective) new->cap_effective = new->cap_permitted; else new->cap_effective = new->cap_ambient; if (WARN_ON(!cap_ambient_invariant_ok(new))) return -EPERM; if (nonroot_raised_pE(new, old, root_uid, has_fcap)) { ret = audit_log_bprm_fcaps(bprm, new, old); if (ret < 0) return ret; } new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); if (WARN_ON(!cap_ambient_invariant_ok(new))) return -EPERM; /* Check for privilege-elevated exec. */ bprm->cap_elevated = 0; if (is_setid || (!__is_real(root_uid, new) && (effective || __cap_grew(permitted, ambient, new)))) bprm->cap_elevated = 1; return 0; } /** * cap_inode_setxattr - Determine whether an xattr may be altered * @dentry: The inode/dentry being altered * @name: The name of the xattr to be changed * @value: The value that the xattr will be changed to * @size: The size of value * @flags: The replacement flag * * Determine whether an xattr may be altered or set on an inode, returning 0 if * permission is granted, -ve if denied. * * This is used to make sure security xattrs don't get updated or set by those * who aren't privileged to do so. */ int cap_inode_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { struct user_namespace *user_ns = dentry->d_sb->s_user_ns; /* Ignore non-security xattrs */ if (strncmp(name, XATTR_SECURITY_PREFIX, sizeof(XATTR_SECURITY_PREFIX) - 1) != 0) return 0; /* * For XATTR_NAME_CAPS the check will be done in * cap_convert_nscap(), called by setxattr() */ if (strcmp(name, XATTR_NAME_CAPS) == 0) return 0; if (!ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; return 0; } /** * cap_inode_removexattr - Determine whether an xattr may be removed * @dentry: The inode/dentry being altered * @name: The name of the xattr to be changed * * Determine whether an xattr may be removed from an inode, returning 0 if * permission is granted, -ve if denied. * * This is used to make sure security xattrs don't get removed by those who * aren't privileged to remove them. */ int cap_inode_removexattr(struct dentry *dentry, const char *name) { struct user_namespace *user_ns = dentry->d_sb->s_user_ns; /* Ignore non-security xattrs */ if (strncmp(name, XATTR_SECURITY_PREFIX, sizeof(XATTR_SECURITY_PREFIX) - 1) != 0) return 0; if (strcmp(name, XATTR_NAME_CAPS) == 0) { /* security.capability gets namespaced */ struct inode *inode = d_backing_inode(dentry); if (!inode) return -EINVAL; if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) return -EPERM; return 0; } if (!ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; return 0; } /* * cap_emulate_setxuid() fixes the effective / permitted capabilities of * a process after a call to setuid, setreuid, or setresuid. * * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of * {r,e,s}uid != 0, the permitted and effective capabilities are * cleared. * * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective * capabilities of the process are cleared. * * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective * capabilities are set to the permitted capabilities. * * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should * never happen. * * -astor * * cevans - New behaviour, Oct '99 * A process may, via prctl(), elect to keep its capabilities when it * calls setuid() and switches away from uid==0. Both permitted and * effective sets will be retained. * Without this change, it was impossible for a daemon to drop only some * of its privilege. The call to setuid(!=0) would drop all privileges! * Keeping uid 0 is not an option because uid 0 owns too many vital * files.. * Thanks to Olaf Kirch and Peter Benie for spotting this. */ static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) { kuid_t root_uid = make_kuid(old->user_ns, 0); if ((uid_eq(old->uid, root_uid) || uid_eq(old->euid, root_uid) || uid_eq(old->suid, root_uid)) && (!uid_eq(new->uid, root_uid) && !uid_eq(new->euid, root_uid) && !uid_eq(new->suid, root_uid))) { if (!issecure(SECURE_KEEP_CAPS)) { cap_clear(new->cap_permitted); cap_clear(new->cap_effective); } /* * Pre-ambient programs expect setresuid to nonroot followed * by exec to drop capabilities. We should make sure that * this remains the case. */ cap_clear(new->cap_ambient); } if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) cap_clear(new->cap_effective); if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) new->cap_effective = new->cap_permitted; } /** * cap_task_fix_setuid - Fix up the results of setuid() call * @new: The proposed credentials * @old: The current task's current credentials * @flags: Indications of what has changed * * Fix up the results of setuid() call before the credential changes are * actually applied, returning 0 to grant the changes, -ve to deny them. */ int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) { switch (flags) { case LSM_SETID_RE: case LSM_SETID_ID: case LSM_SETID_RES: /* juggle the capabilities to follow [RES]UID changes unless * otherwise suppressed */ if (!issecure(SECURE_NO_SETUID_FIXUP)) cap_emulate_setxuid(new, old); break; case LSM_SETID_FS: /* juggle the capabilties to follow FSUID changes, unless * otherwise suppressed * * FIXME - is fsuser used for all CAP_FS_MASK capabilities? * if not, we might be a bit too harsh here. */ if (!issecure(SECURE_NO_SETUID_FIXUP)) { kuid_t root_uid = make_kuid(old->user_ns, 0); if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) new->cap_effective = cap_drop_fs_set(new->cap_effective); if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) new->cap_effective = cap_raise_fs_set(new->cap_effective, new->cap_permitted); } break; default: return -EINVAL; } return 0; } /* * Rationale: code calling task_setscheduler, task_setioprio, and * task_setnice, assumes that * . if capable(cap_sys_nice), then those actions should be allowed * . if not capable(cap_sys_nice), but acting on your own processes, * then those actions should be allowed * This is insufficient now since you can call code without suid, but * yet with increased caps. * So we check for increased caps on the target process. */ static int cap_safe_nice(struct task_struct *p) { int is_subset, ret = 0; rcu_read_lock(); is_subset = cap_issubset(__task_cred(p)->cap_permitted, current_cred()->cap_permitted); if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) ret = -EPERM; rcu_read_unlock(); return ret; } /** * cap_task_setscheduler - Detemine if scheduler policy change is permitted * @p: The task to affect * * Detemine if the requested scheduler policy change is permitted for the * specified task, returning 0 if permission is granted, -ve if denied. */ int cap_task_setscheduler(struct task_struct *p) { return cap_safe_nice(p); } /** * cap_task_ioprio - Detemine if I/O priority change is permitted * @p: The task to affect * @ioprio: The I/O priority to set * * Detemine if the requested I/O priority change is permitted for the specified * task, returning 0 if permission is granted, -ve if denied. */ int cap_task_setioprio(struct task_struct *p, int ioprio) { return cap_safe_nice(p); } /** * cap_task_ioprio - Detemine if task priority change is permitted * @p: The task to affect * @nice: The nice value to set * * Detemine if the requested task priority change is permitted for the * specified task, returning 0 if permission is granted, -ve if denied. */ int cap_task_setnice(struct task_struct *p, int nice) { return cap_safe_nice(p); } /* * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from * the current task's bounding set. Returns 0 on success, -ve on error. */ static int cap_prctl_drop(unsigned long cap) { struct cred *new; if (!ns_capable(current_user_ns(), CAP_SETPCAP)) return -EPERM; if (!cap_valid(cap)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; cap_lower(new->cap_bset, cap); return commit_creds(new); } /** * cap_task_prctl - Implement process control functions for this security module * @option: The process control function requested * @arg2, @arg3, @arg4, @arg5: The argument data for this function * * Allow process control functions (sys_prctl()) to alter capabilities; may * also deny access to other functions not otherwise implemented here. * * Returns 0 or +ve on success, -ENOSYS if this function is not implemented * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM * modules will consider performing the function. */ int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { const struct cred *old = current_cred(); struct cred *new; switch (option) { case PR_CAPBSET_READ: if (!cap_valid(arg2)) return -EINVAL; return !!cap_raised(old->cap_bset, arg2); case PR_CAPBSET_DROP: return cap_prctl_drop(arg2); /* * The next four prctl's remain to assist with transitioning a * system from legacy UID=0 based privilege (when filesystem * capabilities are not in use) to a system using filesystem * capabilities only - as the POSIX.1e draft intended. * * Note: * * PR_SET_SECUREBITS = * issecure_mask(SECURE_KEEP_CAPS_LOCKED) * | issecure_mask(SECURE_NOROOT) * | issecure_mask(SECURE_NOROOT_LOCKED) * | issecure_mask(SECURE_NO_SETUID_FIXUP) * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) * * will ensure that the current process and all of its * children will be locked into a pure * capability-based-privilege environment. */ case PR_SET_SECUREBITS: if ((((old->securebits & SECURE_ALL_LOCKS) >> 1) & (old->securebits ^ arg2)) /*[1]*/ || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ || (cap_capable(current_cred(), current_cred()->user_ns, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0) /*[4]*/ /* * [1] no changing of bits that are locked * [2] no unlocking of locks * [3] no setting of unsupported bits * [4] doing anything requires privilege (go read about * the "sendmail capabilities bug") */ ) /* cannot change a locked bit */ return -EPERM; new = prepare_creds(); if (!new) return -ENOMEM; new->securebits = arg2; return commit_creds(new); case PR_GET_SECUREBITS: return old->securebits; case PR_GET_KEEPCAPS: return !!issecure(SECURE_KEEP_CAPS); case PR_SET_KEEPCAPS: if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ return -EINVAL; if (issecure(SECURE_KEEP_CAPS_LOCKED)) return -EPERM; new = prepare_creds(); if (!new) return -ENOMEM; if (arg2) new->securebits |= issecure_mask(SECURE_KEEP_CAPS); else new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); return commit_creds(new); case PR_CAP_AMBIENT: if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) { if (arg3 | arg4 | arg5) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; cap_clear(new->cap_ambient); return commit_creds(new); } if (((!cap_valid(arg3)) | arg4 | arg5)) return -EINVAL; if (arg2 == PR_CAP_AMBIENT_IS_SET) { return !!cap_raised(current_cred()->cap_ambient, arg3); } else if (arg2 != PR_CAP_AMBIENT_RAISE && arg2 != PR_CAP_AMBIENT_LOWER) { return -EINVAL; } else { if (arg2 == PR_CAP_AMBIENT_RAISE && (!cap_raised(current_cred()->cap_permitted, arg3) || !cap_raised(current_cred()->cap_inheritable, arg3) || issecure(SECURE_NO_CAP_AMBIENT_RAISE))) return -EPERM; new = prepare_creds(); if (!new) return -ENOMEM; if (arg2 == PR_CAP_AMBIENT_RAISE) cap_raise(new->cap_ambient, arg3); else cap_lower(new->cap_ambient, arg3); return commit_creds(new); } default: /* No functionality available - continue with default */ return -ENOSYS; } } /** * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted * @mm: The VM space in which the new mapping is to be made * @pages: The size of the mapping * * Determine whether the allocation of a new virtual mapping by the current * task is permitted, returning 1 if permission is granted, 0 if not. */ int cap_vm_enough_memory(struct mm_struct *mm, long pages) { int cap_sys_admin = 0; if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT) == 0) cap_sys_admin = 1; return cap_sys_admin; } /* * cap_mmap_addr - check if able to map given addr * @addr: address attempting to be mapped * * If the process is attempting to map memory below dac_mmap_min_addr they need * CAP_SYS_RAWIO. The other parameters to this function are unused by the * capability security module. Returns 0 if this mapping should be allowed * -EPERM if not. */ int cap_mmap_addr(unsigned long addr) { int ret = 0; if (addr < dac_mmap_min_addr) { ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, SECURITY_CAP_AUDIT); /* set PF_SUPERPRIV if it turns out we allow the low mmap */ if (ret == 0) current->flags |= PF_SUPERPRIV; } return ret; } int cap_mmap_file(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags) { return 0; } #ifdef CONFIG_SECURITY struct security_hook_list capability_hooks[] __lsm_ro_after_init = { LSM_HOOK_INIT(capable, cap_capable), LSM_HOOK_INIT(settime, cap_settime), LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check), LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme), LSM_HOOK_INIT(capget, cap_capget), LSM_HOOK_INIT(capset, cap_capset), LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds), LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv), LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv), LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity), LSM_HOOK_INIT(mmap_addr, cap_mmap_addr), LSM_HOOK_INIT(mmap_file, cap_mmap_file), LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid), LSM_HOOK_INIT(task_prctl, cap_task_prctl), LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler), LSM_HOOK_INIT(task_setioprio, cap_task_setioprio), LSM_HOOK_INIT(task_setnice, cap_task_setnice), LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory), }; void __init capability_add_hooks(void) { security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks), "capability"); } #endif /* CONFIG_SECURITY */