/********************************************************************* * $Id: smsc-ircc2.c,v 1.19.2.5 2002/10/27 11:34:26 dip Exp $ * * Description: Driver for the SMC Infrared Communications Controller * Status: Experimental. * Author: Daniele Peri (peri@csai.unipa.it) * Created at: * Modified at: * Modified by: * * Copyright (c) 2002 Daniele Peri * All Rights Reserved. * Copyright (c) 2002 Jean Tourrilhes * Copyright (c) 2006 Linus Walleij * * * Based on smc-ircc.c: * * Copyright (c) 2001 Stefani Seibold * Copyright (c) 1999-2001 Dag Brattli * Copyright (c) 1998-1999 Thomas Davis, * * and irport.c: * * Copyright (c) 1997, 1998, 1999-2000 Dag Brattli, All Rights Reserved. * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * ********************************************************************/ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/ioport.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/rtnetlink.h> #include <linux/serial_reg.h> #include <linux/dma-mapping.h> #include <linux/pnp.h> #include <linux/platform_device.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/byteorder.h> #include <linux/spinlock.h> #include <linux/pm.h> #ifdef CONFIG_PCI #include <linux/pci.h> #endif #include <net/irda/wrapper.h> #include <net/irda/irda.h> #include <net/irda/irda_device.h> #include "smsc-ircc2.h" #include "smsc-sio.h" MODULE_AUTHOR("Daniele Peri <peri@csai.unipa.it>"); MODULE_DESCRIPTION("SMC IrCC SIR/FIR controller driver"); MODULE_LICENSE("GPL"); static int ircc_dma = 255; module_param(ircc_dma, int, 0); MODULE_PARM_DESC(ircc_dma, "DMA channel"); static int ircc_irq = 255; module_param(ircc_irq, int, 0); MODULE_PARM_DESC(ircc_irq, "IRQ line"); static int ircc_fir; module_param(ircc_fir, int, 0); MODULE_PARM_DESC(ircc_fir, "FIR Base Address"); static int ircc_sir; module_param(ircc_sir, int, 0); MODULE_PARM_DESC(ircc_sir, "SIR Base Address"); static int ircc_cfg; module_param(ircc_cfg, int, 0); MODULE_PARM_DESC(ircc_cfg, "Configuration register base address"); static int ircc_transceiver; module_param(ircc_transceiver, int, 0); MODULE_PARM_DESC(ircc_transceiver, "Transceiver type"); /* Types */ #ifdef CONFIG_PCI struct smsc_ircc_subsystem_configuration { unsigned short vendor; /* PCI vendor ID */ unsigned short device; /* PCI vendor ID */ unsigned short subvendor; /* PCI subsystem vendor ID */ unsigned short subdevice; /* PCI sybsystem device ID */ unsigned short sir_io; /* I/O port for SIR */ unsigned short fir_io; /* I/O port for FIR */ unsigned char fir_irq; /* FIR IRQ */ unsigned char fir_dma; /* FIR DMA */ unsigned short cfg_base; /* I/O port for chip configuration */ int (*preconfigure)(struct pci_dev *dev, struct smsc_ircc_subsystem_configuration *conf); /* Preconfig function */ const char *name; /* name shown as info */ }; #endif struct smsc_transceiver { char *name; void (*set_for_speed)(int fir_base, u32 speed); int (*probe)(int fir_base); }; struct smsc_chip { char *name; #if 0 u8 type; #endif u16 flags; u8 devid; u8 rev; }; struct smsc_chip_address { unsigned int cfg_base; unsigned int type; }; /* Private data for each instance */ struct smsc_ircc_cb { struct net_device *netdev; /* Yes! we are some kind of netdevice */ struct net_device_stats stats; struct irlap_cb *irlap; /* The link layer we are binded to */ chipio_t io; /* IrDA controller information */ iobuff_t tx_buff; /* Transmit buffer */ iobuff_t rx_buff; /* Receive buffer */ dma_addr_t tx_buff_dma; dma_addr_t rx_buff_dma; struct qos_info qos; /* QoS capabilities for this device */ spinlock_t lock; /* For serializing operations */ __u32 new_speed; __u32 flags; /* Interface flags */ int tx_buff_offsets[10]; /* Offsets between frames in tx_buff */ int tx_len; /* Number of frames in tx_buff */ int transceiver; struct platform_device *pldev; }; /* Constants */ #define SMSC_IRCC2_DRIVER_NAME "smsc-ircc2" #define SMSC_IRCC2_C_IRDA_FALLBACK_SPEED 9600 #define SMSC_IRCC2_C_DEFAULT_TRANSCEIVER 1 #define SMSC_IRCC2_C_NET_TIMEOUT 0 #define SMSC_IRCC2_C_SIR_STOP 0 static const char *driver_name = SMSC_IRCC2_DRIVER_NAME; /* Prototypes */ static int smsc_ircc_open(unsigned int firbase, unsigned int sirbase, u8 dma, u8 irq); static int smsc_ircc_present(unsigned int fir_base, unsigned int sir_base); static void smsc_ircc_setup_io(struct smsc_ircc_cb *self, unsigned int fir_base, unsigned int sir_base, u8 dma, u8 irq); static void smsc_ircc_setup_qos(struct smsc_ircc_cb *self); static void smsc_ircc_init_chip(struct smsc_ircc_cb *self); static int __exit smsc_ircc_close(struct smsc_ircc_cb *self); static int smsc_ircc_dma_receive(struct smsc_ircc_cb *self); static void smsc_ircc_dma_receive_complete(struct smsc_ircc_cb *self); static void smsc_ircc_sir_receive(struct smsc_ircc_cb *self); static int smsc_ircc_hard_xmit_sir(struct sk_buff *skb, struct net_device *dev); static int smsc_ircc_hard_xmit_fir(struct sk_buff *skb, struct net_device *dev); static void smsc_ircc_dma_xmit(struct smsc_ircc_cb *self, int bofs); static void smsc_ircc_dma_xmit_complete(struct smsc_ircc_cb *self); static void smsc_ircc_change_speed(struct smsc_ircc_cb *self, u32 speed); static void smsc_ircc_set_sir_speed(struct smsc_ircc_cb *self, u32 speed); static irqreturn_t smsc_ircc_interrupt(int irq, void *dev_id, struct pt_regs *regs); static irqreturn_t smsc_ircc_interrupt_sir(struct net_device *dev); static void smsc_ircc_sir_start(struct smsc_ircc_cb *self); #if SMSC_IRCC2_C_SIR_STOP static void smsc_ircc_sir_stop(struct smsc_ircc_cb *self); #endif static void smsc_ircc_sir_write_wakeup(struct smsc_ircc_cb *self); static int smsc_ircc_sir_write(int iobase, int fifo_size, __u8 *buf, int len); static int smsc_ircc_net_open(struct net_device *dev); static int smsc_ircc_net_close(struct net_device *dev); static int smsc_ircc_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); #if SMSC_IRCC2_C_NET_TIMEOUT static void smsc_ircc_timeout(struct net_device *dev); #endif static struct net_device_stats *smsc_ircc_net_get_stats(struct net_device *dev); static int smsc_ircc_is_receiving(struct smsc_ircc_cb *self); static void smsc_ircc_probe_transceiver(struct smsc_ircc_cb *self); static void smsc_ircc_set_transceiver_for_speed(struct smsc_ircc_cb *self, u32 speed); static void smsc_ircc_sir_wait_hw_transmitter_finish(struct smsc_ircc_cb *self); /* Probing */ static int __init smsc_ircc_look_for_chips(void); static const struct smsc_chip * __init smsc_ircc_probe(unsigned short cfg_base, u8 reg, const struct smsc_chip *chip, char *type); static int __init smsc_superio_flat(const struct smsc_chip *chips, unsigned short cfg_base, char *type); static int __init smsc_superio_paged(const struct smsc_chip *chips, unsigned short cfg_base, char *type); static int __init smsc_superio_fdc(unsigned short cfg_base); static int __init smsc_superio_lpc(unsigned short cfg_base); #ifdef CONFIG_PCI static int __init preconfigure_smsc_chip(struct smsc_ircc_subsystem_configuration *conf); static int __init preconfigure_through_82801(struct pci_dev *dev, struct smsc_ircc_subsystem_configuration *conf); static void __init preconfigure_ali_port(struct pci_dev *dev, unsigned short port); static int __init preconfigure_through_ali(struct pci_dev *dev, struct smsc_ircc_subsystem_configuration *conf); static int __init smsc_ircc_preconfigure_subsystems(unsigned short ircc_cfg, unsigned short ircc_fir, unsigned short ircc_sir, unsigned char ircc_dma, unsigned char ircc_irq); #endif /* Transceivers specific functions */ static void smsc_ircc_set_transceiver_toshiba_sat1800(int fir_base, u32 speed); static int smsc_ircc_probe_transceiver_toshiba_sat1800(int fir_base); static void smsc_ircc_set_transceiver_smsc_ircc_fast_pin_select(int fir_base, u32 speed); static int smsc_ircc_probe_transceiver_smsc_ircc_fast_pin_select(int fir_base); static void smsc_ircc_set_transceiver_smsc_ircc_atc(int fir_base, u32 speed); static int smsc_ircc_probe_transceiver_smsc_ircc_atc(int fir_base); /* Power Management */ static int smsc_ircc_suspend(struct platform_device *dev, pm_message_t state); static int smsc_ircc_resume(struct platform_device *dev); static struct platform_driver smsc_ircc_driver = { .suspend = smsc_ircc_suspend, .resume = smsc_ircc_resume, .driver = { .name = SMSC_IRCC2_DRIVER_NAME, }, }; /* Transceivers for SMSC-ircc */ static struct smsc_transceiver smsc_transceivers[] = { { "Toshiba Satellite 1800 (GP data pin select)", smsc_ircc_set_transceiver_toshiba_sat1800, smsc_ircc_probe_transceiver_toshiba_sat1800 }, { "Fast pin select", smsc_ircc_set_transceiver_smsc_ircc_fast_pin_select, smsc_ircc_probe_transceiver_smsc_ircc_fast_pin_select }, { "ATC IRMode", smsc_ircc_set_transceiver_smsc_ircc_atc, smsc_ircc_probe_transceiver_smsc_ircc_atc }, { NULL, NULL } }; #define SMSC_IRCC2_C_NUMBER_OF_TRANSCEIVERS (ARRAY_SIZE(smsc_transceivers) - 1) /* SMC SuperIO chipsets definitions */ #define KEY55_1 0 /* SuperIO Configuration mode with Key <0x55> */ #define KEY55_2 1 /* SuperIO Configuration mode with Key <0x55,0x55> */ #define NoIRDA 2 /* SuperIO Chip has no IRDA Port */ #define SIR 0 /* SuperIO Chip has only slow IRDA */ #define FIR 4 /* SuperIO Chip has fast IRDA */ #define SERx4 8 /* SuperIO Chip supports 115,2 KBaud * 4=460,8 KBaud */ static struct smsc_chip __initdata fdc_chips_flat[] = { /* Base address 0x3f0 or 0x370 */ { "37C44", KEY55_1|NoIRDA, 0x00, 0x00 }, /* This chip cannot be detected */ { "37C665GT", KEY55_2|NoIRDA, 0x65, 0x01 }, { "37C665GT", KEY55_2|NoIRDA, 0x66, 0x01 }, { "37C669", KEY55_2|SIR|SERx4, 0x03, 0x02 }, { "37C669", KEY55_2|SIR|SERx4, 0x04, 0x02 }, /* ID? */ { "37C78", KEY55_2|NoIRDA, 0x78, 0x00 }, { "37N769", KEY55_1|FIR|SERx4, 0x28, 0x00 }, { "37N869", KEY55_1|FIR|SERx4, 0x29, 0x00 }, { NULL } }; static struct smsc_chip __initdata fdc_chips_paged[] = { /* Base address 0x3f0 or 0x370 */ { "37B72X", KEY55_1|SIR|SERx4, 0x4c, 0x00 }, { "37B77X", KEY55_1|SIR|SERx4, 0x43, 0x00 }, { "37B78X", KEY55_1|SIR|SERx4, 0x44, 0x00 }, { "37B80X", KEY55_1|SIR|SERx4, 0x42, 0x00 }, { "37C67X", KEY55_1|FIR|SERx4, 0x40, 0x00 }, { "37C93X", KEY55_2|SIR|SERx4, 0x02, 0x01 }, { "37C93XAPM", KEY55_1|SIR|SERx4, 0x30, 0x01 }, { "37C93XFR", KEY55_2|FIR|SERx4, 0x03, 0x01 }, { "37M707", KEY55_1|SIR|SERx4, 0x42, 0x00 }, { "37M81X", KEY55_1|SIR|SERx4, 0x4d, 0x00 }, { "37N958FR", KEY55_1|FIR|SERx4, 0x09, 0x04 }, { "37N971", KEY55_1|FIR|SERx4, 0x0a, 0x00 }, { "37N972", KEY55_1|FIR|SERx4, 0x0b, 0x00 }, { NULL } }; static struct smsc_chip __initdata lpc_chips_flat[] = { /* Base address 0x2E or 0x4E */ { "47N227", KEY55_1|FIR|SERx4, 0x5a, 0x00 }, { "47N267", KEY55_1|FIR|SERx4, 0x5e, 0x00 }, { NULL } }; static struct smsc_chip __initdata lpc_chips_paged[] = { /* Base address 0x2E or 0x4E */ { "47B27X", KEY55_1|SIR|SERx4, 0x51, 0x00 }, { "47B37X", KEY55_1|SIR|SERx4, 0x52, 0x00 }, { "47M10X", KEY55_1|SIR|SERx4, 0x59, 0x00 }, { "47M120", KEY55_1|NoIRDA|SERx4, 0x5c, 0x00 }, { "47M13X", KEY55_1|SIR|SERx4, 0x59, 0x00 }, { "47M14X", KEY55_1|SIR|SERx4, 0x5f, 0x00 }, { "47N252", KEY55_1|FIR|SERx4, 0x0e, 0x00 }, { "47S42X", KEY55_1|SIR|SERx4, 0x57, 0x00 }, { NULL } }; #define SMSCSIO_TYPE_FDC 1 #define SMSCSIO_TYPE_LPC 2 #define SMSCSIO_TYPE_FLAT 4 #define SMSCSIO_TYPE_PAGED 8 static struct smsc_chip_address __initdata possible_addresses[] = { { 0x3f0, SMSCSIO_TYPE_FDC|SMSCSIO_TYPE_FLAT|SMSCSIO_TYPE_PAGED }, { 0x370, SMSCSIO_TYPE_FDC|SMSCSIO_TYPE_FLAT|SMSCSIO_TYPE_PAGED }, { 0xe0, SMSCSIO_TYPE_FDC|SMSCSIO_TYPE_FLAT|SMSCSIO_TYPE_PAGED }, { 0x2e, SMSCSIO_TYPE_LPC|SMSCSIO_TYPE_FLAT|SMSCSIO_TYPE_PAGED }, { 0x4e, SMSCSIO_TYPE_LPC|SMSCSIO_TYPE_FLAT|SMSCSIO_TYPE_PAGED }, { 0, 0 } }; /* Globals */ static struct smsc_ircc_cb *dev_self[] = { NULL, NULL }; static unsigned short dev_count; static inline void register_bank(int iobase, int bank) { outb(((inb(iobase + IRCC_MASTER) & 0xf0) | (bank & 0x07)), iobase + IRCC_MASTER); } #ifdef CONFIG_PNP /* PNP hotplug support */ static const struct pnp_device_id smsc_ircc_pnp_table[] = { { .id = "SMCf010", .driver_data = 0 }, /* and presumably others */ { } }; MODULE_DEVICE_TABLE(pnp, smsc_ircc_pnp_table); #endif /******************************************************************************* * * * SMSC-ircc stuff * * *******************************************************************************/ /* * Function smsc_ircc_init () * * Initialize chip. Just try to find out how many chips we are dealing with * and where they are */ static int __init smsc_ircc_init(void) { int ret; IRDA_DEBUG(1, "%s\n", __FUNCTION__); ret = platform_driver_register(&smsc_ircc_driver); if (ret) { IRDA_ERROR("%s, Can't register driver!\n", driver_name); return ret; } #ifdef CONFIG_PCI if (smsc_ircc_preconfigure_subsystems(ircc_cfg, ircc_fir, ircc_sir, ircc_dma, ircc_irq) < 0) { /* Ignore errors from preconfiguration */ IRDA_ERROR("%s, Preconfiguration failed !\n", driver_name); } #endif dev_count = 0; if (ircc_fir > 0 && ircc_sir > 0) { IRDA_MESSAGE(" Overriding FIR address 0x%04x\n", ircc_fir); IRDA_MESSAGE(" Overriding SIR address 0x%04x\n", ircc_sir); if (smsc_ircc_open(ircc_fir, ircc_sir, ircc_dma, ircc_irq)) ret = -ENODEV; } else { ret = -ENODEV; /* try user provided configuration register base address */ if (ircc_cfg > 0) { IRDA_MESSAGE(" Overriding configuration address " "0x%04x\n", ircc_cfg); if (!smsc_superio_fdc(ircc_cfg)) ret = 0; if (!smsc_superio_lpc(ircc_cfg)) ret = 0; } if (smsc_ircc_look_for_chips() > 0) ret = 0; } if (ret) platform_driver_unregister(&smsc_ircc_driver); return ret; } /* * Function smsc_ircc_open (firbase, sirbase, dma, irq) * * Try to open driver instance * */ static int __init smsc_ircc_open(unsigned int fir_base, unsigned int sir_base, u8 dma, u8 irq) { struct smsc_ircc_cb *self; struct net_device *dev; int err; IRDA_DEBUG(1, "%s\n", __FUNCTION__); err = smsc_ircc_present(fir_base, sir_base); if (err) goto err_out; err = -ENOMEM; if (dev_count >= ARRAY_SIZE(dev_self)) { IRDA_WARNING("%s(), too many devices!\n", __FUNCTION__); goto err_out1; } /* * Allocate new instance of the driver */ dev = alloc_irdadev(sizeof(struct smsc_ircc_cb)); if (!dev) { IRDA_WARNING("%s() can't allocate net device\n", __FUNCTION__); goto err_out1; } SET_MODULE_OWNER(dev); dev->hard_start_xmit = smsc_ircc_hard_xmit_sir; #if SMSC_IRCC2_C_NET_TIMEOUT dev->tx_timeout = smsc_ircc_timeout; dev->watchdog_timeo = HZ * 2; /* Allow enough time for speed change */ #endif dev->open = smsc_ircc_net_open; dev->stop = smsc_ircc_net_close; dev->do_ioctl = smsc_ircc_net_ioctl; dev->get_stats = smsc_ircc_net_get_stats; self = netdev_priv(dev); self->netdev = dev; /* Make ifconfig display some details */ dev->base_addr = self->io.fir_base = fir_base; dev->irq = self->io.irq = irq; /* Need to store self somewhere */ dev_self[dev_count] = self; spin_lock_init(&self->lock); self->rx_buff.truesize = SMSC_IRCC2_RX_BUFF_TRUESIZE; self->tx_buff.truesize = SMSC_IRCC2_TX_BUFF_TRUESIZE; self->rx_buff.head = dma_alloc_coherent(NULL, self->rx_buff.truesize, &self->rx_buff_dma, GFP_KERNEL); if (self->rx_buff.head == NULL) { IRDA_ERROR("%s, Can't allocate memory for receive buffer!\n", driver_name); goto err_out2; } self->tx_buff.head = dma_alloc_coherent(NULL, self->tx_buff.truesize, &self->tx_buff_dma, GFP_KERNEL); if (self->tx_buff.head == NULL) { IRDA_ERROR("%s, Can't allocate memory for transmit buffer!\n", driver_name); goto err_out3; } memset(self->rx_buff.head, 0, self->rx_buff.truesize); memset(self->tx_buff.head, 0, self->tx_buff.truesize); self->rx_buff.in_frame = FALSE; self->rx_buff.state = OUTSIDE_FRAME; self->tx_buff.data = self->tx_buff.head; self->rx_buff.data = self->rx_buff.head; smsc_ircc_setup_io(self, fir_base, sir_base, dma, irq); smsc_ircc_setup_qos(self); smsc_ircc_init_chip(self); if (ircc_transceiver > 0 && ircc_transceiver < SMSC_IRCC2_C_NUMBER_OF_TRANSCEIVERS) self->transceiver = ircc_transceiver; else smsc_ircc_probe_transceiver(self); err = register_netdev(self->netdev); if (err) { IRDA_ERROR("%s, Network device registration failed!\n", driver_name); goto err_out4; } self->pldev = platform_device_register_simple(SMSC_IRCC2_DRIVER_NAME, dev_count, NULL, 0); if (IS_ERR(self->pldev)) { err = PTR_ERR(self->pldev); goto err_out5; } platform_set_drvdata(self->pldev, self); IRDA_MESSAGE("IrDA: Registered device %s\n", dev->name); dev_count++; return 0; err_out5: unregister_netdev(self->netdev); err_out4: dma_free_coherent(NULL, self->tx_buff.truesize, self->tx_buff.head, self->tx_buff_dma); err_out3: dma_free_coherent(NULL, self->rx_buff.truesize, self->rx_buff.head, self->rx_buff_dma); err_out2: free_netdev(self->netdev); dev_self[dev_count] = NULL; err_out1: release_region(fir_base, SMSC_IRCC2_FIR_CHIP_IO_EXTENT); release_region(sir_base, SMSC_IRCC2_SIR_CHIP_IO_EXTENT); err_out: return err; } /* * Function smsc_ircc_present(fir_base, sir_base) * * Check the smsc-ircc chip presence * */ static int smsc_ircc_present(unsigned int fir_base, unsigned int sir_base) { unsigned char low, high, chip, config, dma, irq, version; if (!request_region(fir_base, SMSC_IRCC2_FIR_CHIP_IO_EXTENT, driver_name)) { IRDA_WARNING("%s: can't get fir_base of 0x%03x\n", __FUNCTION__, fir_base); goto out1; } if (!request_region(sir_base, SMSC_IRCC2_SIR_CHIP_IO_EXTENT, driver_name)) { IRDA_WARNING("%s: can't get sir_base of 0x%03x\n", __FUNCTION__, sir_base); goto out2; } register_bank(fir_base, 3); high = inb(fir_base + IRCC_ID_HIGH); low = inb(fir_base + IRCC_ID_LOW); chip = inb(fir_base + IRCC_CHIP_ID); version = inb(fir_base + IRCC_VERSION); config = inb(fir_base + IRCC_INTERFACE); dma = config & IRCC_INTERFACE_DMA_MASK; irq = (config & IRCC_INTERFACE_IRQ_MASK) >> 4; if (high != 0x10 || low != 0xb8 || (chip != 0xf1 && chip != 0xf2)) { IRDA_WARNING("%s(), addr 0x%04x - no device found!\n", __FUNCTION__, fir_base); goto out3; } IRDA_MESSAGE("SMsC IrDA Controller found\n IrCC version %d.%d, " "firport 0x%03x, sirport 0x%03x dma=%d, irq=%d\n", chip & 0x0f, version, fir_base, sir_base, dma, irq); return 0; out3: release_region(sir_base, SMSC_IRCC2_SIR_CHIP_IO_EXTENT); out2: release_region(fir_base, SMSC_IRCC2_FIR_CHIP_IO_EXTENT); out1: return -ENODEV; } /* * Function smsc_ircc_setup_io(self, fir_base, sir_base, dma, irq) * * Setup I/O * */ static void smsc_ircc_setup_io(struct smsc_ircc_cb *self, unsigned int fir_base, unsigned int sir_base, u8 dma, u8 irq) { unsigned char config, chip_dma, chip_irq; register_bank(fir_base, 3); config = inb(fir_base + IRCC_INTERFACE); chip_dma = config & IRCC_INTERFACE_DMA_MASK; chip_irq = (config & IRCC_INTERFACE_IRQ_MASK) >> 4; self->io.fir_base = fir_base; self->io.sir_base = sir_base; self->io.fir_ext = SMSC_IRCC2_FIR_CHIP_IO_EXTENT; self->io.sir_ext = SMSC_IRCC2_SIR_CHIP_IO_EXTENT; self->io.fifo_size = SMSC_IRCC2_FIFO_SIZE; self->io.speed = SMSC_IRCC2_C_IRDA_FALLBACK_SPEED; if (irq < 255) { if (irq != chip_irq) IRDA_MESSAGE("%s, Overriding IRQ - chip says %d, using %d\n", driver_name, chip_irq, irq); self->io.irq = irq; } else self->io.irq = chip_irq; if (dma < 255) { if (dma != chip_dma) IRDA_MESSAGE("%s, Overriding DMA - chip says %d, using %d\n", driver_name, chip_dma, dma); self->io.dma = dma; } else self->io.dma = chip_dma; } /* * Function smsc_ircc_setup_qos(self) * * Setup qos * */ static void smsc_ircc_setup_qos(struct smsc_ircc_cb *self) { /* Initialize QoS for this device */ irda_init_max_qos_capabilies(&self->qos); self->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600| IR_115200|IR_576000|IR_1152000|(IR_4000000 << 8); self->qos.min_turn_time.bits = SMSC_IRCC2_MIN_TURN_TIME; self->qos.window_size.bits = SMSC_IRCC2_WINDOW_SIZE; irda_qos_bits_to_value(&self->qos); } /* * Function smsc_ircc_init_chip(self) * * Init chip * */ static void smsc_ircc_init_chip(struct smsc_ircc_cb *self) { int iobase = self->io.fir_base; register_bank(iobase, 0); outb(IRCC_MASTER_RESET, iobase + IRCC_MASTER); outb(0x00, iobase + IRCC_MASTER); register_bank(iobase, 1); outb(((inb(iobase + IRCC_SCE_CFGA) & 0x87) | IRCC_CFGA_IRDA_SIR_A), iobase + IRCC_SCE_CFGA); #ifdef smsc_669 /* Uses pin 88/89 for Rx/Tx */ outb(((inb(iobase + IRCC_SCE_CFGB) & 0x3f) | IRCC_CFGB_MUX_COM), iobase + IRCC_SCE_CFGB); #else outb(((inb(iobase + IRCC_SCE_CFGB) & 0x3f) | IRCC_CFGB_MUX_IR), iobase + IRCC_SCE_CFGB); #endif (void) inb(iobase + IRCC_FIFO_THRESHOLD); outb(SMSC_IRCC2_FIFO_THRESHOLD, iobase + IRCC_FIFO_THRESHOLD); register_bank(iobase, 4); outb((inb(iobase + IRCC_CONTROL) & 0x30), iobase + IRCC_CONTROL); register_bank(iobase, 0); outb(0, iobase + IRCC_LCR_A); smsc_ircc_set_sir_speed(self, SMSC_IRCC2_C_IRDA_FALLBACK_SPEED); /* Power on device */ outb(0x00, iobase + IRCC_MASTER); } /* * Function smsc_ircc_net_ioctl (dev, rq, cmd) * * Process IOCTL commands for this device * */ static int smsc_ircc_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct if_irda_req *irq = (struct if_irda_req *) rq; struct smsc_ircc_cb *self; unsigned long flags; int ret = 0; IRDA_ASSERT(dev != NULL, return -1;); self = netdev_priv(dev); IRDA_ASSERT(self != NULL, return -1;); IRDA_DEBUG(2, "%s(), %s, (cmd=0x%X)\n", __FUNCTION__, dev->name, cmd); switch (cmd) { case SIOCSBANDWIDTH: /* Set bandwidth */ if (!capable(CAP_NET_ADMIN)) ret = -EPERM; else { /* Make sure we are the only one touching * self->io.speed and the hardware - Jean II */ spin_lock_irqsave(&self->lock, flags); smsc_ircc_change_speed(self, irq->ifr_baudrate); spin_unlock_irqrestore(&self->lock, flags); } break; case SIOCSMEDIABUSY: /* Set media busy */ if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } irda_device_set_media_busy(self->netdev, TRUE); break; case SIOCGRECEIVING: /* Check if we are receiving right now */ irq->ifr_receiving = smsc_ircc_is_receiving(self); break; #if 0 case SIOCSDTRRTS: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } smsc_ircc_sir_set_dtr_rts(dev, irq->ifr_dtr, irq->ifr_rts); break; #endif default: ret = -EOPNOTSUPP; } return ret; } static struct net_device_stats *smsc_ircc_net_get_stats(struct net_device *dev) { struct smsc_ircc_cb *self = netdev_priv(dev); return &self->stats; } #if SMSC_IRCC2_C_NET_TIMEOUT /* * Function smsc_ircc_timeout (struct net_device *dev) * * The networking timeout management. * */ static void smsc_ircc_timeout(struct net_device *dev) { struct smsc_ircc_cb *self = netdev_priv(dev); unsigned long flags; IRDA_WARNING("%s: transmit timed out, changing speed to: %d\n", dev->name, self->io.speed); spin_lock_irqsave(&self->lock, flags); smsc_ircc_sir_start(self); smsc_ircc_change_speed(self, self->io.speed); dev->trans_start = jiffies; netif_wake_queue(dev); spin_unlock_irqrestore(&self->lock, flags); } #endif /* * Function smsc_ircc_hard_xmit_sir (struct sk_buff *skb, struct net_device *dev) * * Transmits the current frame until FIFO is full, then * waits until the next transmit interrupt, and continues until the * frame is transmitted. */ int smsc_ircc_hard_xmit_sir(struct sk_buff *skb, struct net_device *dev) { struct smsc_ircc_cb *self; unsigned long flags; s32 speed; IRDA_DEBUG(1, "%s\n", __FUNCTION__); IRDA_ASSERT(dev != NULL, return 0;); self = netdev_priv(dev); IRDA_ASSERT(self != NULL, return 0;); netif_stop_queue(dev); /* Make sure test of self->io.speed & speed change are atomic */ spin_lock_irqsave(&self->lock, flags); /* Check if we need to change the speed */ speed = irda_get_next_speed(skb); if (speed != self->io.speed && speed != -1) { /* Check for empty frame */ if (!skb->len) { /* * We send frames one by one in SIR mode (no * pipelining), so at this point, if we were sending * a previous frame, we just received the interrupt * telling us it is finished (UART_IIR_THRI). * Therefore, waiting for the transmitter to really * finish draining the fifo won't take too long. * And the interrupt handler is not expected to run. * - Jean II */ smsc_ircc_sir_wait_hw_transmitter_finish(self); smsc_ircc_change_speed(self, speed); spin_unlock_irqrestore(&self->lock, flags); dev_kfree_skb(skb); return 0; } self->new_speed = speed; } /* Init tx buffer */ self->tx_buff.data = self->tx_buff.head; /* Copy skb to tx_buff while wrapping, stuffing and making CRC */ self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data, self->tx_buff.truesize); self->stats.tx_bytes += self->tx_buff.len; /* Turn on transmit finished interrupt. Will fire immediately! */ outb(UART_IER_THRI, self->io.sir_base + UART_IER); spin_unlock_irqrestore(&self->lock, flags); dev_kfree_skb(skb); return 0; } /* * Function smsc_ircc_set_fir_speed (self, baud) * * Change the speed of the device * */ static void smsc_ircc_set_fir_speed(struct smsc_ircc_cb *self, u32 speed) { int fir_base, ir_mode, ctrl, fast; IRDA_ASSERT(self != NULL, return;); fir_base = self->io.fir_base; self->io.speed = speed; switch (speed) { default: case 576000: ir_mode = IRCC_CFGA_IRDA_HDLC; ctrl = IRCC_CRC; fast = 0; IRDA_DEBUG(0, "%s(), handling baud of 576000\n", __FUNCTION__); break; case 1152000: ir_mode = IRCC_CFGA_IRDA_HDLC; ctrl = IRCC_1152 | IRCC_CRC; fast = IRCC_LCR_A_FAST | IRCC_LCR_A_GP_DATA; IRDA_DEBUG(0, "%s(), handling baud of 1152000\n", __FUNCTION__); break; case 4000000: ir_mode = IRCC_CFGA_IRDA_4PPM; ctrl = IRCC_CRC; fast = IRCC_LCR_A_FAST; IRDA_DEBUG(0, "%s(), handling baud of 4000000\n", __FUNCTION__); break; } #if 0 Now in tranceiver! /* This causes an interrupt */ register_bank(fir_base, 0); outb((inb(fir_base + IRCC_LCR_A) & 0xbf) | fast, fir_base + IRCC_LCR_A); #endif register_bank(fir_base, 1); outb(((inb(fir_base + IRCC_SCE_CFGA) & IRCC_SCE_CFGA_BLOCK_CTRL_BITS_MASK) | ir_mode), fir_base + IRCC_SCE_CFGA); register_bank(fir_base, 4); outb((inb(fir_base + IRCC_CONTROL) & 0x30) | ctrl, fir_base + IRCC_CONTROL); } /* * Function smsc_ircc_fir_start(self) * * Change the speed of the device * */ static void smsc_ircc_fir_start(struct smsc_ircc_cb *self) { struct net_device *dev; int fir_base; IRDA_DEBUG(1, "%s\n", __FUNCTION__); IRDA_ASSERT(self != NULL, return;); dev = self->netdev; IRDA_ASSERT(dev != NULL, return;); fir_base = self->io.fir_base; /* Reset everything */ /* Install FIR transmit handler */ dev->hard_start_xmit = smsc_ircc_hard_xmit_fir; /* Clear FIFO */ outb(inb(fir_base + IRCC_LCR_A) | IRCC_LCR_A_FIFO_RESET, fir_base + IRCC_LCR_A); /* Enable interrupt */ /*outb(IRCC_IER_ACTIVE_FRAME|IRCC_IER_EOM, fir_base + IRCC_IER);*/ register_bank(fir_base, 1); /* Select the TX/RX interface */ #ifdef SMSC_669 /* Uses pin 88/89 for Rx/Tx */ outb(((inb(fir_base + IRCC_SCE_CFGB) & 0x3f) | IRCC_CFGB_MUX_COM), fir_base + IRCC_SCE_CFGB); #else outb(((inb(fir_base + IRCC_SCE_CFGB) & 0x3f) | IRCC_CFGB_MUX_IR), fir_base + IRCC_SCE_CFGB); #endif (void) inb(fir_base + IRCC_FIFO_THRESHOLD); /* Enable SCE interrupts */ outb(0, fir_base + IRCC_MASTER); register_bank(fir_base, 0); outb(IRCC_IER_ACTIVE_FRAME | IRCC_IER_EOM, fir_base + IRCC_IER); outb(IRCC_MASTER_INT_EN, fir_base + IRCC_MASTER); } /* * Function smsc_ircc_fir_stop(self, baud) * * Change the speed of the device * */ static void smsc_ircc_fir_stop(struct smsc_ircc_cb *self) { int fir_base; IRDA_DEBUG(1, "%s\n", __FUNCTION__); IRDA_ASSERT(self != NULL, return;); fir_base = self->io.fir_base; register_bank(fir_base, 0); /*outb(IRCC_MASTER_RESET, fir_base + IRCC_MASTER);*/ outb(inb(fir_base + IRCC_LCR_B) & IRCC_LCR_B_SIP_ENABLE, fir_base + IRCC_LCR_B); } /* * Function smsc_ircc_change_speed(self, baud) * * Change the speed of the device * * This function *must* be called with spinlock held, because it may * be called from the irq handler. - Jean II */ static void smsc_ircc_change_speed(struct smsc_ircc_cb *self, u32 speed) { struct net_device *dev; int last_speed_was_sir; IRDA_DEBUG(0, "%s() changing speed to: %d\n", __FUNCTION__, speed); IRDA_ASSERT(self != NULL, return;); dev = self->netdev; last_speed_was_sir = self->io.speed <= SMSC_IRCC2_MAX_SIR_SPEED; #if 0 /* Temp Hack */ speed= 1152000; self->io.speed = speed; last_speed_was_sir = 0; smsc_ircc_fir_start(self); #endif if (self->io.speed == 0) smsc_ircc_sir_start(self); #if 0 if (!last_speed_was_sir) speed = self->io.speed; #endif if (self->io.speed != speed) smsc_ircc_set_transceiver_for_speed(self, speed); self->io.speed = speed; if (speed <= SMSC_IRCC2_MAX_SIR_SPEED) { if (!last_speed_was_sir) { smsc_ircc_fir_stop(self); smsc_ircc_sir_start(self); } smsc_ircc_set_sir_speed(self, speed); } else { if (last_speed_was_sir) { #if SMSC_IRCC2_C_SIR_STOP smsc_ircc_sir_stop(self); #endif smsc_ircc_fir_start(self); } smsc_ircc_set_fir_speed(self, speed); #if 0 self->tx_buff.len = 10; self->tx_buff.data = self->tx_buff.head; smsc_ircc_dma_xmit(self, 4000); #endif /* Be ready for incoming frames */ smsc_ircc_dma_receive(self); } netif_wake_queue(dev); } /* * Function smsc_ircc_set_sir_speed (self, speed) * * Set speed of IrDA port to specified baudrate * */ void smsc_ircc_set_sir_speed(struct smsc_ircc_cb *self, __u32 speed) { int iobase; int fcr; /* FIFO control reg */ int lcr; /* Line control reg */ int divisor; IRDA_DEBUG(0, "%s(), Setting speed to: %d\n", __FUNCTION__, speed); IRDA_ASSERT(self != NULL, return;); iobase = self->io.sir_base; /* Update accounting for new speed */ self->io.speed = speed; /* Turn off interrupts */ outb(0, iobase + UART_IER); divisor = SMSC_IRCC2_MAX_SIR_SPEED / speed; fcr = UART_FCR_ENABLE_FIFO; /* * Use trigger level 1 to avoid 3 ms. timeout delay at 9600 bps, and * almost 1,7 ms at 19200 bps. At speeds above that we can just forget * about this timeout since it will always be fast enough. */ fcr |= self->io.speed < 38400 ? UART_FCR_TRIGGER_1 : UART_FCR_TRIGGER_14; /* IrDA ports use 8N1 */ lcr = UART_LCR_WLEN8; outb(UART_LCR_DLAB | lcr, iobase + UART_LCR); /* Set DLAB */ outb(divisor & 0xff, iobase + UART_DLL); /* Set speed */ outb(divisor >> 8, iobase + UART_DLM); outb(lcr, iobase + UART_LCR); /* Set 8N1 */ outb(fcr, iobase + UART_FCR); /* Enable FIFO's */ /* Turn on interrups */ outb(UART_IER_RLSI | UART_IER_RDI | UART_IER_THRI, iobase + UART_IER); IRDA_DEBUG(2, "%s() speed changed to: %d\n", __FUNCTION__, speed); } /* * Function smsc_ircc_hard_xmit_fir (skb, dev) * * Transmit the frame! * */ static int smsc_ircc_hard_xmit_fir(struct sk_buff *skb, struct net_device *dev) { struct smsc_ircc_cb *self; unsigned long flags; s32 speed; int mtt; IRDA_ASSERT(dev != NULL, return 0;); self = netdev_priv(dev); IRDA_ASSERT(self != NULL, return 0;); netif_stop_queue(dev); /* Make sure test of self->io.speed & speed change are atomic */ spin_lock_irqsave(&self->lock, flags); /* Check if we need to change the speed after this frame */ speed = irda_get_next_speed(skb); if (speed != self->io.speed && speed != -1) { /* Check for empty frame */ if (!skb->len) { /* Note : you should make sure that speed changes * are not going to corrupt any outgoing frame. * Look at nsc-ircc for the gory details - Jean II */ smsc_ircc_change_speed(self, speed); spin_unlock_irqrestore(&self->lock, flags); dev_kfree_skb(skb); return 0; } self->new_speed = speed; } memcpy(self->tx_buff.head, skb->data, skb->len); self->tx_buff.len = skb->len; self->tx_buff.data = self->tx_buff.head; mtt = irda_get_mtt(skb); if (mtt) { int bofs; /* * Compute how many BOFs (STA or PA's) we need to waste the * min turn time given the speed of the link. */ bofs = mtt * (self->io.speed / 1000) / 8000; if (bofs > 4095) bofs = 4095; smsc_ircc_dma_xmit(self, bofs); } else { /* Transmit frame */ smsc_ircc_dma_xmit(self, 0); } spin_unlock_irqrestore(&self->lock, flags); dev_kfree_skb(skb); return 0; } /* * Function smsc_ircc_dma_xmit (self, bofs) * * Transmit data using DMA * */ static void smsc_ircc_dma_xmit(struct smsc_ircc_cb *self, int bofs) { int iobase = self->io.fir_base; u8 ctrl; IRDA_DEBUG(3, "%s\n", __FUNCTION__); #if 1 /* Disable Rx */ register_bank(iobase, 0); outb(0x00, iobase + IRCC_LCR_B); #endif register_bank(iobase, 1); outb(inb(iobase + IRCC_SCE_CFGB) & ~IRCC_CFGB_DMA_ENABLE, iobase + IRCC_SCE_CFGB); self->io.direction = IO_XMIT; /* Set BOF additional count for generating the min turn time */ register_bank(iobase, 4); outb(bofs & 0xff, iobase + IRCC_BOF_COUNT_LO); ctrl = inb(iobase + IRCC_CONTROL) & 0xf0; outb(ctrl | ((bofs >> 8) & 0x0f), iobase + IRCC_BOF_COUNT_HI); /* Set max Tx frame size */ outb(self->tx_buff.len >> 8, iobase + IRCC_TX_SIZE_HI); outb(self->tx_buff.len & 0xff, iobase + IRCC_TX_SIZE_LO); /*outb(UART_MCR_OUT2, self->io.sir_base + UART_MCR);*/ /* Enable burst mode chip Tx DMA */ register_bank(iobase, 1); outb(inb(iobase + IRCC_SCE_CFGB) | IRCC_CFGB_DMA_ENABLE | IRCC_CFGB_DMA_BURST, iobase + IRCC_SCE_CFGB); /* Setup DMA controller (must be done after enabling chip DMA) */ irda_setup_dma(self->io.dma, self->tx_buff_dma, self->tx_buff.len, DMA_TX_MODE); /* Enable interrupt */ register_bank(iobase, 0); outb(IRCC_IER_ACTIVE_FRAME | IRCC_IER_EOM, iobase + IRCC_IER); outb(IRCC_MASTER_INT_EN, iobase + IRCC_MASTER); /* Enable transmit */ outb(IRCC_LCR_B_SCE_TRANSMIT | IRCC_LCR_B_SIP_ENABLE, iobase + IRCC_LCR_B); } /* * Function smsc_ircc_dma_xmit_complete (self) * * The transfer of a frame in finished. This function will only be called * by the interrupt handler * */ static void smsc_ircc_dma_xmit_complete(struct smsc_ircc_cb *self) { int iobase = self->io.fir_base; IRDA_DEBUG(3, "%s\n", __FUNCTION__); #if 0 /* Disable Tx */ register_bank(iobase, 0); outb(0x00, iobase + IRCC_LCR_B); #endif register_bank(iobase, 1); outb(inb(iobase + IRCC_SCE_CFGB) & ~IRCC_CFGB_DMA_ENABLE, iobase + IRCC_SCE_CFGB); /* Check for underrun! */ register_bank(iobase, 0); if (inb(iobase + IRCC_LSR) & IRCC_LSR_UNDERRUN) { self->stats.tx_errors++; self->stats.tx_fifo_errors++; /* Reset error condition */ register_bank(iobase, 0); outb(IRCC_MASTER_ERROR_RESET, iobase + IRCC_MASTER); outb(0x00, iobase + IRCC_MASTER); } else { self->stats.tx_packets++; self->stats.tx_bytes += self->tx_buff.len; } /* Check if it's time to change the speed */ if (self->new_speed) { smsc_ircc_change_speed(self, self->new_speed); self->new_speed = 0; } netif_wake_queue(self->netdev); } /* * Function smsc_ircc_dma_receive(self) * * Get ready for receiving a frame. The device will initiate a DMA * if it starts to receive a frame. * */ static int smsc_ircc_dma_receive(struct smsc_ircc_cb *self) { int iobase = self->io.fir_base; #if 0 /* Turn off chip DMA */ register_bank(iobase, 1); outb(inb(iobase + IRCC_SCE_CFGB) & ~IRCC_CFGB_DMA_ENABLE, iobase + IRCC_SCE_CFGB); #endif /* Disable Tx */ register_bank(iobase, 0); outb(0x00, iobase + IRCC_LCR_B); /* Turn off chip DMA */ register_bank(iobase, 1); outb(inb(iobase + IRCC_SCE_CFGB) & ~IRCC_CFGB_DMA_ENABLE, iobase + IRCC_SCE_CFGB); self->io.direction = IO_RECV; self->rx_buff.data = self->rx_buff.head; /* Set max Rx frame size */ register_bank(iobase, 4); outb((2050 >> 8) & 0x0f, iobase + IRCC_RX_SIZE_HI); outb(2050 & 0xff, iobase + IRCC_RX_SIZE_LO); /* Setup DMA controller */ irda_setup_dma(self->io.dma, self->rx_buff_dma, self->rx_buff.truesize, DMA_RX_MODE); /* Enable burst mode chip Rx DMA */ register_bank(iobase, 1); outb(inb(iobase + IRCC_SCE_CFGB) | IRCC_CFGB_DMA_ENABLE | IRCC_CFGB_DMA_BURST, iobase + IRCC_SCE_CFGB); /* Enable interrupt */ register_bank(iobase, 0); outb(IRCC_IER_ACTIVE_FRAME | IRCC_IER_EOM, iobase + IRCC_IER); outb(IRCC_MASTER_INT_EN, iobase + IRCC_MASTER); /* Enable receiver */ register_bank(iobase, 0); outb(IRCC_LCR_B_SCE_RECEIVE | IRCC_LCR_B_SIP_ENABLE, iobase + IRCC_LCR_B); return 0; } /* * Function smsc_ircc_dma_receive_complete(self) * * Finished with receiving frames * */ static void smsc_ircc_dma_receive_complete(struct smsc_ircc_cb *self) { struct sk_buff *skb; int len, msgcnt, lsr; int iobase = self->io.fir_base; register_bank(iobase, 0); IRDA_DEBUG(3, "%s\n", __FUNCTION__); #if 0 /* Disable Rx */ register_bank(iobase, 0); outb(0x00, iobase + IRCC_LCR_B); #endif register_bank(iobase, 0); outb(inb(iobase + IRCC_LSAR) & ~IRCC_LSAR_ADDRESS_MASK, iobase + IRCC_LSAR); lsr= inb(iobase + IRCC_LSR); msgcnt = inb(iobase + IRCC_LCR_B) & 0x08; IRDA_DEBUG(2, "%s: dma count = %d\n", __FUNCTION__, get_dma_residue(self->io.dma)); len = self->rx_buff.truesize - get_dma_residue(self->io.dma); /* Look for errors */ if (lsr & (IRCC_LSR_FRAME_ERROR | IRCC_LSR_CRC_ERROR | IRCC_LSR_SIZE_ERROR)) { self->stats.rx_errors++; if (lsr & IRCC_LSR_FRAME_ERROR) self->stats.rx_frame_errors++; if (lsr & IRCC_LSR_CRC_ERROR) self->stats.rx_crc_errors++; if (lsr & IRCC_LSR_SIZE_ERROR) self->stats.rx_length_errors++; if (lsr & (IRCC_LSR_UNDERRUN | IRCC_LSR_OVERRUN)) self->stats.rx_length_errors++; return; } /* Remove CRC */ len -= self->io.speed < 4000000 ? 2 : 4; if (len < 2 || len > 2050) { IRDA_WARNING("%s(), bogus len=%d\n", __FUNCTION__, len); return; } IRDA_DEBUG(2, "%s: msgcnt = %d, len=%d\n", __FUNCTION__, msgcnt, len); skb = dev_alloc_skb(len + 1); if (!skb) { IRDA_WARNING("%s(), memory squeeze, dropping frame.\n", __FUNCTION__); return; } /* Make sure IP header gets aligned */ skb_reserve(skb, 1); memcpy(skb_put(skb, len), self->rx_buff.data, len); self->stats.rx_packets++; self->stats.rx_bytes += len; skb->dev = self->netdev; skb->mac.raw = skb->data; skb->protocol = htons(ETH_P_IRDA); netif_rx(skb); } /* * Function smsc_ircc_sir_receive (self) * * Receive one frame from the infrared port * */ static void smsc_ircc_sir_receive(struct smsc_ircc_cb *self) { int boguscount = 0; int iobase; IRDA_ASSERT(self != NULL, return;); iobase = self->io.sir_base; /* * Receive all characters in Rx FIFO, unwrap and unstuff them. * async_unwrap_char will deliver all found frames */ do { async_unwrap_char(self->netdev, &self->stats, &self->rx_buff, inb(iobase + UART_RX)); /* Make sure we don't stay here to long */ if (boguscount++ > 32) { IRDA_DEBUG(2, "%s(), breaking!\n", __FUNCTION__); break; } } while (inb(iobase + UART_LSR) & UART_LSR_DR); } /* * Function smsc_ircc_interrupt (irq, dev_id, regs) * * An interrupt from the chip has arrived. Time to do some work * */ static irqreturn_t smsc_ircc_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_id; struct smsc_ircc_cb *self; int iobase, iir, lcra, lsr; irqreturn_t ret = IRQ_NONE; if (dev == NULL) { printk(KERN_WARNING "%s: irq %d for unknown device.\n", driver_name, irq); goto irq_ret; } self = netdev_priv(dev); IRDA_ASSERT(self != NULL, return IRQ_NONE;); /* Serialise the interrupt handler in various CPUs, stop Tx path */ spin_lock(&self->lock); /* Check if we should use the SIR interrupt handler */ if (self->io.speed <= SMSC_IRCC2_MAX_SIR_SPEED) { ret = smsc_ircc_interrupt_sir(dev); goto irq_ret_unlock; } iobase = self->io.fir_base; register_bank(iobase, 0); iir = inb(iobase + IRCC_IIR); if (iir == 0) goto irq_ret_unlock; ret = IRQ_HANDLED; /* Disable interrupts */ outb(0, iobase + IRCC_IER); lcra = inb(iobase + IRCC_LCR_A); lsr = inb(iobase + IRCC_LSR); IRDA_DEBUG(2, "%s(), iir = 0x%02x\n", __FUNCTION__, iir); if (iir & IRCC_IIR_EOM) { if (self->io.direction == IO_RECV) smsc_ircc_dma_receive_complete(self); else smsc_ircc_dma_xmit_complete(self); smsc_ircc_dma_receive(self); } if (iir & IRCC_IIR_ACTIVE_FRAME) { /*printk(KERN_WARNING "%s(): Active Frame\n", __FUNCTION__);*/ } /* Enable interrupts again */ register_bank(iobase, 0); outb(IRCC_IER_ACTIVE_FRAME | IRCC_IER_EOM, iobase + IRCC_IER); irq_ret_unlock: spin_unlock(&self->lock); irq_ret: return ret; } /* * Function irport_interrupt_sir (irq, dev_id, regs) * * Interrupt handler for SIR modes */ static irqreturn_t smsc_ircc_interrupt_sir(struct net_device *dev) { struct smsc_ircc_cb *self = netdev_priv(dev); int boguscount = 0; int iobase; int iir, lsr; /* Already locked comming here in smsc_ircc_interrupt() */ /*spin_lock(&self->lock);*/ iobase = self->io.sir_base; iir = inb(iobase + UART_IIR) & UART_IIR_ID; if (iir == 0) return IRQ_NONE; while (iir) { /* Clear interrupt */ lsr = inb(iobase + UART_LSR); IRDA_DEBUG(4, "%s(), iir=%02x, lsr=%02x, iobase=%#x\n", __FUNCTION__, iir, lsr, iobase); switch (iir) { case UART_IIR_RLSI: IRDA_DEBUG(2, "%s(), RLSI\n", __FUNCTION__); break; case UART_IIR_RDI: /* Receive interrupt */ smsc_ircc_sir_receive(self); break; case UART_IIR_THRI: if (lsr & UART_LSR_THRE) /* Transmitter ready for data */ smsc_ircc_sir_write_wakeup(self); break; default: IRDA_DEBUG(0, "%s(), unhandled IIR=%#x\n", __FUNCTION__, iir); break; } /* Make sure we don't stay here to long */ if (boguscount++ > 100) break; iir = inb(iobase + UART_IIR) & UART_IIR_ID; } /*spin_unlock(&self->lock);*/ return IRQ_HANDLED; } #if 0 /* unused */ /* * Function ircc_is_receiving (self) * * Return TRUE is we are currently receiving a frame * */ static int ircc_is_receiving(struct smsc_ircc_cb *self) { int status = FALSE; /* int iobase; */ IRDA_DEBUG(1, "%s\n", __FUNCTION__); IRDA_ASSERT(self != NULL, return FALSE;); IRDA_DEBUG(0, "%s: dma count = %d\n", __FUNCTION__, get_dma_residue(self->io.dma)); status = (self->rx_buff.state != OUTSIDE_FRAME); return status; } #endif /* unused */ static int smsc_ircc_request_irq(struct smsc_ircc_cb *self) { int error; error = request_irq(self->io.irq, smsc_ircc_interrupt, 0, self->netdev->name, self->netdev); if (error) IRDA_DEBUG(0, "%s(), unable to allocate irq=%d, err=%d\n", __FUNCTION__, self->io.irq, error); return error; } static void smsc_ircc_start_interrupts(struct smsc_ircc_cb *self) { unsigned long flags; spin_lock_irqsave(&self->lock, flags); self->io.speed = 0; smsc_ircc_change_speed(self, SMSC_IRCC2_C_IRDA_FALLBACK_SPEED); spin_unlock_irqrestore(&self->lock, flags); } static void smsc_ircc_stop_interrupts(struct smsc_ircc_cb *self) { int iobase = self->io.fir_base; unsigned long flags; spin_lock_irqsave(&self->lock, flags); register_bank(iobase, 0); outb(0, iobase + IRCC_IER); outb(IRCC_MASTER_RESET, iobase + IRCC_MASTER); outb(0x00, iobase + IRCC_MASTER); spin_unlock_irqrestore(&self->lock, flags); } /* * Function smsc_ircc_net_open (dev) * * Start the device * */ static int smsc_ircc_net_open(struct net_device *dev) { struct smsc_ircc_cb *self; char hwname[16]; IRDA_DEBUG(1, "%s\n", __FUNCTION__); IRDA_ASSERT(dev != NULL, return -1;); self = netdev_priv(dev); IRDA_ASSERT(self != NULL, return 0;); if (self->io.suspended) { IRDA_DEBUG(0, "%s(), device is suspended\n", __FUNCTION__); return -EAGAIN; } if (request_irq(self->io.irq, smsc_ircc_interrupt, 0, dev->name, (void *) dev)) { IRDA_DEBUG(0, "%s(), unable to allocate irq=%d\n", __FUNCTION__, self->io.irq); return -EAGAIN; } smsc_ircc_start_interrupts(self); /* Give self a hardware name */ /* It would be cool to offer the chip revision here - Jean II */ sprintf(hwname, "SMSC @ 0x%03x", self->io.fir_base); /* * Open new IrLAP layer instance, now that everything should be * initialized properly */ self->irlap = irlap_open(dev, &self->qos, hwname); /* * Always allocate the DMA channel after the IRQ, * and clean up on failure. */ if (request_dma(self->io.dma, dev->name)) { smsc_ircc_net_close(dev); IRDA_WARNING("%s(), unable to allocate DMA=%d\n", __FUNCTION__, self->io.dma); return -EAGAIN; } netif_start_queue(dev); return 0; } /* * Function smsc_ircc_net_close (dev) * * Stop the device * */ static int smsc_ircc_net_close(struct net_device *dev) { struct smsc_ircc_cb *self; IRDA_DEBUG(1, "%s\n", __FUNCTION__); IRDA_ASSERT(dev != NULL, return -1;); self = netdev_priv(dev); IRDA_ASSERT(self != NULL, return 0;); /* Stop device */ netif_stop_queue(dev); /* Stop and remove instance of IrLAP */ if (self->irlap) irlap_close(self->irlap); self->irlap = NULL; smsc_ircc_stop_interrupts(self); /* if we are called from smsc_ircc_resume we don't have IRQ reserved */ if (!self->io.suspended) free_irq(self->io.irq, dev); disable_dma(self->io.dma); free_dma(self->io.dma); return 0; } static int smsc_ircc_suspend(struct platform_device *dev, pm_message_t state) { struct smsc_ircc_cb *self = platform_get_drvdata(dev); if (!self->io.suspended) { IRDA_DEBUG(1, "%s, Suspending\n", driver_name); rtnl_lock(); if (netif_running(self->netdev)) { netif_device_detach(self->netdev); smsc_ircc_stop_interrupts(self); free_irq(self->io.irq, self->netdev); disable_dma(self->io.dma); } self->io.suspended = 1; rtnl_unlock(); } return 0; } static int smsc_ircc_resume(struct platform_device *dev) { struct smsc_ircc_cb *self = platform_get_drvdata(dev); if (self->io.suspended) { IRDA_DEBUG(1, "%s, Waking up\n", driver_name); rtnl_lock(); smsc_ircc_init_chip(self); if (netif_running(self->netdev)) { if (smsc_ircc_request_irq(self)) { /* * Don't fail resume process, just kill this * network interface */ unregister_netdevice(self->netdev); } else { enable_dma(self->io.dma); smsc_ircc_start_interrupts(self); netif_device_attach(self->netdev); } } self->io.suspended = 0; rtnl_unlock(); } return 0; } /* * Function smsc_ircc_close (self) * * Close driver instance * */ static int __exit smsc_ircc_close(struct smsc_ircc_cb *self) { IRDA_DEBUG(1, "%s\n", __FUNCTION__); IRDA_ASSERT(self != NULL, return -1;); platform_device_unregister(self->pldev); /* Remove netdevice */ unregister_netdev(self->netdev); smsc_ircc_stop_interrupts(self); /* Release the PORTS that this driver is using */ IRDA_DEBUG(0, "%s(), releasing 0x%03x\n", __FUNCTION__, self->io.fir_base); release_region(self->io.fir_base, self->io.fir_ext); IRDA_DEBUG(0, "%s(), releasing 0x%03x\n", __FUNCTION__, self->io.sir_base); release_region(self->io.sir_base, self->io.sir_ext); if (self->tx_buff.head) dma_free_coherent(NULL, self->tx_buff.truesize, self->tx_buff.head, self->tx_buff_dma); if (self->rx_buff.head) dma_free_coherent(NULL, self->rx_buff.truesize, self->rx_buff.head, self->rx_buff_dma); free_netdev(self->netdev); return 0; } static void __exit smsc_ircc_cleanup(void) { int i; IRDA_DEBUG(1, "%s\n", __FUNCTION__); for (i = 0; i < 2; i++) { if (dev_self[i]) smsc_ircc_close(dev_self[i]); } platform_driver_unregister(&smsc_ircc_driver); } /* * Start SIR operations * * This function *must* be called with spinlock held, because it may * be called from the irq handler (via smsc_ircc_change_speed()). - Jean II */ void smsc_ircc_sir_start(struct smsc_ircc_cb *self) { struct net_device *dev; int fir_base, sir_base; IRDA_DEBUG(3, "%s\n", __FUNCTION__); IRDA_ASSERT(self != NULL, return;); dev = self->netdev; IRDA_ASSERT(dev != NULL, return;); dev->hard_start_xmit = &smsc_ircc_hard_xmit_sir; fir_base = self->io.fir_base; sir_base = self->io.sir_base; /* Reset everything */ outb(IRCC_MASTER_RESET, fir_base + IRCC_MASTER); #if SMSC_IRCC2_C_SIR_STOP /*smsc_ircc_sir_stop(self);*/ #endif register_bank(fir_base, 1); outb(((inb(fir_base + IRCC_SCE_CFGA) & IRCC_SCE_CFGA_BLOCK_CTRL_BITS_MASK) | IRCC_CFGA_IRDA_SIR_A), fir_base + IRCC_SCE_CFGA); /* Initialize UART */ outb(UART_LCR_WLEN8, sir_base + UART_LCR); /* Reset DLAB */ outb((UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2), sir_base + UART_MCR); /* Turn on interrups */ outb(UART_IER_RLSI | UART_IER_RDI |UART_IER_THRI, sir_base + UART_IER); IRDA_DEBUG(3, "%s() - exit\n", __FUNCTION__); outb(0x00, fir_base + IRCC_MASTER); } #if SMSC_IRCC2_C_SIR_STOP void smsc_ircc_sir_stop(struct smsc_ircc_cb *self) { int iobase; IRDA_DEBUG(3, "%s\n", __FUNCTION__); iobase = self->io.sir_base; /* Reset UART */ outb(0, iobase + UART_MCR); /* Turn off interrupts */ outb(0, iobase + UART_IER); } #endif /* * Function smsc_sir_write_wakeup (self) * * Called by the SIR interrupt handler when there's room for more data. * If we have more packets to send, we send them here. * */ static void smsc_ircc_sir_write_wakeup(struct smsc_ircc_cb *self) { int actual = 0; int iobase; int fcr; IRDA_ASSERT(self != NULL, return;); IRDA_DEBUG(4, "%s\n", __FUNCTION__); iobase = self->io.sir_base; /* Finished with frame? */ if (self->tx_buff.len > 0) { /* Write data left in transmit buffer */ actual = smsc_ircc_sir_write(iobase, self->io.fifo_size, self->tx_buff.data, self->tx_buff.len); self->tx_buff.data += actual; self->tx_buff.len -= actual; } else { /*if (self->tx_buff.len ==0) {*/ /* * Now serial buffer is almost free & we can start * transmission of another packet. But first we must check * if we need to change the speed of the hardware */ if (self->new_speed) { IRDA_DEBUG(5, "%s(), Changing speed to %d.\n", __FUNCTION__, self->new_speed); smsc_ircc_sir_wait_hw_transmitter_finish(self); smsc_ircc_change_speed(self, self->new_speed); self->new_speed = 0; } else { /* Tell network layer that we want more frames */ netif_wake_queue(self->netdev); } self->stats.tx_packets++; if (self->io.speed <= 115200) { /* * Reset Rx FIFO to make sure that all reflected transmit data * is discarded. This is needed for half duplex operation */ fcr = UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR; fcr |= self->io.speed < 38400 ? UART_FCR_TRIGGER_1 : UART_FCR_TRIGGER_14; outb(fcr, iobase + UART_FCR); /* Turn on receive interrupts */ outb(UART_IER_RDI, iobase + UART_IER); } } } /* * Function smsc_ircc_sir_write (iobase, fifo_size, buf, len) * * Fill Tx FIFO with transmit data * */ static int smsc_ircc_sir_write(int iobase, int fifo_size, __u8 *buf, int len) { int actual = 0; /* Tx FIFO should be empty! */ if (!(inb(iobase + UART_LSR) & UART_LSR_THRE)) { IRDA_WARNING("%s(), failed, fifo not empty!\n", __FUNCTION__); return 0; } /* Fill FIFO with current frame */ while (fifo_size-- > 0 && actual < len) { /* Transmit next byte */ outb(buf[actual], iobase + UART_TX); actual++; } return actual; } /* * Function smsc_ircc_is_receiving (self) * * Returns true is we are currently receiving data * */ static int smsc_ircc_is_receiving(struct smsc_ircc_cb *self) { return (self->rx_buff.state != OUTSIDE_FRAME); } /* * Function smsc_ircc_probe_transceiver(self) * * Tries to find the used Transceiver * */ static void smsc_ircc_probe_transceiver(struct smsc_ircc_cb *self) { unsigned int i; IRDA_ASSERT(self != NULL, return;); for (i = 0; smsc_transceivers[i].name != NULL; i++) if (smsc_transceivers[i].probe(self->io.fir_base)) { IRDA_MESSAGE(" %s transceiver found\n", smsc_transceivers[i].name); self->transceiver= i + 1; return; } IRDA_MESSAGE("No transceiver found. Defaulting to %s\n", smsc_transceivers[SMSC_IRCC2_C_DEFAULT_TRANSCEIVER].name); self->transceiver = SMSC_IRCC2_C_DEFAULT_TRANSCEIVER; } /* * Function smsc_ircc_set_transceiver_for_speed(self, speed) * * Set the transceiver according to the speed * */ static void smsc_ircc_set_transceiver_for_speed(struct smsc_ircc_cb *self, u32 speed) { unsigned int trx; trx = self->transceiver; if (trx > 0) smsc_transceivers[trx - 1].set_for_speed(self->io.fir_base, speed); } /* * Function smsc_ircc_wait_hw_transmitter_finish () * * Wait for the real end of HW transmission * * The UART is a strict FIFO, and we get called only when we have finished * pushing data to the FIFO, so the maximum amount of time we must wait * is only for the FIFO to drain out. * * We use a simple calibrated loop. We may need to adjust the loop * delay (udelay) to balance I/O traffic and latency. And we also need to * adjust the maximum timeout. * It would probably be better to wait for the proper interrupt, * but it doesn't seem to be available. * * We can't use jiffies or kernel timers because : * 1) We are called from the interrupt handler, which disable softirqs, * so jiffies won't be increased * 2) Jiffies granularity is usually very coarse (10ms), and we don't * want to wait that long to detect stuck hardware. * Jean II */ static void smsc_ircc_sir_wait_hw_transmitter_finish(struct smsc_ircc_cb *self) { int iobase = self->io.sir_base; int count = SMSC_IRCC2_HW_TRANSMITTER_TIMEOUT_US; /* Calibrated busy loop */ while (count-- > 0 && !(inb(iobase + UART_LSR) & UART_LSR_TEMT)) udelay(1); if (count == 0) IRDA_DEBUG(0, "%s(): stuck transmitter\n", __FUNCTION__); } /* PROBING * * REVISIT we can be told about the device by PNP, and should use that info * instead of probing hardware and creating a platform_device ... */ static int __init smsc_ircc_look_for_chips(void) { struct smsc_chip_address *address; char *type; unsigned int cfg_base, found; found = 0; address = possible_addresses; while (address->cfg_base) { cfg_base = address->cfg_base; /*printk(KERN_WARNING "%s(): probing: 0x%02x for: 0x%02x\n", __FUNCTION__, cfg_base, address->type);*/ if (address->type & SMSCSIO_TYPE_FDC) { type = "FDC"; if (address->type & SMSCSIO_TYPE_FLAT) if (!smsc_superio_flat(fdc_chips_flat, cfg_base, type)) found++; if (address->type & SMSCSIO_TYPE_PAGED) if (!smsc_superio_paged(fdc_chips_paged, cfg_base, type)) found++; } if (address->type & SMSCSIO_TYPE_LPC) { type = "LPC"; if (address->type & SMSCSIO_TYPE_FLAT) if (!smsc_superio_flat(lpc_chips_flat, cfg_base, type)) found++; if (address->type & SMSCSIO_TYPE_PAGED) if (!smsc_superio_paged(lpc_chips_paged, cfg_base, type)) found++; } address++; } return found; } /* * Function smsc_superio_flat (chip, base, type) * * Try to get configuration of a smc SuperIO chip with flat register model * */ static int __init smsc_superio_flat(const struct smsc_chip *chips, unsigned short cfgbase, char *type) { unsigned short firbase, sirbase; u8 mode, dma, irq; int ret = -ENODEV; IRDA_DEBUG(1, "%s\n", __FUNCTION__); if (smsc_ircc_probe(cfgbase, SMSCSIOFLAT_DEVICEID_REG, chips, type) == NULL) return ret; outb(SMSCSIOFLAT_UARTMODE0C_REG, cfgbase); mode = inb(cfgbase + 1); /*printk(KERN_WARNING "%s(): mode: 0x%02x\n", __FUNCTION__, mode);*/ if (!(mode & SMSCSIOFLAT_UART2MODE_VAL_IRDA)) IRDA_WARNING("%s(): IrDA not enabled\n", __FUNCTION__); outb(SMSCSIOFLAT_UART2BASEADDR_REG, cfgbase); sirbase = inb(cfgbase + 1) << 2; /* FIR iobase */ outb(SMSCSIOFLAT_FIRBASEADDR_REG, cfgbase); firbase = inb(cfgbase + 1) << 3; /* DMA */ outb(SMSCSIOFLAT_FIRDMASELECT_REG, cfgbase); dma = inb(cfgbase + 1) & SMSCSIOFLAT_FIRDMASELECT_MASK; /* IRQ */ outb(SMSCSIOFLAT_UARTIRQSELECT_REG, cfgbase); irq = inb(cfgbase + 1) & SMSCSIOFLAT_UART2IRQSELECT_MASK; IRDA_MESSAGE("%s(): fir: 0x%02x, sir: 0x%02x, dma: %02d, irq: %d, mode: 0x%02x\n", __FUNCTION__, firbase, sirbase, dma, irq, mode); if (firbase && smsc_ircc_open(firbase, sirbase, dma, irq) == 0) ret = 0; /* Exit configuration */ outb(SMSCSIO_CFGEXITKEY, cfgbase); return ret; } /* * Function smsc_superio_paged (chip, base, type) * * Try to get configuration of a smc SuperIO chip with paged register model * */ static int __init smsc_superio_paged(const struct smsc_chip *chips, unsigned short cfg_base, char *type) { unsigned short fir_io, sir_io; int ret = -ENODEV; IRDA_DEBUG(1, "%s\n", __FUNCTION__); if (smsc_ircc_probe(cfg_base, 0x20, chips, type) == NULL) return ret; /* Select logical device (UART2) */ outb(0x07, cfg_base); outb(0x05, cfg_base + 1); /* SIR iobase */ outb(0x60, cfg_base); sir_io = inb(cfg_base + 1) << 8; outb(0x61, cfg_base); sir_io |= inb(cfg_base + 1); /* Read FIR base */ outb(0x62, cfg_base); fir_io = inb(cfg_base + 1) << 8; outb(0x63, cfg_base); fir_io |= inb(cfg_base + 1); outb(0x2b, cfg_base); /* ??? */ if (fir_io && smsc_ircc_open(fir_io, sir_io, ircc_dma, ircc_irq) == 0) ret = 0; /* Exit configuration */ outb(SMSCSIO_CFGEXITKEY, cfg_base); return ret; } static int __init smsc_access(unsigned short cfg_base, unsigned char reg) { IRDA_DEBUG(1, "%s\n", __FUNCTION__); outb(reg, cfg_base); return inb(cfg_base) != reg ? -1 : 0; } static const struct smsc_chip * __init smsc_ircc_probe(unsigned short cfg_base, u8 reg, const struct smsc_chip *chip, char *type) { u8 devid, xdevid, rev; IRDA_DEBUG(1, "%s\n", __FUNCTION__); /* Leave configuration */ outb(SMSCSIO_CFGEXITKEY, cfg_base); if (inb(cfg_base) == SMSCSIO_CFGEXITKEY) /* not a smc superio chip */ return NULL; outb(reg, cfg_base); xdevid = inb(cfg_base + 1); /* Enter configuration */ outb(SMSCSIO_CFGACCESSKEY, cfg_base); #if 0 if (smsc_access(cfg_base,0x55)) /* send second key and check */ return NULL; #endif /* probe device ID */ if (smsc_access(cfg_base, reg)) return NULL; devid = inb(cfg_base + 1); if (devid == 0 || devid == 0xff) /* typical values for unused port */ return NULL; /* probe revision ID */ if (smsc_access(cfg_base, reg + 1)) return NULL; rev = inb(cfg_base + 1); if (rev >= 128) /* i think this will make no sense */ return NULL; if (devid == xdevid) /* protection against false positives */ return NULL; /* Check for expected device ID; are there others? */ while (chip->devid != devid) { chip++; if (chip->name == NULL) return NULL; } IRDA_MESSAGE("found SMC SuperIO Chip (devid=0x%02x rev=%02X base=0x%04x): %s%s\n", devid, rev, cfg_base, type, chip->name); if (chip->rev > rev) { IRDA_MESSAGE("Revision higher than expected\n"); return NULL; } if (chip->flags & NoIRDA) IRDA_MESSAGE("chipset does not support IRDA\n"); return chip; } static int __init smsc_superio_fdc(unsigned short cfg_base) { int ret = -1; if (!request_region(cfg_base, 2, driver_name)) { IRDA_WARNING("%s: can't get cfg_base of 0x%03x\n", __FUNCTION__, cfg_base); } else { if (!smsc_superio_flat(fdc_chips_flat, cfg_base, "FDC") || !smsc_superio_paged(fdc_chips_paged, cfg_base, "FDC")) ret = 0; release_region(cfg_base, 2); } return ret; } static int __init smsc_superio_lpc(unsigned short cfg_base) { int ret = -1; if (!request_region(cfg_base, 2, driver_name)) { IRDA_WARNING("%s: can't get cfg_base of 0x%03x\n", __FUNCTION__, cfg_base); } else { if (!smsc_superio_flat(lpc_chips_flat, cfg_base, "LPC") || !smsc_superio_paged(lpc_chips_paged, cfg_base, "LPC")) ret = 0; release_region(cfg_base, 2); } return ret; } /* * Look for some specific subsystem setups that need * pre-configuration not properly done by the BIOS (especially laptops) * This code is based in part on smcinit.c, tosh1800-smcinit.c * and tosh2450-smcinit.c. The table lists the device entries * for ISA bridges with an LPC (Low Pin Count) controller which * handles the communication with the SMSC device. After the LPC * controller is initialized through PCI, the SMSC device is initialized * through a dedicated port in the ISA port-mapped I/O area, this latter * area is used to configure the SMSC device with default * SIR and FIR I/O ports, DMA and IRQ. Different vendors have * used different sets of parameters and different control port * addresses making a subsystem device table necessary. */ #ifdef CONFIG_PCI #define PCIID_VENDOR_INTEL 0x8086 #define PCIID_VENDOR_ALI 0x10b9 static struct smsc_ircc_subsystem_configuration subsystem_configurations[] __devinitdata = { { .vendor = PCIID_VENDOR_INTEL, /* Intel 82801DBM LPC bridge */ .device = 0x24cc, .subvendor = 0x103c, .subdevice = 0x088c, /* Quite certain these are the same for nc8000 as for nc6000 */ .sir_io = 0x02f8, .fir_io = 0x0130, .fir_irq = 0x05, .fir_dma = 0x03, .cfg_base = 0x004e, .preconfigure = preconfigure_through_82801, .name = "HP nc8000", }, { .vendor = PCIID_VENDOR_INTEL, /* Intel 82801DBM LPC bridge */ .device = 0x24cc, .subvendor = 0x103c, .subdevice = 0x0890, .sir_io = 0x02f8, .fir_io = 0x0130, .fir_irq = 0x05, .fir_dma = 0x03, .cfg_base = 0x004e, .preconfigure = preconfigure_through_82801, .name = "HP nc6000", }, { /* Intel 82801DB/DBL (ICH4/ICH4-L) LPC Interface Bridge */ .vendor = PCIID_VENDOR_INTEL, .device = 0x24c0, .subvendor = 0x1179, .subdevice = 0xffff, /* 0xffff is "any" */ .sir_io = 0x03f8, .fir_io = 0x0130, .fir_irq = 0x07, .fir_dma = 0x01, .cfg_base = 0x002e, .preconfigure = preconfigure_through_82801, .name = "Toshiba laptop with Intel 82801DB/DBL LPC bridge", }, { .vendor = PCIID_VENDOR_INTEL, /* Intel 82801CAM ISA bridge */ .device = 0x248c, .subvendor = 0x1179, .subdevice = 0xffff, /* 0xffff is "any" */ .sir_io = 0x03f8, .fir_io = 0x0130, .fir_irq = 0x03, .fir_dma = 0x03, .cfg_base = 0x002e, .preconfigure = preconfigure_through_82801, .name = "Toshiba laptop with Intel 82801CAM ISA bridge", }, { /* 82801DBM (ICH4-M) LPC Interface Bridge */ .vendor = PCIID_VENDOR_INTEL, .device = 0x24cc, .subvendor = 0x1179, .subdevice = 0xffff, /* 0xffff is "any" */ .sir_io = 0x03f8, .fir_io = 0x0130, .fir_irq = 0x03, .fir_dma = 0x03, .cfg_base = 0x002e, .preconfigure = preconfigure_through_82801, .name = "Toshiba laptop with Intel 8281DBM LPC bridge", }, { /* ALi M1533/M1535 PCI to ISA Bridge [Aladdin IV/V/V+] */ .vendor = PCIID_VENDOR_ALI, .device = 0x1533, .subvendor = 0x1179, .subdevice = 0xffff, /* 0xffff is "any" */ .sir_io = 0x02e8, .fir_io = 0x02f8, .fir_irq = 0x07, .fir_dma = 0x03, .cfg_base = 0x002e, .preconfigure = preconfigure_through_ali, .name = "Toshiba laptop with ALi ISA bridge", }, { } // Terminator }; /* * This sets up the basic SMSC parameters * (FIR port, SIR port, FIR DMA, FIR IRQ) * through the chip configuration port. */ static int __init preconfigure_smsc_chip(struct smsc_ircc_subsystem_configuration *conf) { unsigned short iobase = conf->cfg_base; unsigned char tmpbyte; outb(LPC47N227_CFGACCESSKEY, iobase); // enter configuration state outb(SMSCSIOFLAT_DEVICEID_REG, iobase); // set for device ID tmpbyte = inb(iobase +1); // Read device ID IRDA_DEBUG(0, "Detected Chip id: 0x%02x, setting up registers...\n", tmpbyte); /* Disable UART1 and set up SIR I/O port */ outb(0x24, iobase); // select CR24 - UART1 base addr outb(0x00, iobase + 1); // disable UART1 outb(SMSCSIOFLAT_UART2BASEADDR_REG, iobase); // select CR25 - UART2 base addr outb( (conf->sir_io >> 2), iobase + 1); // bits 2-9 of 0x3f8 tmpbyte = inb(iobase + 1); if (tmpbyte != (conf->sir_io >> 2) ) { IRDA_WARNING("ERROR: could not configure SIR ioport.\n"); IRDA_WARNING("Try to supply ircc_cfg argument.\n"); return -ENXIO; } /* Set up FIR IRQ channel for UART2 */ outb(SMSCSIOFLAT_UARTIRQSELECT_REG, iobase); // select CR28 - UART1,2 IRQ select tmpbyte = inb(iobase + 1); tmpbyte &= SMSCSIOFLAT_UART1IRQSELECT_MASK; // Do not touch the UART1 portion tmpbyte |= (conf->fir_irq & SMSCSIOFLAT_UART2IRQSELECT_MASK); outb(tmpbyte, iobase + 1); tmpbyte = inb(iobase + 1) & SMSCSIOFLAT_UART2IRQSELECT_MASK; if (tmpbyte != conf->fir_irq) { IRDA_WARNING("ERROR: could not configure FIR IRQ channel.\n"); return -ENXIO; } /* Set up FIR I/O port */ outb(SMSCSIOFLAT_FIRBASEADDR_REG, iobase); // CR2B - SCE (FIR) base addr outb((conf->fir_io >> 3), iobase + 1); tmpbyte = inb(iobase + 1); if (tmpbyte != (conf->fir_io >> 3) ) { IRDA_WARNING("ERROR: could not configure FIR I/O port.\n"); return -ENXIO; } /* Set up FIR DMA channel */ outb(SMSCSIOFLAT_FIRDMASELECT_REG, iobase); // CR2C - SCE (FIR) DMA select outb((conf->fir_dma & LPC47N227_FIRDMASELECT_MASK), iobase + 1); // DMA tmpbyte = inb(iobase + 1) & LPC47N227_FIRDMASELECT_MASK; if (tmpbyte != (conf->fir_dma & LPC47N227_FIRDMASELECT_MASK)) { IRDA_WARNING("ERROR: could not configure FIR DMA channel.\n"); return -ENXIO; } outb(SMSCSIOFLAT_UARTMODE0C_REG, iobase); // CR0C - UART mode tmpbyte = inb(iobase + 1); tmpbyte &= ~SMSCSIOFLAT_UART2MODE_MASK | SMSCSIOFLAT_UART2MODE_VAL_IRDA; outb(tmpbyte, iobase + 1); // enable IrDA (HPSIR) mode, high speed outb(LPC47N227_APMBOOTDRIVE_REG, iobase); // CR07 - Auto Pwr Mgt/boot drive sel tmpbyte = inb(iobase + 1); outb(tmpbyte | LPC47N227_UART2AUTOPWRDOWN_MASK, iobase + 1); // enable UART2 autopower down /* This one was not part of tosh1800 */ outb(0x0a, iobase); // CR0a - ecp fifo / ir mux tmpbyte = inb(iobase + 1); outb(tmpbyte | 0x40, iobase + 1); // send active device to ir port outb(LPC47N227_UART12POWER_REG, iobase); // CR02 - UART 1,2 power tmpbyte = inb(iobase + 1); outb(tmpbyte | LPC47N227_UART2POWERDOWN_MASK, iobase + 1); // UART2 power up mode, UART1 power down outb(LPC47N227_FDCPOWERVALIDCONF_REG, iobase); // CR00 - FDC Power/valid config cycle tmpbyte = inb(iobase + 1); outb(tmpbyte | LPC47N227_VALID_MASK, iobase + 1); // valid config cycle done outb(LPC47N227_CFGEXITKEY, iobase); // Exit configuration return 0; } /* 82801CAM generic registers */ #define VID 0x00 #define DID 0x02 #define PIRQ_A_D_ROUT 0x60 #define SIRQ_CNTL 0x64 #define PIRQ_E_H_ROUT 0x68 #define PCI_DMA_C 0x90 /* LPC-specific registers */ #define COM_DEC 0xe0 #define GEN1_DEC 0xe4 #define LPC_EN 0xe6 #define GEN2_DEC 0xec /* * Sets up the I/O range using the 82801CAM ISA bridge, 82801DBM LPC bridge * or Intel 82801DB/DBL (ICH4/ICH4-L) LPC Interface Bridge. * They all work the same way! */ static int __init preconfigure_through_82801(struct pci_dev *dev, struct smsc_ircc_subsystem_configuration *conf) { unsigned short tmpword; unsigned char tmpbyte; IRDA_MESSAGE("Setting up Intel 82801 controller and SMSC device\n"); /* * Select the range for the COMA COM port (SIR) * Register COM_DEC: * Bit 7: reserved * Bit 6-4, COMB decode range * Bit 3: reserved * Bit 2-0, COMA decode range * * Decode ranges: * 000 = 0x3f8-0x3ff (COM1) * 001 = 0x2f8-0x2ff (COM2) * 010 = 0x220-0x227 * 011 = 0x228-0x22f * 100 = 0x238-0x23f * 101 = 0x2e8-0x2ef (COM4) * 110 = 0x338-0x33f * 111 = 0x3e8-0x3ef (COM3) */ pci_read_config_byte(dev, COM_DEC, &tmpbyte); tmpbyte &= 0xf8; /* mask COMA bits */ switch(conf->sir_io) { case 0x3f8: tmpbyte |= 0x00; break; case 0x2f8: tmpbyte |= 0x01; break; case 0x220: tmpbyte |= 0x02; break; case 0x228: tmpbyte |= 0x03; break; case 0x238: tmpbyte |= 0x04; break; case 0x2e8: tmpbyte |= 0x05; break; case 0x338: tmpbyte |= 0x06; break; case 0x3e8: tmpbyte |= 0x07; break; default: tmpbyte |= 0x01; /* COM2 default */ } IRDA_DEBUG(1, "COM_DEC (write): 0x%02x\n", tmpbyte); pci_write_config_byte(dev, COM_DEC, tmpbyte); /* Enable Low Pin Count interface */ pci_read_config_word(dev, LPC_EN, &tmpword); /* These seem to be set up at all times, * just make sure it is properly set. */ switch(conf->cfg_base) { case 0x04e: tmpword |= 0x2000; break; case 0x02e: tmpword |= 0x1000; break; case 0x062: tmpword |= 0x0800; break; case 0x060: tmpword |= 0x0400; break; default: IRDA_WARNING("Uncommon I/O base address: 0x%04x\n", conf->cfg_base); break; } tmpword &= 0xfffd; /* disable LPC COMB */ tmpword |= 0x0001; /* set bit 0 : enable LPC COMA addr range (GEN2) */ IRDA_DEBUG(1, "LPC_EN (write): 0x%04x\n", tmpword); pci_write_config_word(dev, LPC_EN, tmpword); /* * Configure LPC DMA channel * PCI_DMA_C bits: * Bit 15-14: DMA channel 7 select * Bit 13-12: DMA channel 6 select * Bit 11-10: DMA channel 5 select * Bit 9-8: Reserved * Bit 7-6: DMA channel 3 select * Bit 5-4: DMA channel 2 select * Bit 3-2: DMA channel 1 select * Bit 1-0: DMA channel 0 select * 00 = Reserved value * 01 = PC/PCI DMA * 10 = Reserved value * 11 = LPC I/F DMA */ pci_read_config_word(dev, PCI_DMA_C, &tmpword); switch(conf->fir_dma) { case 0x07: tmpword |= 0xc000; break; case 0x06: tmpword |= 0x3000; break; case 0x05: tmpword |= 0x0c00; break; case 0x03: tmpword |= 0x00c0; break; case 0x02: tmpword |= 0x0030; break; case 0x01: tmpword |= 0x000c; break; case 0x00: tmpword |= 0x0003; break; default: break; /* do not change settings */ } IRDA_DEBUG(1, "PCI_DMA_C (write): 0x%04x\n", tmpword); pci_write_config_word(dev, PCI_DMA_C, tmpword); /* * GEN2_DEC bits: * Bit 15-4: Generic I/O range * Bit 3-1: reserved (read as 0) * Bit 0: enable GEN2 range on LPC I/F */ tmpword = conf->fir_io & 0xfff8; tmpword |= 0x0001; IRDA_DEBUG(1, "GEN2_DEC (write): 0x%04x\n", tmpword); pci_write_config_word(dev, GEN2_DEC, tmpword); /* Pre-configure chip */ return preconfigure_smsc_chip(conf); } /* * Pre-configure a certain port on the ALi 1533 bridge. * This is based on reverse-engineering since ALi does not * provide any data sheet for the 1533 chip. */ static void __init preconfigure_ali_port(struct pci_dev *dev, unsigned short port) { unsigned char reg; /* These bits obviously control the different ports */ unsigned char mask; unsigned char tmpbyte; switch(port) { case 0x0130: case 0x0178: reg = 0xb0; mask = 0x80; break; case 0x03f8: reg = 0xb4; mask = 0x80; break; case 0x02f8: reg = 0xb4; mask = 0x30; break; case 0x02e8: reg = 0xb4; mask = 0x08; break; default: IRDA_ERROR("Failed to configure unsupported port on ALi 1533 bridge: 0x%04x\n", port); return; } pci_read_config_byte(dev, reg, &tmpbyte); /* Turn on the right bits */ tmpbyte |= mask; pci_write_config_byte(dev, reg, tmpbyte); IRDA_MESSAGE("Activated ALi 1533 ISA bridge port 0x%04x.\n", port); return; } static int __init preconfigure_through_ali(struct pci_dev *dev, struct smsc_ircc_subsystem_configuration *conf) { /* Configure the two ports on the ALi 1533 */ preconfigure_ali_port(dev, conf->sir_io); preconfigure_ali_port(dev, conf->fir_io); /* Pre-configure chip */ return preconfigure_smsc_chip(conf); } static int __init smsc_ircc_preconfigure_subsystems(unsigned short ircc_cfg, unsigned short ircc_fir, unsigned short ircc_sir, unsigned char ircc_dma, unsigned char ircc_irq) { struct pci_dev *dev = NULL; unsigned short ss_vendor = 0x0000; unsigned short ss_device = 0x0000; int ret = 0; dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev); while (dev != NULL) { struct smsc_ircc_subsystem_configuration *conf; /* * Cache the subsystem vendor/device: * some manufacturers fail to set this for all components, * so we save it in case there is just 0x0000 0x0000 on the * device we want to check. */ if (dev->subsystem_vendor != 0x0000U) { ss_vendor = dev->subsystem_vendor; ss_device = dev->subsystem_device; } conf = subsystem_configurations; for( ; conf->subvendor; conf++) { if(conf->vendor == dev->vendor && conf->device == dev->device && conf->subvendor == ss_vendor && /* Sometimes these are cached values */ (conf->subdevice == ss_device || conf->subdevice == 0xffff)) { struct smsc_ircc_subsystem_configuration tmpconf; memcpy(&tmpconf, conf, sizeof(struct smsc_ircc_subsystem_configuration)); /* * Override the default values with anything * passed in as parameter */ if (ircc_cfg != 0) tmpconf.cfg_base = ircc_cfg; if (ircc_fir != 0) tmpconf.fir_io = ircc_fir; if (ircc_sir != 0) tmpconf.sir_io = ircc_sir; if (ircc_dma != 0xff) tmpconf.fir_dma = ircc_dma; if (ircc_irq != 0xff) tmpconf.fir_irq = ircc_irq; IRDA_MESSAGE("Detected unconfigured %s SMSC IrDA chip, pre-configuring device.\n", conf->name); if (conf->preconfigure) ret = conf->preconfigure(dev, &tmpconf); else ret = -ENODEV; } } dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev); } return ret; } #endif // CONFIG_PCI /************************************************ * * Transceivers specific functions * ************************************************/ /* * Function smsc_ircc_set_transceiver_smsc_ircc_atc(fir_base, speed) * * Program transceiver through smsc-ircc ATC circuitry * */ static void smsc_ircc_set_transceiver_smsc_ircc_atc(int fir_base, u32 speed) { unsigned long jiffies_now, jiffies_timeout; u8 val; jiffies_now = jiffies; jiffies_timeout = jiffies + SMSC_IRCC2_ATC_PROGRAMMING_TIMEOUT_JIFFIES; /* ATC */ register_bank(fir_base, 4); outb((inb(fir_base + IRCC_ATC) & IRCC_ATC_MASK) | IRCC_ATC_nPROGREADY|IRCC_ATC_ENABLE, fir_base + IRCC_ATC); while ((val = (inb(fir_base + IRCC_ATC) & IRCC_ATC_nPROGREADY)) && !time_after(jiffies, jiffies_timeout)) /* empty */; if (val) IRDA_WARNING("%s(): ATC: 0x%02x\n", __FUNCTION__, inb(fir_base + IRCC_ATC)); } /* * Function smsc_ircc_probe_transceiver_smsc_ircc_atc(fir_base) * * Probe transceiver smsc-ircc ATC circuitry * */ static int smsc_ircc_probe_transceiver_smsc_ircc_atc(int fir_base) { return 0; } /* * Function smsc_ircc_set_transceiver_smsc_ircc_fast_pin_select(self, speed) * * Set transceiver * */ static void smsc_ircc_set_transceiver_smsc_ircc_fast_pin_select(int fir_base, u32 speed) { u8 fast_mode; switch (speed) { default: case 576000 : fast_mode = 0; break; case 1152000 : case 4000000 : fast_mode = IRCC_LCR_A_FAST; break; } register_bank(fir_base, 0); outb((inb(fir_base + IRCC_LCR_A) & 0xbf) | fast_mode, fir_base + IRCC_LCR_A); } /* * Function smsc_ircc_probe_transceiver_smsc_ircc_fast_pin_select(fir_base) * * Probe transceiver * */ static int smsc_ircc_probe_transceiver_smsc_ircc_fast_pin_select(int fir_base) { return 0; } /* * Function smsc_ircc_set_transceiver_toshiba_sat1800(fir_base, speed) * * Set transceiver * */ static void smsc_ircc_set_transceiver_toshiba_sat1800(int fir_base, u32 speed) { u8 fast_mode; switch (speed) { default: case 576000 : fast_mode = 0; break; case 1152000 : case 4000000 : fast_mode = /*IRCC_LCR_A_FAST |*/ IRCC_LCR_A_GP_DATA; break; } /* This causes an interrupt */ register_bank(fir_base, 0); outb((inb(fir_base + IRCC_LCR_A) & 0xbf) | fast_mode, fir_base + IRCC_LCR_A); } /* * Function smsc_ircc_probe_transceiver_toshiba_sat1800(fir_base) * * Probe transceiver * */ static int smsc_ircc_probe_transceiver_toshiba_sat1800(int fir_base) { return 0; } module_init(smsc_ircc_init); module_exit(smsc_ircc_cleanup);