/* * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include /* Address offset of Registers */ #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */ #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */ #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */ #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */ #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */ #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */ #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */ #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */ #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */ #define UDC_DEVCTL_ADDR 0x404 /* Device control */ #define UDC_DEVSTS_ADDR 0x408 /* Device status */ #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */ #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */ #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */ #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */ #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */ #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */ #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */ #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */ /* Endpoint control register */ /* Bit position */ #define UDC_EPCTL_MRXFLUSH (1 << 12) #define UDC_EPCTL_RRDY (1 << 9) #define UDC_EPCTL_CNAK (1 << 8) #define UDC_EPCTL_SNAK (1 << 7) #define UDC_EPCTL_NAK (1 << 6) #define UDC_EPCTL_P (1 << 3) #define UDC_EPCTL_F (1 << 1) #define UDC_EPCTL_S (1 << 0) #define UDC_EPCTL_ET_SHIFT 4 /* Mask patern */ #define UDC_EPCTL_ET_MASK 0x00000030 /* Value for ET field */ #define UDC_EPCTL_ET_CONTROL 0 #define UDC_EPCTL_ET_ISO 1 #define UDC_EPCTL_ET_BULK 2 #define UDC_EPCTL_ET_INTERRUPT 3 /* Endpoint status register */ /* Bit position */ #define UDC_EPSTS_XFERDONE (1 << 27) #define UDC_EPSTS_RSS (1 << 26) #define UDC_EPSTS_RCS (1 << 25) #define UDC_EPSTS_TXEMPTY (1 << 24) #define UDC_EPSTS_TDC (1 << 10) #define UDC_EPSTS_HE (1 << 9) #define UDC_EPSTS_MRXFIFO_EMP (1 << 8) #define UDC_EPSTS_BNA (1 << 7) #define UDC_EPSTS_IN (1 << 6) #define UDC_EPSTS_OUT_SHIFT 4 /* Mask patern */ #define UDC_EPSTS_OUT_MASK 0x00000030 #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0 /* Value for OUT field */ #define UDC_EPSTS_OUT_SETUP 2 #define UDC_EPSTS_OUT_DATA 1 /* Device configuration register */ /* Bit position */ #define UDC_DEVCFG_CSR_PRG (1 << 17) #define UDC_DEVCFG_SP (1 << 3) /* SPD Valee */ #define UDC_DEVCFG_SPD_HS 0x0 #define UDC_DEVCFG_SPD_FS 0x1 #define UDC_DEVCFG_SPD_LS 0x2 /* Device control register */ /* Bit position */ #define UDC_DEVCTL_THLEN_SHIFT 24 #define UDC_DEVCTL_BRLEN_SHIFT 16 #define UDC_DEVCTL_CSR_DONE (1 << 13) #define UDC_DEVCTL_SD (1 << 10) #define UDC_DEVCTL_MODE (1 << 9) #define UDC_DEVCTL_BREN (1 << 8) #define UDC_DEVCTL_THE (1 << 7) #define UDC_DEVCTL_DU (1 << 4) #define UDC_DEVCTL_TDE (1 << 3) #define UDC_DEVCTL_RDE (1 << 2) #define UDC_DEVCTL_RES (1 << 0) /* Device status register */ /* Bit position */ #define UDC_DEVSTS_TS_SHIFT 18 #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13 #define UDC_DEVSTS_ALT_SHIFT 8 #define UDC_DEVSTS_INTF_SHIFT 4 #define UDC_DEVSTS_CFG_SHIFT 0 /* Mask patern */ #define UDC_DEVSTS_TS_MASK 0xfffc0000 #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000 #define UDC_DEVSTS_ALT_MASK 0x00000f00 #define UDC_DEVSTS_INTF_MASK 0x000000f0 #define UDC_DEVSTS_CFG_MASK 0x0000000f /* value for maximum speed for SPEED field */ #define UDC_DEVSTS_ENUM_SPEED_FULL 1 #define UDC_DEVSTS_ENUM_SPEED_HIGH 0 #define UDC_DEVSTS_ENUM_SPEED_LOW 2 #define UDC_DEVSTS_ENUM_SPEED_FULLX 3 /* Device irq register */ /* Bit position */ #define UDC_DEVINT_RWKP (1 << 7) #define UDC_DEVINT_ENUM (1 << 6) #define UDC_DEVINT_SOF (1 << 5) #define UDC_DEVINT_US (1 << 4) #define UDC_DEVINT_UR (1 << 3) #define UDC_DEVINT_ES (1 << 2) #define UDC_DEVINT_SI (1 << 1) #define UDC_DEVINT_SC (1 << 0) /* Mask patern */ #define UDC_DEVINT_MSK 0x7f /* Endpoint irq register */ /* Bit position */ #define UDC_EPINT_IN_SHIFT 0 #define UDC_EPINT_OUT_SHIFT 16 #define UDC_EPINT_IN_EP0 (1 << 0) #define UDC_EPINT_OUT_EP0 (1 << 16) /* Mask patern */ #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff /* UDC_CSR_BUSY Status register */ /* Bit position */ #define UDC_CSR_BUSY (1 << 0) /* SOFT RESET register */ /* Bit position */ #define UDC_PSRST (1 << 1) #define UDC_SRST (1 << 0) /* USB_DEVICE endpoint register */ /* Bit position */ #define UDC_CSR_NE_NUM_SHIFT 0 #define UDC_CSR_NE_DIR_SHIFT 4 #define UDC_CSR_NE_TYPE_SHIFT 5 #define UDC_CSR_NE_CFG_SHIFT 7 #define UDC_CSR_NE_INTF_SHIFT 11 #define UDC_CSR_NE_ALT_SHIFT 15 #define UDC_CSR_NE_MAX_PKT_SHIFT 19 /* Mask patern */ #define UDC_CSR_NE_NUM_MASK 0x0000000f #define UDC_CSR_NE_DIR_MASK 0x00000010 #define UDC_CSR_NE_TYPE_MASK 0x00000060 #define UDC_CSR_NE_CFG_MASK 0x00000780 #define UDC_CSR_NE_INTF_MASK 0x00007800 #define UDC_CSR_NE_ALT_MASK 0x00078000 #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4) #define PCH_UDC_EPINT(in, num)\ (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT))) /* Index of endpoint */ #define UDC_EP0IN_IDX 0 #define UDC_EP0OUT_IDX 1 #define UDC_EPIN_IDX(ep) (ep * 2) #define UDC_EPOUT_IDX(ep) (ep * 2 + 1) #define PCH_UDC_EP0 0 #define PCH_UDC_EP1 1 #define PCH_UDC_EP2 2 #define PCH_UDC_EP3 3 /* Number of endpoint */ #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */ #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */ /* Length Value */ #define PCH_UDC_BRLEN 0x0F /* Burst length */ #define PCH_UDC_THLEN 0x1F /* Threshold length */ /* Value of EP Buffer Size */ #define UDC_EP0IN_BUFF_SIZE 16 #define UDC_EPIN_BUFF_SIZE 256 #define UDC_EP0OUT_BUFF_SIZE 16 #define UDC_EPOUT_BUFF_SIZE 256 /* Value of EP maximum packet size */ #define UDC_EP0IN_MAX_PKT_SIZE 64 #define UDC_EP0OUT_MAX_PKT_SIZE 64 #define UDC_BULK_MAX_PKT_SIZE 512 /* DMA */ #define DMA_DIR_RX 1 /* DMA for data receive */ #define DMA_DIR_TX 2 /* DMA for data transmit */ #define DMA_ADDR_INVALID (~(dma_addr_t)0) #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */ /** * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information * for data * @status: Status quadlet * @reserved: Reserved * @dataptr: Buffer descriptor * @next: Next descriptor */ struct pch_udc_data_dma_desc { u32 status; u32 reserved; u32 dataptr; u32 next; }; /** * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information * for control data * @status: Status * @reserved: Reserved * @data12: First setup word * @data34: Second setup word */ struct pch_udc_stp_dma_desc { u32 status; u32 reserved; struct usb_ctrlrequest request; } __attribute((packed)); /* DMA status definitions */ /* Buffer status */ #define PCH_UDC_BUFF_STS 0xC0000000 #define PCH_UDC_BS_HST_RDY 0x00000000 #define PCH_UDC_BS_DMA_BSY 0x40000000 #define PCH_UDC_BS_DMA_DONE 0x80000000 #define PCH_UDC_BS_HST_BSY 0xC0000000 /* Rx/Tx Status */ #define PCH_UDC_RXTX_STS 0x30000000 #define PCH_UDC_RTS_SUCC 0x00000000 #define PCH_UDC_RTS_DESERR 0x10000000 #define PCH_UDC_RTS_BUFERR 0x30000000 /* Last Descriptor Indication */ #define PCH_UDC_DMA_LAST 0x08000000 /* Number of Rx/Tx Bytes Mask */ #define PCH_UDC_RXTX_BYTES 0x0000ffff /** * struct pch_udc_cfg_data - Structure to hold current configuration * and interface information * @cur_cfg: current configuration in use * @cur_intf: current interface in use * @cur_alt: current alt interface in use */ struct pch_udc_cfg_data { u16 cur_cfg; u16 cur_intf; u16 cur_alt; }; /** * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information * @ep: embedded ep request * @td_stp_phys: for setup request * @td_data_phys: for data request * @td_stp: for setup request * @td_data: for data request * @dev: reference to device struct * @offset_addr: offset address of ep register * @desc: for this ep * @queue: queue for requests * @num: endpoint number * @in: endpoint is IN * @halted: endpoint halted? * @epsts: Endpoint status */ struct pch_udc_ep { struct usb_ep ep; dma_addr_t td_stp_phys; dma_addr_t td_data_phys; struct pch_udc_stp_dma_desc *td_stp; struct pch_udc_data_dma_desc *td_data; struct pch_udc_dev *dev; unsigned long offset_addr; const struct usb_endpoint_descriptor *desc; struct list_head queue; unsigned num:5, in:1, halted:1; unsigned long epsts; }; /** * struct pch_udc_dev - Structure holding complete information * of the PCH USB device * @gadget: gadget driver data * @driver: reference to gadget driver bound * @pdev: reference to the PCI device * @ep: array of endpoints * @lock: protects all state * @active: enabled the PCI device * @stall: stall requested * @prot_stall: protcol stall requested * @irq_registered: irq registered with system * @mem_region: device memory mapped * @registered: driver regsitered with system * @suspended: driver in suspended state * @connected: gadget driver associated * @set_cfg_not_acked: pending acknowledgement 4 setup * @waiting_zlp_ack: pending acknowledgement 4 ZLP * @data_requests: DMA pool for data requests * @stp_requests: DMA pool for setup requests * @dma_addr: DMA pool for received * @ep0out_buf: Buffer for DMA * @setup_data: Received setup data * @phys_addr: of device memory * @base_addr: for mapped device memory * @irq: IRQ line for the device * @cfg_data: current cfg, intf, and alt in use */ struct pch_udc_dev { struct usb_gadget gadget; struct usb_gadget_driver *driver; struct pci_dev *pdev; struct pch_udc_ep ep[PCH_UDC_EP_NUM]; spinlock_t lock; /* protects all state */ unsigned active:1, stall:1, prot_stall:1, irq_registered:1, mem_region:1, registered:1, suspended:1, connected:1, set_cfg_not_acked:1, waiting_zlp_ack:1; struct pci_pool *data_requests; struct pci_pool *stp_requests; dma_addr_t dma_addr; void *ep0out_buf; struct usb_ctrlrequest setup_data; unsigned long phys_addr; void __iomem *base_addr; unsigned irq; struct pch_udc_cfg_data cfg_data; }; #define PCH_UDC_PCI_BAR 1 #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808 static const char ep0_string[] = "ep0in"; static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */ struct pch_udc_dev *pch_udc; /* pointer to device object */ static int speed_fs; module_param_named(speed_fs, speed_fs, bool, S_IRUGO); MODULE_PARM_DESC(speed_fs, "true for Full speed operation"); /** * struct pch_udc_request - Structure holding a PCH USB device request packet * @req: embedded ep request * @td_data_phys: phys. address * @td_data: first dma desc. of chain * @td_data_last: last dma desc. of chain * @queue: associated queue * @dma_going: DMA in progress for request * @dma_mapped: DMA memory mapped for request * @dma_done: DMA completed for request * @chain_len: chain length */ struct pch_udc_request { struct usb_request req; dma_addr_t td_data_phys; struct pch_udc_data_dma_desc *td_data; struct pch_udc_data_dma_desc *td_data_last; struct list_head queue; unsigned dma_going:1, dma_mapped:1, dma_done:1; unsigned chain_len; }; static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg) { return ioread32(dev->base_addr + reg); } static inline void pch_udc_writel(struct pch_udc_dev *dev, unsigned long val, unsigned long reg) { iowrite32(val, dev->base_addr + reg); } static inline void pch_udc_bit_set(struct pch_udc_dev *dev, unsigned long reg, unsigned long bitmask) { pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg); } static inline void pch_udc_bit_clr(struct pch_udc_dev *dev, unsigned long reg, unsigned long bitmask) { pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg); } static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg) { return ioread32(ep->dev->base_addr + ep->offset_addr + reg); } static inline void pch_udc_ep_writel(struct pch_udc_ep *ep, unsigned long val, unsigned long reg) { iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg); } static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep, unsigned long reg, unsigned long bitmask) { pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg); } static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep, unsigned long reg, unsigned long bitmask) { pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg); } /** * pch_udc_csr_busy() - Wait till idle. * @dev: Reference to pch_udc_dev structure */ static void pch_udc_csr_busy(struct pch_udc_dev *dev) { unsigned int count = 200; /* Wait till idle */ while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY) && --count) cpu_relax(); if (!count) dev_err(&dev->pdev->dev, "%s: wait error\n", __func__); } /** * pch_udc_write_csr() - Write the command and status registers. * @dev: Reference to pch_udc_dev structure * @val: value to be written to CSR register * @addr: address of CSR register */ static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val, unsigned int ep) { unsigned long reg = PCH_UDC_CSR(ep); pch_udc_csr_busy(dev); /* Wait till idle */ pch_udc_writel(dev, val, reg); pch_udc_csr_busy(dev); /* Wait till idle */ } /** * pch_udc_read_csr() - Read the command and status registers. * @dev: Reference to pch_udc_dev structure * @addr: address of CSR register * * Return codes: content of CSR register */ static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep) { unsigned long reg = PCH_UDC_CSR(ep); pch_udc_csr_busy(dev); /* Wait till idle */ pch_udc_readl(dev, reg); /* Dummy read */ pch_udc_csr_busy(dev); /* Wait till idle */ return pch_udc_readl(dev, reg); } /** * pch_udc_rmt_wakeup() - Initiate for remote wakeup * @dev: Reference to pch_udc_dev structure */ static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev) { pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); mdelay(1); pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); } /** * pch_udc_get_frame() - Get the current frame from device status register * @dev: Reference to pch_udc_dev structure * Retern current frame */ static inline int pch_udc_get_frame(struct pch_udc_dev *dev) { u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR); return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT; } /** * pch_udc_clear_selfpowered() - Clear the self power control * @dev: Reference to pch_udc_regs structure */ static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev) { pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP); } /** * pch_udc_set_selfpowered() - Set the self power control * @dev: Reference to pch_udc_regs structure */ static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev) { pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP); } /** * pch_udc_set_disconnect() - Set the disconnect status. * @dev: Reference to pch_udc_regs structure */ static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev) { pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD); } /** * pch_udc_clear_disconnect() - Clear the disconnect status. * @dev: Reference to pch_udc_regs structure */ static void pch_udc_clear_disconnect(struct pch_udc_dev *dev) { /* Clear the disconnect */ pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD); mdelay(1); /* Resume USB signalling */ pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); } /** * pch_udc_vbus_session() - set or clearr the disconnect status. * @dev: Reference to pch_udc_regs structure * @is_active: Parameter specifying the action * 0: indicating VBUS power is ending * !0: indicating VBUS power is starting */ static inline void pch_udc_vbus_session(struct pch_udc_dev *dev, int is_active) { if (is_active) pch_udc_clear_disconnect(dev); else pch_udc_set_disconnect(dev); } /** * pch_udc_ep_set_stall() - Set the stall of endpoint * @ep: Reference to structure of type pch_udc_ep_regs */ static void pch_udc_ep_set_stall(struct pch_udc_ep *ep) { if (ep->in) { pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F); pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S); } else { pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S); } } /** * pch_udc_ep_clear_stall() - Clear the stall of endpoint * @ep: Reference to structure of type pch_udc_ep_regs */ static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep) { /* Clear the stall */ pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S); /* Clear NAK by writing CNAK */ pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK); } /** * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint * @ep: Reference to structure of type pch_udc_ep_regs * @type: Type of endpoint */ static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep, u8 type) { pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) & UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR); } /** * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint * @ep: Reference to structure of type pch_udc_ep_regs * @buf_size: The buffer size */ static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep, u32 buf_size, u32 ep_in) { u32 data; if (ep_in) { data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR); data = (data & 0xffff0000) | (buf_size & 0xffff); pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR); } else { data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR); data = (buf_size << 16) | (data & 0xffff); pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR); } } /** * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint * @ep: Reference to structure of type pch_udc_ep_regs * @pkt_size: The packet size */ static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size) { u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR); data = (data & 0xffff0000) | (pkt_size & 0xffff); pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR); } /** * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint * @ep: Reference to structure of type pch_udc_ep_regs * @addr: Address of the register */ static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr) { pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR); } /** * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint * @ep: Reference to structure of type pch_udc_ep_regs * @addr: Address of the register */ static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr) { pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR); } /** * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint * @ep: Reference to structure of type pch_udc_ep_regs */ static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep) { pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P); } /** * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint * @ep: Reference to structure of type pch_udc_ep_regs */ static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep) { pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY); } /** * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint * @ep: Reference to structure of type pch_udc_ep_regs */ static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep) { pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY); } /** * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control * register depending on the direction specified * @dev: Reference to structure of type pch_udc_regs * @dir: whether Tx or Rx * DMA_DIR_RX: Receive * DMA_DIR_TX: Transmit */ static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir) { if (dir == DMA_DIR_RX) pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE); else if (dir == DMA_DIR_TX) pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE); } /** * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control * register depending on the direction specified * @dev: Reference to structure of type pch_udc_regs * @dir: Whether Tx or Rx * DMA_DIR_RX: Receive * DMA_DIR_TX: Transmit */ static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir) { if (dir == DMA_DIR_RX) pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE); else if (dir == DMA_DIR_TX) pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE); } /** * pch_udc_set_csr_done() - Set the device control register * CSR done field (bit 13) * @dev: reference to structure of type pch_udc_regs */ static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev) { pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE); } /** * pch_udc_disable_interrupts() - Disables the specified interrupts * @dev: Reference to structure of type pch_udc_regs * @mask: Mask to disable interrupts */ static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev, u32 mask) { pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask); } /** * pch_udc_enable_interrupts() - Enable the specified interrupts * @dev: Reference to structure of type pch_udc_regs * @mask: Mask to enable interrupts */ static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev, u32 mask) { pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask); } /** * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts * @dev: Reference to structure of type pch_udc_regs * @mask: Mask to disable interrupts */ static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev, u32 mask) { pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask); } /** * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts * @dev: Reference to structure of type pch_udc_regs * @mask: Mask to enable interrupts */ static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev, u32 mask) { pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask); } /** * pch_udc_read_device_interrupts() - Read the device interrupts * @dev: Reference to structure of type pch_udc_regs * Retern The device interrupts */ static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev) { return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR); } /** * pch_udc_write_device_interrupts() - Write device interrupts * @dev: Reference to structure of type pch_udc_regs * @val: The value to be written to interrupt register */ static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev, u32 val) { pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR); } /** * pch_udc_read_ep_interrupts() - Read the endpoint interrupts * @dev: Reference to structure of type pch_udc_regs * Retern The endpoint interrupt */ static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev) { return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR); } /** * pch_udc_write_ep_interrupts() - Clear endpoint interupts * @dev: Reference to structure of type pch_udc_regs * @val: The value to be written to interrupt register */ static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev, u32 val) { pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR); } /** * pch_udc_read_device_status() - Read the device status * @dev: Reference to structure of type pch_udc_regs * Retern The device status */ static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev) { return pch_udc_readl(dev, UDC_DEVSTS_ADDR); } /** * pch_udc_read_ep_control() - Read the endpoint control * @ep: Reference to structure of type pch_udc_ep_regs * Retern The endpoint control register value */ static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep) { return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR); } /** * pch_udc_clear_ep_control() - Clear the endpoint control register * @ep: Reference to structure of type pch_udc_ep_regs * Retern The endpoint control register value */ static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep) { return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR); } /** * pch_udc_read_ep_status() - Read the endpoint status * @ep: Reference to structure of type pch_udc_ep_regs * Retern The endpoint status */ static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep) { return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR); } /** * pch_udc_clear_ep_status() - Clear the endpoint status * @ep: Reference to structure of type pch_udc_ep_regs * @stat: Endpoint status */ static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep, u32 stat) { return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR); } /** * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field) * of the endpoint control register * @ep: Reference to structure of type pch_udc_ep_regs */ static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep) { pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK); } /** * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field) * of the endpoint control register * @ep: reference to structure of type pch_udc_ep_regs */ static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep) { unsigned int loopcnt = 0; struct pch_udc_dev *dev = ep->dev; if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK)) return; if (!ep->in) { loopcnt = 10000; while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) && --loopcnt) udelay(5); if (!loopcnt) dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n", __func__); } loopcnt = 10000; while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) { pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK); udelay(5); } if (!loopcnt) dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n", __func__, ep->num, (ep->in ? "in" : "out")); } /** * pch_udc_ep_fifo_flush() - Flush the endpoint fifo * @ep: reference to structure of type pch_udc_ep_regs * @dir: direction of endpoint * 0: endpoint is OUT * !0: endpoint is IN */ static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir) { unsigned int loopcnt = 0; struct pch_udc_dev *dev = ep->dev; if (dir) { /* IN ep */ pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F); return; } if (pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) return; pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH); /* Wait for RxFIFO Empty */ loopcnt = 10000; while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) && --loopcnt) udelay(5); if (!loopcnt) dev_err(&dev->pdev->dev, "RxFIFO not Empty\n"); pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH); } /** * pch_udc_ep_enable() - This api enables endpoint * @regs: Reference to structure pch_udc_ep_regs * @desc: endpoint descriptor */ static void pch_udc_ep_enable(struct pch_udc_ep *ep, struct pch_udc_cfg_data *cfg, const struct usb_endpoint_descriptor *desc) { u32 val = 0; u32 buff_size = 0; pch_udc_ep_set_trfr_type(ep, desc->bmAttributes); if (ep->in) buff_size = UDC_EPIN_BUFF_SIZE; else buff_size = UDC_EPOUT_BUFF_SIZE; pch_udc_ep_set_bufsz(ep, buff_size, ep->in); pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize)); pch_udc_ep_set_nak(ep); pch_udc_ep_fifo_flush(ep, ep->in); /* Configure the endpoint */ val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) << UDC_CSR_NE_TYPE_SHIFT) | (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) | (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) | (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) | le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT; if (ep->in) pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num)); else pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num)); } /** * pch_udc_ep_disable() - This api disables endpoint * @regs: Reference to structure pch_udc_ep_regs */ static void pch_udc_ep_disable(struct pch_udc_ep *ep) { if (ep->in) { /* flush the fifo */ pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR); /* set NAK */ pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR); pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN); } else { /* set NAK */ pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR); } /* reset desc pointer */ pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR); } /** * pch_udc_wait_ep_stall() - Wait EP stall. * @dev: Reference to pch_udc_dev structure */ static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep) { unsigned int count = 10000; /* Wait till idle */ while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count) udelay(5); if (!count) dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__); } /** * pch_udc_init() - This API initializes usb device controller * @dev: Rreference to pch_udc_regs structure */ static void pch_udc_init(struct pch_udc_dev *dev) { if (NULL == dev) { pr_err("%s: Invalid address\n", __func__); return; } /* Soft Reset and Reset PHY */ pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR); pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR); mdelay(1); pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR); pch_udc_writel(dev, 0x00, UDC_SRST_ADDR); mdelay(1); /* mask and clear all device interrupts */ pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK); pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK); /* mask and clear all ep interrupts */ pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL); pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL); /* enable dynamic CSR programmingi, self powered and device speed */ if (speed_fs) pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG | UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS); else /* defaul high speed */ pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG | UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS); pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) | (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) | UDC_DEVCTL_MODE | UDC_DEVCTL_BREN | UDC_DEVCTL_THE); } /** * pch_udc_exit() - This API exit usb device controller * @dev: Reference to pch_udc_regs structure */ static void pch_udc_exit(struct pch_udc_dev *dev) { /* mask all device interrupts */ pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK); /* mask all ep interrupts */ pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL); /* put device in disconnected state */ pch_udc_set_disconnect(dev); } /** * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number * @gadget: Reference to the gadget driver * * Return codes: * 0: Success * -EINVAL: If the gadget passed is NULL */ static int pch_udc_pcd_get_frame(struct usb_gadget *gadget) { struct pch_udc_dev *dev; if (!gadget) return -EINVAL; dev = container_of(gadget, struct pch_udc_dev, gadget); return pch_udc_get_frame(dev); } /** * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup * @gadget: Reference to the gadget driver * * Return codes: * 0: Success * -EINVAL: If the gadget passed is NULL */ static int pch_udc_pcd_wakeup(struct usb_gadget *gadget) { struct pch_udc_dev *dev; unsigned long flags; if (!gadget) return -EINVAL; dev = container_of(gadget, struct pch_udc_dev, gadget); spin_lock_irqsave(&dev->lock, flags); pch_udc_rmt_wakeup(dev); spin_unlock_irqrestore(&dev->lock, flags); return 0; } /** * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device * is self powered or not * @gadget: Reference to the gadget driver * @value: Specifies self powered or not * * Return codes: * 0: Success * -EINVAL: If the gadget passed is NULL */ static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value) { struct pch_udc_dev *dev; if (!gadget) return -EINVAL; dev = container_of(gadget, struct pch_udc_dev, gadget); if (value) pch_udc_set_selfpowered(dev); else pch_udc_clear_selfpowered(dev); return 0; } /** * pch_udc_pcd_pullup() - This API is invoked to make the device * visible/invisible to the host * @gadget: Reference to the gadget driver * @is_on: Specifies whether the pull up is made active or inactive * * Return codes: * 0: Success * -EINVAL: If the gadget passed is NULL */ static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on) { struct pch_udc_dev *dev; if (!gadget) return -EINVAL; dev = container_of(gadget, struct pch_udc_dev, gadget); pch_udc_vbus_session(dev, is_on); return 0; } /** * pch_udc_pcd_vbus_session() - This API is used by a driver for an external * transceiver (or GPIO) that * detects a VBUS power session starting/ending * @gadget: Reference to the gadget driver * @is_active: specifies whether the session is starting or ending * * Return codes: * 0: Success * -EINVAL: If the gadget passed is NULL */ static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active) { struct pch_udc_dev *dev; if (!gadget) return -EINVAL; dev = container_of(gadget, struct pch_udc_dev, gadget); pch_udc_vbus_session(dev, is_active); return 0; } /** * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during * SET_CONFIGURATION calls to * specify how much power the device can consume * @gadget: Reference to the gadget driver * @mA: specifies the current limit in 2mA unit * * Return codes: * -EINVAL: If the gadget passed is NULL * -EOPNOTSUPP: */ static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA) { return -EOPNOTSUPP; } static const struct usb_gadget_ops pch_udc_ops = { .get_frame = pch_udc_pcd_get_frame, .wakeup = pch_udc_pcd_wakeup, .set_selfpowered = pch_udc_pcd_selfpowered, .pullup = pch_udc_pcd_pullup, .vbus_session = pch_udc_pcd_vbus_session, .vbus_draw = pch_udc_pcd_vbus_draw, }; /** * complete_req() - This API is invoked from the driver when processing * of a request is complete * @ep: Reference to the endpoint structure * @req: Reference to the request structure * @status: Indicates the success/failure of completion */ static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req, int status) { struct pch_udc_dev *dev; unsigned halted = ep->halted; list_del_init(&req->queue); /* set new status if pending */ if (req->req.status == -EINPROGRESS) req->req.status = status; else status = req->req.status; dev = ep->dev; if (req->dma_mapped) { if (ep->in) dma_unmap_single(&dev->pdev->dev, req->req.dma, req->req.length, DMA_TO_DEVICE); else dma_unmap_single(&dev->pdev->dev, req->req.dma, req->req.length, DMA_FROM_DEVICE); req->dma_mapped = 0; req->req.dma = DMA_ADDR_INVALID; } ep->halted = 1; spin_unlock(&dev->lock); if (!ep->in) pch_udc_ep_clear_rrdy(ep); req->req.complete(&ep->ep, &req->req); spin_lock(&dev->lock); ep->halted = halted; } /** * empty_req_queue() - This API empties the request queue of an endpoint * @ep: Reference to the endpoint structure */ static void empty_req_queue(struct pch_udc_ep *ep) { struct pch_udc_request *req; ep->halted = 1; while (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct pch_udc_request, queue); complete_req(ep, req, -ESHUTDOWN); /* Remove from list */ } } /** * pch_udc_free_dma_chain() - This function frees the DMA chain created * for the request * @dev Reference to the driver structure * @req Reference to the request to be freed * * Return codes: * 0: Success */ static void pch_udc_free_dma_chain(struct pch_udc_dev *dev, struct pch_udc_request *req) { struct pch_udc_data_dma_desc *td = req->td_data; unsigned i = req->chain_len; for (; i > 1; --i) { dma_addr_t addr = (dma_addr_t)td->next; /* do not free first desc., will be done by free for request */ td = phys_to_virt(addr); pci_pool_free(dev->data_requests, td, addr); } } /** * pch_udc_create_dma_chain() - This function creates or reinitializes * a DMA chain * @ep: Reference to the endpoint structure * @req: Reference to the request * @buf_len: The buffer length * @gfp_flags: Flags to be used while mapping the data buffer * * Return codes: * 0: success, * -ENOMEM: pci_pool_alloc invocation fails */ static int pch_udc_create_dma_chain(struct pch_udc_ep *ep, struct pch_udc_request *req, unsigned long buf_len, gfp_t gfp_flags) { struct pch_udc_data_dma_desc *td = req->td_data, *last; unsigned long bytes = req->req.length, i = 0; dma_addr_t dma_addr; unsigned len = 1; if (req->chain_len > 1) pch_udc_free_dma_chain(ep->dev, req); for (; ; bytes -= buf_len, ++len) { if (ep->in) td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes); else td->status = PCH_UDC_BS_HST_BSY; if (bytes <= buf_len) break; last = td; td = pci_pool_alloc(ep->dev->data_requests, gfp_flags, &dma_addr); if (!td) goto nomem; i += buf_len; td->dataptr = req->req.dma + i; last->next = dma_addr; } req->td_data_last = td; td->status |= PCH_UDC_DMA_LAST; td->next = req->td_data_phys; req->chain_len = len; return 0; nomem: if (len > 1) { req->chain_len = len; pch_udc_free_dma_chain(ep->dev, req); } req->chain_len = 1; return -ENOMEM; } /** * prepare_dma() - This function creates and initializes the DMA chain * for the request * @ep: Reference to the endpoint structure * @req: Reference to the request * @gfp: Flag to be used while mapping the data buffer * * Return codes: * 0: Success * Other 0: linux error number on failure */ static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req, gfp_t gfp) { int retval; req->td_data->dataptr = req->req.dma; req->td_data->status |= PCH_UDC_DMA_LAST; /* Allocate and create a DMA chain */ retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp); if (retval) { pr_err("%s: could not create DMA chain: %d\n", __func__, retval); return retval; } if (!ep->in) return 0; if (req->req.length <= ep->ep.maxpacket) req->td_data->status = PCH_UDC_DMA_LAST | PCH_UDC_BS_HST_BSY | req->req.length; /* if bytes < max packet then tx bytes must * be written in packet per buffer mode */ if ((req->req.length < ep->ep.maxpacket) || !ep->num) req->td_data->status = (req->td_data->status & ~PCH_UDC_RXTX_BYTES) | req->req.length; req->td_data->status = (req->td_data->status & ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_BSY; return 0; } /** * process_zlp() - This function process zero length packets * from the gadget driver * @ep: Reference to the endpoint structure * @req: Reference to the request */ static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req) { struct pch_udc_dev *dev = ep->dev; /* IN zlp's are handled by hardware */ complete_req(ep, req, 0); /* if set_config or set_intf is waiting for ack by zlp * then set CSR_DONE */ if (dev->set_cfg_not_acked) { pch_udc_set_csr_done(dev); dev->set_cfg_not_acked = 0; } /* setup command is ACK'ed now by zlp */ if (!dev->stall && dev->waiting_zlp_ack) { pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX])); dev->waiting_zlp_ack = 0; } } /** * pch_udc_start_rxrequest() - This function starts the receive requirement. * @ep: Reference to the endpoint structure * @req: Reference to the request structure */ static void pch_udc_start_rxrequest(struct pch_udc_ep *ep, struct pch_udc_request *req) { struct pch_udc_data_dma_desc *td_data; pch_udc_clear_dma(ep->dev, DMA_DIR_RX); td_data = req->td_data; /* Set the status bits for all descriptors */ while (1) { td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY; if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST) break; td_data = phys_to_virt(td_data->next); } /* Write the descriptor pointer */ pch_udc_ep_set_ddptr(ep, req->td_data_phys); req->dma_going = 1; pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num); pch_udc_set_dma(ep->dev, DMA_DIR_RX); pch_udc_ep_clear_nak(ep); pch_udc_ep_set_rrdy(ep); } /** * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called * from gadget driver * @usbep: Reference to the USB endpoint structure * @desc: Reference to the USB endpoint descriptor structure * * Return codes: * 0: Success * -EINVAL: * -ESHUTDOWN: */ static int pch_udc_pcd_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc) { struct pch_udc_ep *ep; struct pch_udc_dev *dev; unsigned long iflags; if (!usbep || (usbep->name == ep0_string) || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize) return -EINVAL; ep = container_of(usbep, struct pch_udc_ep, ep); dev = ep->dev; if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN)) return -ESHUTDOWN; spin_lock_irqsave(&dev->lock, iflags); ep->desc = desc; ep->halted = 0; pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc); ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); spin_unlock_irqrestore(&dev->lock, iflags); return 0; } /** * pch_udc_pcd_ep_disable() - This API disables endpoint and is called * from gadget driver * @usbep Reference to the USB endpoint structure * * Return codes: * 0: Success * -EINVAL: */ static int pch_udc_pcd_ep_disable(struct usb_ep *usbep) { struct pch_udc_ep *ep; struct pch_udc_dev *dev; unsigned long iflags; if (!usbep) return -EINVAL; ep = container_of(usbep, struct pch_udc_ep, ep); dev = ep->dev; if ((usbep->name == ep0_string) || !ep->desc) return -EINVAL; spin_lock_irqsave(&ep->dev->lock, iflags); empty_req_queue(ep); ep->halted = 1; pch_udc_ep_disable(ep); pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); ep->desc = NULL; INIT_LIST_HEAD(&ep->queue); spin_unlock_irqrestore(&ep->dev->lock, iflags); return 0; } /** * pch_udc_alloc_request() - This function allocates request structure. * It is called by gadget driver * @usbep: Reference to the USB endpoint structure * @gfp: Flag to be used while allocating memory * * Return codes: * NULL: Failure * Allocated address: Success */ static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep, gfp_t gfp) { struct pch_udc_request *req; struct pch_udc_ep *ep; struct pch_udc_data_dma_desc *dma_desc; struct pch_udc_dev *dev; if (!usbep) return NULL; ep = container_of(usbep, struct pch_udc_ep, ep); dev = ep->dev; req = kzalloc(sizeof *req, gfp); if (!req) return NULL; req->req.dma = DMA_ADDR_INVALID; INIT_LIST_HEAD(&req->queue); if (!ep->dev->dma_addr) return &req->req; /* ep0 in requests are allocated from data pool here */ dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp, &req->td_data_phys); if (NULL == dma_desc) { kfree(req); return NULL; } /* prevent from using desc. - set HOST BUSY */ dma_desc->status |= PCH_UDC_BS_HST_BSY; dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID); req->td_data = dma_desc; req->td_data_last = dma_desc; req->chain_len = 1; return &req->req; } /** * pch_udc_free_request() - This function frees request structure. * It is called by gadget driver * @usbep: Reference to the USB endpoint structure * @usbreq: Reference to the USB request */ static void pch_udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq) { struct pch_udc_ep *ep; struct pch_udc_request *req; struct pch_udc_dev *dev; if (!usbep || !usbreq) return; ep = container_of(usbep, struct pch_udc_ep, ep); req = container_of(usbreq, struct pch_udc_request, req); dev = ep->dev; if (!list_empty(&req->queue)) dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n", __func__, usbep->name, req); if (req->td_data != NULL) { if (req->chain_len > 1) pch_udc_free_dma_chain(ep->dev, req); pci_pool_free(ep->dev->data_requests, req->td_data, req->td_data_phys); } kfree(req); } /** * pch_udc_pcd_queue() - This function queues a request packet. It is called * by gadget driver * @usbep: Reference to the USB endpoint structure * @usbreq: Reference to the USB request * @gfp: Flag to be used while mapping the data buffer * * Return codes: * 0: Success * linux error number: Failure */ static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp) { int retval = 0; struct pch_udc_ep *ep; struct pch_udc_dev *dev; struct pch_udc_request *req; unsigned long iflags; if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf) return -EINVAL; ep = container_of(usbep, struct pch_udc_ep, ep); dev = ep->dev; if (!ep->desc && ep->num) return -EINVAL; req = container_of(usbreq, struct pch_udc_request, req); if (!list_empty(&req->queue)) return -EINVAL; if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN)) return -ESHUTDOWN; spin_lock_irqsave(&ep->dev->lock, iflags); /* map the buffer for dma */ if (usbreq->length && ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) { if (ep->in) usbreq->dma = dma_map_single(&dev->pdev->dev, usbreq->buf, usbreq->length, DMA_TO_DEVICE); else usbreq->dma = dma_map_single(&dev->pdev->dev, usbreq->buf, usbreq->length, DMA_FROM_DEVICE); req->dma_mapped = 1; } if (usbreq->length > 0) { retval = prepare_dma(ep, req, GFP_ATOMIC); if (retval) goto probe_end; } usbreq->actual = 0; usbreq->status = -EINPROGRESS; req->dma_done = 0; if (list_empty(&ep->queue) && !ep->halted) { /* no pending transfer, so start this req */ if (!usbreq->length) { process_zlp(ep, req); retval = 0; goto probe_end; } if (!ep->in) { pch_udc_start_rxrequest(ep, req); } else { /* * For IN trfr the descriptors will be programmed and * P bit will be set when * we get an IN token */ pch_udc_wait_ep_stall(ep); pch_udc_ep_clear_nak(ep); pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num)); } } /* Now add this request to the ep's pending requests */ if (req != NULL) list_add_tail(&req->queue, &ep->queue); probe_end: spin_unlock_irqrestore(&dev->lock, iflags); return retval; } /** * pch_udc_pcd_dequeue() - This function de-queues a request packet. * It is called by gadget driver * @usbep: Reference to the USB endpoint structure * @usbreq: Reference to the USB request * * Return codes: * 0: Success * linux error number: Failure */ static int pch_udc_pcd_dequeue(struct usb_ep *usbep, struct usb_request *usbreq) { struct pch_udc_ep *ep; struct pch_udc_request *req; struct pch_udc_dev *dev; unsigned long flags; int ret = -EINVAL; ep = container_of(usbep, struct pch_udc_ep, ep); dev = ep->dev; if (!usbep || !usbreq || (!ep->desc && ep->num)) return ret; req = container_of(usbreq, struct pch_udc_request, req); spin_lock_irqsave(&ep->dev->lock, flags); /* make sure it's still queued on this endpoint */ list_for_each_entry(req, &ep->queue, queue) { if (&req->req == usbreq) { pch_udc_ep_set_nak(ep); if (!list_empty(&req->queue)) complete_req(ep, req, -ECONNRESET); ret = 0; break; } } spin_unlock_irqrestore(&ep->dev->lock, flags); return ret; } /** * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt * feature * @usbep: Reference to the USB endpoint structure * @halt: Specifies whether to set or clear the feature * * Return codes: * 0: Success * linux error number: Failure */ static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt) { struct pch_udc_ep *ep; struct pch_udc_dev *dev; unsigned long iflags; int ret; if (!usbep) return -EINVAL; ep = container_of(usbep, struct pch_udc_ep, ep); dev = ep->dev; if (!ep->desc && !ep->num) return -EINVAL; if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN)) return -ESHUTDOWN; spin_lock_irqsave(&udc_stall_spinlock, iflags); if (list_empty(&ep->queue)) { if (halt) { if (ep->num == PCH_UDC_EP0) ep->dev->stall = 1; pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); } else { pch_udc_ep_clear_stall(ep); } ret = 0; } else { ret = -EAGAIN; } spin_unlock_irqrestore(&udc_stall_spinlock, iflags); return ret; } /** * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint * halt feature * @usbep: Reference to the USB endpoint structure * @halt: Specifies whether to set or clear the feature * * Return codes: * 0: Success * linux error number: Failure */ static int pch_udc_pcd_set_wedge(struct usb_ep *usbep) { struct pch_udc_ep *ep; struct pch_udc_dev *dev; unsigned long iflags; int ret; if (!usbep) return -EINVAL; ep = container_of(usbep, struct pch_udc_ep, ep); dev = ep->dev; if (!ep->desc && !ep->num) return -EINVAL; if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN)) return -ESHUTDOWN; spin_lock_irqsave(&udc_stall_spinlock, iflags); if (!list_empty(&ep->queue)) { ret = -EAGAIN; } else { if (ep->num == PCH_UDC_EP0) ep->dev->stall = 1; pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); ep->dev->prot_stall = 1; ret = 0; } spin_unlock_irqrestore(&udc_stall_spinlock, iflags); return ret; } /** * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint * @usbep: Reference to the USB endpoint structure */ static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep) { struct pch_udc_ep *ep; if (!usbep) return; ep = container_of(usbep, struct pch_udc_ep, ep); if (ep->desc || !ep->num) pch_udc_ep_fifo_flush(ep, ep->in); } static const struct usb_ep_ops pch_udc_ep_ops = { .enable = pch_udc_pcd_ep_enable, .disable = pch_udc_pcd_ep_disable, .alloc_request = pch_udc_alloc_request, .free_request = pch_udc_free_request, .queue = pch_udc_pcd_queue, .dequeue = pch_udc_pcd_dequeue, .set_halt = pch_udc_pcd_set_halt, .set_wedge = pch_udc_pcd_set_wedge, .fifo_status = NULL, .fifo_flush = pch_udc_pcd_fifo_flush, }; /** * pch_udc_init_setup_buff() - This function initializes the SETUP buffer * @td_stp: Reference to the SETP buffer structure */ static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp) { static u32 pky_marker; if (!td_stp) return; td_stp->reserved = ++pky_marker; memset(&td_stp->request, 0xFF, sizeof td_stp->request); td_stp->status = PCH_UDC_BS_HST_RDY; } /** * pch_udc_start_next_txrequest() - This function starts * the next transmission requirement * @ep: Reference to the endpoint structure */ static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep) { struct pch_udc_request *req; struct pch_udc_data_dma_desc *td_data; if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P) return; if (list_empty(&ep->queue)) return; /* next request */ req = list_entry(ep->queue.next, struct pch_udc_request, queue); if (req->dma_going) return; if (!req->td_data) return; pch_udc_wait_ep_stall(ep); req->dma_going = 1; pch_udc_ep_set_ddptr(ep, 0); td_data = req->td_data; while (1) { td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY; if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST) break; td_data = phys_to_virt(td_data->next); } pch_udc_ep_set_ddptr(ep, req->td_data_phys); pch_udc_set_dma(ep->dev, DMA_DIR_TX); pch_udc_ep_set_pd(ep); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); pch_udc_ep_clear_nak(ep); } /** * pch_udc_complete_transfer() - This function completes a transfer * @ep: Reference to the endpoint structure */ static void pch_udc_complete_transfer(struct pch_udc_ep *ep) { struct pch_udc_request *req; struct pch_udc_dev *dev = ep->dev; if (list_empty(&ep->queue)) return; req = list_entry(ep->queue.next, struct pch_udc_request, queue); if ((req->td_data_last->status & PCH_UDC_BUFF_STS) != PCH_UDC_BS_DMA_DONE) return; if ((req->td_data_last->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) { dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) " "epstatus=0x%08x\n", (req->td_data_last->status & PCH_UDC_RXTX_STS), (int)(ep->epsts)); return; } req->req.actual = req->req.length; req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST; req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST; complete_req(ep, req, 0); req->dma_going = 0; if (!list_empty(&ep->queue)) { pch_udc_wait_ep_stall(ep); pch_udc_ep_clear_nak(ep); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); } else { pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); } } /** * pch_udc_complete_receiver() - This function completes a receiver * @ep: Reference to the endpoint structure */ static void pch_udc_complete_receiver(struct pch_udc_ep *ep) { struct pch_udc_request *req; struct pch_udc_dev *dev = ep->dev; unsigned int count; if (list_empty(&ep->queue)) return; /* next request */ req = list_entry(ep->queue.next, struct pch_udc_request, queue); if ((req->td_data_last->status & PCH_UDC_BUFF_STS) != PCH_UDC_BS_DMA_DONE) return; pch_udc_clear_dma(ep->dev, DMA_DIR_RX); pch_udc_ep_set_ddptr(ep, 0); if ((req->td_data_last->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) { dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) " "epstatus=0x%08x\n", (req->td_data_last->status & PCH_UDC_RXTX_STS), (int)(ep->epsts)); return; } count = req->td_data_last->status & PCH_UDC_RXTX_BYTES; /* on 64k packets the RXBYTES field is zero */ if (!count && (req->req.length == UDC_DMA_MAXPACKET)) count = UDC_DMA_MAXPACKET; req->td_data->status |= PCH_UDC_DMA_LAST; req->td_data_last->status |= PCH_UDC_BS_HST_BSY; req->dma_going = 0; req->req.actual = count; complete_req(ep, req, 0); /* If there is a new/failed requests try that now */ if (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct pch_udc_request, queue); pch_udc_start_rxrequest(ep, req); } } /** * pch_udc_svc_data_in() - This function process endpoint interrupts * for IN endpoints * @dev: Reference to the device structure * @ep_num: Endpoint that generated the interrupt */ static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num) { u32 epsts; struct pch_udc_ep *ep; ep = &dev->ep[UDC_EPIN_IDX(ep_num)]; epsts = ep->epsts; ep->epsts = 0; if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE | UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY | UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE))) return; if ((epsts & UDC_EPSTS_BNA)) return; if (epsts & UDC_EPSTS_HE) return; if (epsts & UDC_EPSTS_RSS) { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); } if (epsts & UDC_EPSTS_RCS) { if (!dev->prot_stall) { pch_udc_ep_clear_stall(ep); } else { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); } } if (epsts & UDC_EPSTS_TDC) pch_udc_complete_transfer(ep); /* On IN interrupt, provide data if we have any */ if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) && !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY)) pch_udc_start_next_txrequest(ep); } /** * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint * @dev: Reference to the device structure * @ep_num: Endpoint that generated the interrupt */ static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num) { u32 epsts; struct pch_udc_ep *ep; struct pch_udc_request *req = NULL; ep = &dev->ep[UDC_EPOUT_IDX(ep_num)]; epsts = ep->epsts; ep->epsts = 0; if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) { /* next request */ req = list_entry(ep->queue.next, struct pch_udc_request, queue); if ((req->td_data_last->status & PCH_UDC_BUFF_STS) != PCH_UDC_BS_DMA_DONE) { if (!req->dma_going) pch_udc_start_rxrequest(ep, req); return; } } if (epsts & UDC_EPSTS_HE) return; if (epsts & UDC_EPSTS_RSS) { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); } if (epsts & UDC_EPSTS_RCS) { if (!dev->prot_stall) { pch_udc_ep_clear_stall(ep); } else { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); } } if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) == UDC_EPSTS_OUT_DATA) { if (ep->dev->prot_stall == 1) { pch_udc_ep_set_stall(ep); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); } else { pch_udc_complete_receiver(ep); } } if (list_empty(&ep->queue)) pch_udc_set_dma(dev, DMA_DIR_RX); } /** * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts * @dev: Reference to the device structure */ static void pch_udc_svc_control_in(struct pch_udc_dev *dev) { u32 epsts; struct pch_udc_ep *ep; struct pch_udc_ep *ep_out; ep = &dev->ep[UDC_EP0IN_IDX]; ep_out = &dev->ep[UDC_EP0OUT_IDX]; epsts = ep->epsts; ep->epsts = 0; if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE | UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY | UDC_EPSTS_XFERDONE))) return; if ((epsts & UDC_EPSTS_BNA)) return; if (epsts & UDC_EPSTS_HE) return; if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) { pch_udc_complete_transfer(ep); pch_udc_clear_dma(dev, DMA_DIR_RX); ep_out->td_data->status = (ep_out->td_data->status & ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY; pch_udc_ep_clear_nak(ep_out); pch_udc_set_dma(dev, DMA_DIR_RX); pch_udc_ep_set_rrdy(ep_out); } /* On IN interrupt, provide data if we have any */ if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY)) pch_udc_start_next_txrequest(ep); } /** * pch_udc_svc_control_out() - Routine that handle Control * OUT endpoint interrupts * @dev: Reference to the device structure */ static void pch_udc_svc_control_out(struct pch_udc_dev *dev) { u32 stat; int setup_supported; struct pch_udc_ep *ep; ep = &dev->ep[UDC_EP0OUT_IDX]; stat = ep->epsts; ep->epsts = 0; /* If setup data */ if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) == UDC_EPSTS_OUT_SETUP) { dev->stall = 0; dev->ep[UDC_EP0IN_IDX].halted = 0; dev->ep[UDC_EP0OUT_IDX].halted = 0; dev->setup_data = ep->td_stp->request; pch_udc_init_setup_buff(ep->td_stp); pch_udc_clear_dma(dev, DMA_DIR_RX); pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]), dev->ep[UDC_EP0IN_IDX].in); if ((dev->setup_data.bRequestType & USB_DIR_IN)) dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep; else /* OUT */ dev->gadget.ep0 = &ep->ep; spin_unlock(&dev->lock); /* If Mass storage Reset */ if ((dev->setup_data.bRequestType == 0x21) && (dev->setup_data.bRequest == 0xFF)) dev->prot_stall = 0; /* call gadget with setup data received */ setup_supported = dev->driver->setup(&dev->gadget, &dev->setup_data); spin_lock(&dev->lock); if (dev->setup_data.bRequestType & USB_DIR_IN) { ep->td_data->status = (ep->td_data->status & ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY; pch_udc_ep_set_ddptr(ep, ep->td_data_phys); } /* ep0 in returns data on IN phase */ if (setup_supported >= 0 && setup_supported < UDC_EP0IN_MAX_PKT_SIZE) { pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX])); /* Gadget would have queued a request when * we called the setup */ if (!(dev->setup_data.bRequestType & USB_DIR_IN)) { pch_udc_set_dma(dev, DMA_DIR_RX); pch_udc_ep_clear_nak(ep); } } else if (setup_supported < 0) { /* if unsupported request, then stall */ pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX])); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); dev->stall = 0; pch_udc_set_dma(dev, DMA_DIR_RX); } else { dev->waiting_zlp_ack = 1; } } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) == UDC_EPSTS_OUT_DATA) && !dev->stall) { pch_udc_clear_dma(dev, DMA_DIR_RX); pch_udc_ep_set_ddptr(ep, 0); if (!list_empty(&ep->queue)) { ep->epsts = stat; pch_udc_svc_data_out(dev, PCH_UDC_EP0); } pch_udc_set_dma(dev, DMA_DIR_RX); } pch_udc_ep_set_rrdy(ep); } /** * pch_udc_postsvc_epinters() - This function enables end point interrupts * and clears NAK status * @dev: Reference to the device structure * @ep_num: End point number */ static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num) { struct pch_udc_ep *ep; struct pch_udc_request *req; ep = &dev->ep[UDC_EPIN_IDX(ep_num)]; if (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct pch_udc_request, queue); pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); pch_udc_ep_clear_nak(ep); } } /** * pch_udc_read_all_epstatus() - This function read all endpoint status * @dev: Reference to the device structure * @ep_intr: Status of endpoint interrupt */ static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr) { int i; struct pch_udc_ep *ep; for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) { /* IN */ if (ep_intr & (0x1 << i)) { ep = &dev->ep[UDC_EPIN_IDX(i)]; ep->epsts = pch_udc_read_ep_status(ep); pch_udc_clear_ep_status(ep, ep->epsts); } /* OUT */ if (ep_intr & (0x10000 << i)) { ep = &dev->ep[UDC_EPOUT_IDX(i)]; ep->epsts = pch_udc_read_ep_status(ep); pch_udc_clear_ep_status(ep, ep->epsts); } } } /** * pch_udc_activate_control_ep() - This function enables the control endpoints * for traffic after a reset * @dev: Reference to the device structure */ static void pch_udc_activate_control_ep(struct pch_udc_dev *dev) { struct pch_udc_ep *ep; u32 val; /* Setup the IN endpoint */ ep = &dev->ep[UDC_EP0IN_IDX]; pch_udc_clear_ep_control(ep); pch_udc_ep_fifo_flush(ep, ep->in); pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in); pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE); /* Initialize the IN EP Descriptor */ ep->td_data = NULL; ep->td_stp = NULL; ep->td_data_phys = 0; ep->td_stp_phys = 0; /* Setup the OUT endpoint */ ep = &dev->ep[UDC_EP0OUT_IDX]; pch_udc_clear_ep_control(ep); pch_udc_ep_fifo_flush(ep, ep->in); pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in); pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE); val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT; pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX); /* Initialize the SETUP buffer */ pch_udc_init_setup_buff(ep->td_stp); /* Write the pointer address of dma descriptor */ pch_udc_ep_set_subptr(ep, ep->td_stp_phys); /* Write the pointer address of Setup descriptor */ pch_udc_ep_set_ddptr(ep, ep->td_data_phys); /* Initialize the dma descriptor */ ep->td_data->status = PCH_UDC_DMA_LAST; ep->td_data->dataptr = dev->dma_addr; ep->td_data->next = ep->td_data_phys; pch_udc_ep_clear_nak(ep); } /** * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt * @dev: Reference to driver structure */ static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev) { struct pch_udc_ep *ep; int i; pch_udc_clear_dma(dev, DMA_DIR_TX); pch_udc_clear_dma(dev, DMA_DIR_RX); /* Mask all endpoint interrupts */ pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); /* clear all endpoint interrupts */ pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); for (i = 0; i < PCH_UDC_EP_NUM; i++) { ep = &dev->ep[i]; pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK); pch_udc_clear_ep_control(ep); pch_udc_ep_set_ddptr(ep, 0); pch_udc_write_csr(ep->dev, 0x00, i); } dev->stall = 0; dev->prot_stall = 0; dev->waiting_zlp_ack = 0; dev->set_cfg_not_acked = 0; /* disable ep to empty req queue. Skip the control EP's */ for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) { ep = &dev->ep[i]; pch_udc_ep_set_nak(ep); pch_udc_ep_fifo_flush(ep, ep->in); /* Complete request queue */ empty_req_queue(ep); } if (dev->driver && dev->driver->disconnect) dev->driver->disconnect(&dev->gadget); } /** * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration * done interrupt * @dev: Reference to driver structure */ static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev) { u32 dev_stat, dev_speed; u32 speed = USB_SPEED_FULL; dev_stat = pch_udc_read_device_status(dev); dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >> UDC_DEVSTS_ENUM_SPEED_SHIFT; switch (dev_speed) { case UDC_DEVSTS_ENUM_SPEED_HIGH: speed = USB_SPEED_HIGH; break; case UDC_DEVSTS_ENUM_SPEED_FULL: speed = USB_SPEED_FULL; break; case UDC_DEVSTS_ENUM_SPEED_LOW: speed = USB_SPEED_LOW; break; default: BUG(); } dev->gadget.speed = speed; pch_udc_activate_control_ep(dev); pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0); pch_udc_set_dma(dev, DMA_DIR_TX); pch_udc_set_dma(dev, DMA_DIR_RX); pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX])); } /** * pch_udc_svc_intf_interrupt() - This function handles a set interface * interrupt * @dev: Reference to driver structure */ static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev) { u32 reg, dev_stat = 0; int i, ret; dev_stat = pch_udc_read_device_status(dev); dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >> UDC_DEVSTS_INTF_SHIFT; dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >> UDC_DEVSTS_ALT_SHIFT; dev->set_cfg_not_acked = 1; /* Construct the usb request for gadget driver and inform it */ memset(&dev->setup_data, 0 , sizeof dev->setup_data); dev->setup_data.bRequest = USB_REQ_SET_INTERFACE; dev->setup_data.bRequestType = USB_RECIP_INTERFACE; dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt); dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf); /* programm the Endpoint Cfg registers */ /* Only one end point cfg register */ reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX); reg = (reg & ~UDC_CSR_NE_INTF_MASK) | (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT); reg = (reg & ~UDC_CSR_NE_ALT_MASK) | (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT); pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX); for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) { /* clear stall bits */ pch_udc_ep_clear_stall(&(dev->ep[i])); dev->ep[i].halted = 0; } dev->stall = 0; spin_unlock(&dev->lock); ret = dev->driver->setup(&dev->gadget, &dev->setup_data); spin_lock(&dev->lock); } /** * pch_udc_svc_cfg_interrupt() - This function handles a set configuration * interrupt * @dev: Reference to driver structure */ static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev) { int i, ret; u32 reg, dev_stat = 0; dev_stat = pch_udc_read_device_status(dev); dev->set_cfg_not_acked = 1; dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >> UDC_DEVSTS_CFG_SHIFT; /* make usb request for gadget driver */ memset(&dev->setup_data, 0 , sizeof dev->setup_data); dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION; dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg); /* program the NE registers */ /* Only one end point cfg register */ reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX); reg = (reg & ~UDC_CSR_NE_CFG_MASK) | (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT); pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX); for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) { /* clear stall bits */ pch_udc_ep_clear_stall(&(dev->ep[i])); dev->ep[i].halted = 0; } dev->stall = 0; /* call gadget zero with setup data received */ spin_unlock(&dev->lock); ret = dev->driver->setup(&dev->gadget, &dev->setup_data); spin_lock(&dev->lock); } /** * pch_udc_dev_isr() - This function services device interrupts * by invoking appropriate routines. * @dev: Reference to the device structure * @dev_intr: The Device interrupt status. */ static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr) { /* USB Reset Interrupt */ if (dev_intr & UDC_DEVINT_UR) pch_udc_svc_ur_interrupt(dev); /* Enumeration Done Interrupt */ if (dev_intr & UDC_DEVINT_ENUM) pch_udc_svc_enum_interrupt(dev); /* Set Interface Interrupt */ if (dev_intr & UDC_DEVINT_SI) pch_udc_svc_intf_interrupt(dev); /* Set Config Interrupt */ if (dev_intr & UDC_DEVINT_SC) pch_udc_svc_cfg_interrupt(dev); /* USB Suspend interrupt */ if (dev_intr & UDC_DEVINT_US) dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n"); /* Clear the SOF interrupt, if enabled */ if (dev_intr & UDC_DEVINT_SOF) dev_dbg(&dev->pdev->dev, "SOF\n"); /* ES interrupt, IDLE > 3ms on the USB */ if (dev_intr & UDC_DEVINT_ES) dev_dbg(&dev->pdev->dev, "ES\n"); /* RWKP interrupt */ if (dev_intr & UDC_DEVINT_RWKP) dev_dbg(&dev->pdev->dev, "RWKP\n"); } /** * pch_udc_isr() - This function handles interrupts from the PCH USB Device * @irq: Interrupt request number * @dev: Reference to the device structure */ static irqreturn_t pch_udc_isr(int irq, void *pdev) { struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev; u32 dev_intr, ep_intr; int i; dev_intr = pch_udc_read_device_interrupts(dev); ep_intr = pch_udc_read_ep_interrupts(dev); if (dev_intr) /* Clear device interrupts */ pch_udc_write_device_interrupts(dev, dev_intr); if (ep_intr) /* Clear ep interrupts */ pch_udc_write_ep_interrupts(dev, ep_intr); if (!dev_intr && !ep_intr) return IRQ_NONE; spin_lock(&dev->lock); if (dev_intr) pch_udc_dev_isr(dev, dev_intr); if (ep_intr) { pch_udc_read_all_epstatus(dev, ep_intr); /* Process Control In interrupts, if present */ if (ep_intr & UDC_EPINT_IN_EP0) { pch_udc_svc_control_in(dev); pch_udc_postsvc_epinters(dev, 0); } /* Process Control Out interrupts, if present */ if (ep_intr & UDC_EPINT_OUT_EP0) pch_udc_svc_control_out(dev); /* Process data in end point interrupts */ for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) { if (ep_intr & (1 << i)) { pch_udc_svc_data_in(dev, i); pch_udc_postsvc_epinters(dev, i); } } /* Process data out end point interrupts */ for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT + PCH_UDC_USED_EP_NUM); i++) if (ep_intr & (1 << i)) pch_udc_svc_data_out(dev, i - UDC_EPINT_OUT_SHIFT); } spin_unlock(&dev->lock); return IRQ_HANDLED; } /** * pch_udc_setup_ep0() - This function enables control endpoint for traffic * @dev: Reference to the device structure */ static void pch_udc_setup_ep0(struct pch_udc_dev *dev) { /* enable ep0 interrupts */ pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0); /* enable device interrupts */ pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US | UDC_DEVINT_ES | UDC_DEVINT_ENUM | UDC_DEVINT_SI | UDC_DEVINT_SC); } /** * gadget_release() - Free the gadget driver private data * @pdev reference to struct pci_dev */ static void gadget_release(struct device *pdev) { struct pch_udc_dev *dev = dev_get_drvdata(pdev); kfree(dev); } /** * pch_udc_pcd_reinit() - This API initializes the endpoint structures * @dev: Reference to the driver structure */ static void pch_udc_pcd_reinit(struct pch_udc_dev *dev) { const char *const ep_string[] = { ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out", "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out", "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out", "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out", "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out", "ep15in", "ep15out", }; int i; dev->gadget.speed = USB_SPEED_UNKNOWN; INIT_LIST_HEAD(&dev->gadget.ep_list); /* Initialize the endpoints structures */ memset(dev->ep, 0, sizeof dev->ep); for (i = 0; i < PCH_UDC_EP_NUM; i++) { struct pch_udc_ep *ep = &dev->ep[i]; ep->dev = dev; ep->halted = 1; ep->num = i / 2; ep->in = ~i & 1; ep->ep.name = ep_string[i]; ep->ep.ops = &pch_udc_ep_ops; if (ep->in) ep->offset_addr = ep->num * UDC_EP_REG_SHIFT; else ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) * UDC_EP_REG_SHIFT; /* need to set ep->ep.maxpacket and set Default Configuration?*/ ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE; list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list); INIT_LIST_HEAD(&ep->queue); } dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE; dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE; /* remove ep0 in and out from the list. They have own pointer */ list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list); list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list); dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep; INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); } /** * pch_udc_pcd_init() - This API initializes the driver structure * @dev: Reference to the driver structure * * Return codes: * 0: Success */ static int pch_udc_pcd_init(struct pch_udc_dev *dev) { pch_udc_init(dev); pch_udc_pcd_reinit(dev); return 0; } /** * init_dma_pools() - create dma pools during initialization * @pdev: reference to struct pci_dev */ static int init_dma_pools(struct pch_udc_dev *dev) { struct pch_udc_stp_dma_desc *td_stp; struct pch_udc_data_dma_desc *td_data; /* DMA setup */ dev->data_requests = pci_pool_create("data_requests", dev->pdev, sizeof(struct pch_udc_data_dma_desc), 0, 0); if (!dev->data_requests) { dev_err(&dev->pdev->dev, "%s: can't get request data pool\n", __func__); return -ENOMEM; } /* dma desc for setup data */ dev->stp_requests = pci_pool_create("setup requests", dev->pdev, sizeof(struct pch_udc_stp_dma_desc), 0, 0); if (!dev->stp_requests) { dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n", __func__); return -ENOMEM; } /* setup */ td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL, &dev->ep[UDC_EP0OUT_IDX].td_stp_phys); if (!td_stp) { dev_err(&dev->pdev->dev, "%s: can't allocate setup dma descriptor\n", __func__); return -ENOMEM; } dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp; /* data: 0 packets !? */ td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL, &dev->ep[UDC_EP0OUT_IDX].td_data_phys); if (!td_data) { dev_err(&dev->pdev->dev, "%s: can't allocate data dma descriptor\n", __func__); return -ENOMEM; } dev->ep[UDC_EP0OUT_IDX].td_data = td_data; dev->ep[UDC_EP0IN_IDX].td_stp = NULL; dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0; dev->ep[UDC_EP0IN_IDX].td_data = NULL; dev->ep[UDC_EP0IN_IDX].td_data_phys = 0; dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL); if (!dev->ep0out_buf) return -ENOMEM; dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf, UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE); return 0; } int usb_gadget_probe_driver(struct usb_gadget_driver *driver, int (*bind)(struct usb_gadget *)) { struct pch_udc_dev *dev = pch_udc; int retval; if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind || !driver->setup || !driver->unbind || !driver->disconnect) { dev_err(&dev->pdev->dev, "%s: invalid driver parameter\n", __func__); return -EINVAL; } if (!dev) return -ENODEV; if (dev->driver) { dev_err(&dev->pdev->dev, "%s: already bound\n", __func__); return -EBUSY; } driver->driver.bus = NULL; dev->driver = driver; dev->gadget.dev.driver = &driver->driver; /* Invoke the bind routine of the gadget driver */ retval = bind(&dev->gadget); if (retval) { dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n", __func__, driver->driver.name, retval); dev->driver = NULL; dev->gadget.dev.driver = NULL; return retval; } /* get ready for ep0 traffic */ pch_udc_setup_ep0(dev); /* clear SD */ pch_udc_clear_disconnect(dev); dev->connected = 1; return 0; } EXPORT_SYMBOL(usb_gadget_probe_driver); int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) { struct pch_udc_dev *dev = pch_udc; if (!dev) return -ENODEV; if (!driver || (driver != dev->driver)) { dev_err(&dev->pdev->dev, "%s: invalid driver parameter\n", __func__); return -EINVAL; } pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK); /* Assues that there are no pending requets with this driver */ driver->unbind(&dev->gadget); dev->gadget.dev.driver = NULL; dev->driver = NULL; dev->connected = 0; /* set SD */ pch_udc_set_disconnect(dev); return 0; } EXPORT_SYMBOL(usb_gadget_unregister_driver); static void pch_udc_shutdown(struct pci_dev *pdev) { struct pch_udc_dev *dev = pci_get_drvdata(pdev); pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK); pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); /* disable the pullup so the host will think we're gone */ pch_udc_set_disconnect(dev); } static void pch_udc_remove(struct pci_dev *pdev) { struct pch_udc_dev *dev = pci_get_drvdata(pdev); /* gadget driver must not be registered */ if (dev->driver) dev_err(&pdev->dev, "%s: gadget driver still bound!!!\n", __func__); /* dma pool cleanup */ if (dev->data_requests) pci_pool_destroy(dev->data_requests); if (dev->stp_requests) { /* cleanup DMA desc's for ep0in */ if (dev->ep[UDC_EP0OUT_IDX].td_stp) { pci_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IDX].td_stp, dev->ep[UDC_EP0OUT_IDX].td_stp_phys); } if (dev->ep[UDC_EP0OUT_IDX].td_data) { pci_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IDX].td_data, dev->ep[UDC_EP0OUT_IDX].td_data_phys); } pci_pool_destroy(dev->stp_requests); } if (dev->dma_addr) dma_unmap_single(&dev->pdev->dev, dev->dma_addr, UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE); kfree(dev->ep0out_buf); pch_udc_exit(dev); if (dev->irq_registered) free_irq(pdev->irq, dev); if (dev->base_addr) iounmap(dev->base_addr); if (dev->mem_region) release_mem_region(dev->phys_addr, pci_resource_len(pdev, PCH_UDC_PCI_BAR)); if (dev->active) pci_disable_device(pdev); if (dev->registered) device_unregister(&dev->gadget.dev); kfree(dev); pci_set_drvdata(pdev, NULL); } #ifdef CONFIG_PM static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state) { struct pch_udc_dev *dev = pci_get_drvdata(pdev); pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK); pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); pci_disable_device(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); if (pci_save_state(pdev)) { dev_err(&pdev->dev, "%s: could not save PCI config state\n", __func__); return -ENOMEM; } pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int pch_udc_resume(struct pci_dev *pdev) { int ret; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); ret = pci_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__); return ret; } pci_enable_wake(pdev, PCI_D3hot, 0); return 0; } #else #define pch_udc_suspend NULL #define pch_udc_resume NULL #endif /* CONFIG_PM */ static int pch_udc_probe(struct pci_dev *pdev, const struct pci_device_id *id) { unsigned long resource; unsigned long len; int retval; struct pch_udc_dev *dev; /* one udc only */ if (pch_udc) { pr_err("%s: already probed\n", __func__); return -EBUSY; } /* init */ dev = kzalloc(sizeof *dev, GFP_KERNEL); if (!dev) { pr_err("%s: no memory for device structure\n", __func__); return -ENOMEM; } /* pci setup */ if (pci_enable_device(pdev) < 0) { kfree(dev); pr_err("%s: pci_enable_device failed\n", __func__); return -ENODEV; } dev->active = 1; pci_set_drvdata(pdev, dev); /* PCI resource allocation */ resource = pci_resource_start(pdev, 1); len = pci_resource_len(pdev, 1); if (!request_mem_region(resource, len, KBUILD_MODNAME)) { dev_err(&pdev->dev, "%s: pci device used already\n", __func__); retval = -EBUSY; goto finished; } dev->phys_addr = resource; dev->mem_region = 1; dev->base_addr = ioremap_nocache(resource, len); if (!dev->base_addr) { pr_err("%s: device memory cannot be mapped\n", __func__); retval = -ENOMEM; goto finished; } if (!pdev->irq) { dev_err(&pdev->dev, "%s: irq not set\n", __func__); retval = -ENODEV; goto finished; } pch_udc = dev; /* initialize the hardware */ if (pch_udc_pcd_init(dev)) goto finished; if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME, dev)) { dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__, pdev->irq); retval = -ENODEV; goto finished; } dev->irq = pdev->irq; dev->irq_registered = 1; pci_set_master(pdev); pci_try_set_mwi(pdev); /* device struct setup */ spin_lock_init(&dev->lock); dev->pdev = pdev; dev->gadget.ops = &pch_udc_ops; retval = init_dma_pools(dev); if (retval) goto finished; dev_set_name(&dev->gadget.dev, "gadget"); dev->gadget.dev.parent = &pdev->dev; dev->gadget.dev.dma_mask = pdev->dev.dma_mask; dev->gadget.dev.release = gadget_release; dev->gadget.name = KBUILD_MODNAME; dev->gadget.is_dualspeed = 1; retval = device_register(&dev->gadget.dev); if (retval) goto finished; dev->registered = 1; /* Put the device in disconnected state till a driver is bound */ pch_udc_set_disconnect(dev); return 0; finished: pch_udc_remove(pdev); return retval; } static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = { { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC), .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe, .class_mask = 0xffffffff, }, { 0 }, }; MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id); static struct pci_driver pch_udc_driver = { .name = KBUILD_MODNAME, .id_table = pch_udc_pcidev_id, .probe = pch_udc_probe, .remove = pch_udc_remove, .suspend = pch_udc_suspend, .resume = pch_udc_resume, .shutdown = pch_udc_shutdown, }; static int __init pch_udc_pci_init(void) { return pci_register_driver(&pch_udc_driver); } module_init(pch_udc_pci_init); static void __exit pch_udc_pci_exit(void) { pci_unregister_driver(&pch_udc_driver); } module_exit(pch_udc_pci_exit); MODULE_DESCRIPTION("Intel EG20T USB Device Controller"); MODULE_AUTHOR("OKI SEMICONDUCTOR, "); MODULE_LICENSE("GPL");