/* * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir2.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_error.h" #include "xfs_da_btree.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_alloc.h" #include "xfs_bmap.h" #include "xfs_quota.h" #include "xfs_trans_priv.h" #include "xfs_trans_space.h" #include "xfs_inode_item.h" STATIC void xfs_trans_apply_sb_deltas(xfs_trans_t *); STATIC void xfs_trans_uncommit(xfs_trans_t *, uint); STATIC void xfs_trans_committed(xfs_trans_t *, int); STATIC void xfs_trans_chunk_committed(xfs_log_item_chunk_t *, xfs_lsn_t, int); STATIC void xfs_trans_free(xfs_trans_t *); kmem_zone_t *xfs_trans_zone; /* * Reservation functions here avoid a huge stack in xfs_trans_init * due to register overflow from temporaries in the calculations. */ STATIC uint xfs_calc_write_reservation(xfs_mount_t *mp) { return XFS_CALC_WRITE_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_itruncate_reservation(xfs_mount_t *mp) { return XFS_CALC_ITRUNCATE_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_rename_reservation(xfs_mount_t *mp) { return XFS_CALC_RENAME_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_link_reservation(xfs_mount_t *mp) { return XFS_CALC_LINK_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_remove_reservation(xfs_mount_t *mp) { return XFS_CALC_REMOVE_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_symlink_reservation(xfs_mount_t *mp) { return XFS_CALC_SYMLINK_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_create_reservation(xfs_mount_t *mp) { return XFS_CALC_CREATE_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_mkdir_reservation(xfs_mount_t *mp) { return XFS_CALC_MKDIR_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_ifree_reservation(xfs_mount_t *mp) { return XFS_CALC_IFREE_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_ichange_reservation(xfs_mount_t *mp) { return XFS_CALC_ICHANGE_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_growdata_reservation(xfs_mount_t *mp) { return XFS_CALC_GROWDATA_LOG_RES(mp); } STATIC uint xfs_calc_growrtalloc_reservation(xfs_mount_t *mp) { return XFS_CALC_GROWRTALLOC_LOG_RES(mp); } STATIC uint xfs_calc_growrtzero_reservation(xfs_mount_t *mp) { return XFS_CALC_GROWRTZERO_LOG_RES(mp); } STATIC uint xfs_calc_growrtfree_reservation(xfs_mount_t *mp) { return XFS_CALC_GROWRTFREE_LOG_RES(mp); } STATIC uint xfs_calc_swrite_reservation(xfs_mount_t *mp) { return XFS_CALC_SWRITE_LOG_RES(mp); } STATIC uint xfs_calc_writeid_reservation(xfs_mount_t *mp) { return XFS_CALC_WRITEID_LOG_RES(mp); } STATIC uint xfs_calc_addafork_reservation(xfs_mount_t *mp) { return XFS_CALC_ADDAFORK_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_attrinval_reservation(xfs_mount_t *mp) { return XFS_CALC_ATTRINVAL_LOG_RES(mp); } STATIC uint xfs_calc_attrset_reservation(xfs_mount_t *mp) { return XFS_CALC_ATTRSET_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_attrrm_reservation(xfs_mount_t *mp) { return XFS_CALC_ATTRRM_LOG_RES(mp) + XFS_DQUOT_LOGRES(mp); } STATIC uint xfs_calc_clear_agi_bucket_reservation(xfs_mount_t *mp) { return XFS_CALC_CLEAR_AGI_BUCKET_LOG_RES(mp); } /* * Initialize the precomputed transaction reservation values * in the mount structure. */ void xfs_trans_init( xfs_mount_t *mp) { xfs_trans_reservations_t *resp; resp = &(mp->m_reservations); resp->tr_write = xfs_calc_write_reservation(mp); resp->tr_itruncate = xfs_calc_itruncate_reservation(mp); resp->tr_rename = xfs_calc_rename_reservation(mp); resp->tr_link = xfs_calc_link_reservation(mp); resp->tr_remove = xfs_calc_remove_reservation(mp); resp->tr_symlink = xfs_calc_symlink_reservation(mp); resp->tr_create = xfs_calc_create_reservation(mp); resp->tr_mkdir = xfs_calc_mkdir_reservation(mp); resp->tr_ifree = xfs_calc_ifree_reservation(mp); resp->tr_ichange = xfs_calc_ichange_reservation(mp); resp->tr_growdata = xfs_calc_growdata_reservation(mp); resp->tr_swrite = xfs_calc_swrite_reservation(mp); resp->tr_writeid = xfs_calc_writeid_reservation(mp); resp->tr_addafork = xfs_calc_addafork_reservation(mp); resp->tr_attrinval = xfs_calc_attrinval_reservation(mp); resp->tr_attrset = xfs_calc_attrset_reservation(mp); resp->tr_attrrm = xfs_calc_attrrm_reservation(mp); resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp); resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp); resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp); resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp); } /* * This routine is called to allocate a transaction structure. * The type parameter indicates the type of the transaction. These * are enumerated in xfs_trans.h. * * Dynamically allocate the transaction structure from the transaction * zone, initialize it, and return it to the caller. */ xfs_trans_t * xfs_trans_alloc( xfs_mount_t *mp, uint type) { xfs_wait_for_freeze(mp, SB_FREEZE_TRANS); return _xfs_trans_alloc(mp, type, KM_SLEEP); } xfs_trans_t * _xfs_trans_alloc( xfs_mount_t *mp, uint type, uint memflags) { xfs_trans_t *tp; atomic_inc(&mp->m_active_trans); tp = kmem_zone_zalloc(xfs_trans_zone, memflags); tp->t_magic = XFS_TRANS_MAGIC; tp->t_type = type; tp->t_mountp = mp; tp->t_items_free = XFS_LIC_NUM_SLOTS; tp->t_busy_free = XFS_LBC_NUM_SLOTS; xfs_lic_init(&(tp->t_items)); XFS_LBC_INIT(&(tp->t_busy)); return tp; } /* * This is called to create a new transaction which will share the * permanent log reservation of the given transaction. The remaining * unused block and rt extent reservations are also inherited. This * implies that the original transaction is no longer allowed to allocate * blocks. Locks and log items, however, are no inherited. They must * be added to the new transaction explicitly. */ xfs_trans_t * xfs_trans_dup( xfs_trans_t *tp) { xfs_trans_t *ntp; ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP); /* * Initialize the new transaction structure. */ ntp->t_magic = XFS_TRANS_MAGIC; ntp->t_type = tp->t_type; ntp->t_mountp = tp->t_mountp; ntp->t_items_free = XFS_LIC_NUM_SLOTS; ntp->t_busy_free = XFS_LBC_NUM_SLOTS; xfs_lic_init(&(ntp->t_items)); XFS_LBC_INIT(&(ntp->t_busy)); ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); ASSERT(tp->t_ticket != NULL); ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE); ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; tp->t_blk_res = tp->t_blk_res_used; ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; tp->t_rtx_res = tp->t_rtx_res_used; ntp->t_pflags = tp->t_pflags; xfs_trans_dup_dqinfo(tp, ntp); atomic_inc(&tp->t_mountp->m_active_trans); return ntp; } /* * This is called to reserve free disk blocks and log space for the * given transaction. This must be done before allocating any resources * within the transaction. * * This will return ENOSPC if there are not enough blocks available. * It will sleep waiting for available log space. * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which * is used by long running transactions. If any one of the reservations * fails then they will all be backed out. * * This does not do quota reservations. That typically is done by the * caller afterwards. */ int xfs_trans_reserve( xfs_trans_t *tp, uint blocks, uint logspace, uint rtextents, uint flags, uint logcount) { int log_flags; int error = 0; int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; /* Mark this thread as being in a transaction */ current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); /* * Attempt to reserve the needed disk blocks by decrementing * the number needed from the number available. This will * fail if the count would go below zero. */ if (blocks > 0) { error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FDBLOCKS, -((int64_t)blocks), rsvd); if (error != 0) { current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); return (XFS_ERROR(ENOSPC)); } tp->t_blk_res += blocks; } /* * Reserve the log space needed for this transaction. */ if (logspace > 0) { ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace)); ASSERT((tp->t_log_count == 0) || (tp->t_log_count == logcount)); if (flags & XFS_TRANS_PERM_LOG_RES) { log_flags = XFS_LOG_PERM_RESERV; tp->t_flags |= XFS_TRANS_PERM_LOG_RES; } else { ASSERT(tp->t_ticket == NULL); ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); log_flags = 0; } error = xfs_log_reserve(tp->t_mountp, logspace, logcount, &tp->t_ticket, XFS_TRANSACTION, log_flags, tp->t_type); if (error) { goto undo_blocks; } tp->t_log_res = logspace; tp->t_log_count = logcount; } /* * Attempt to reserve the needed realtime extents by decrementing * the number needed from the number available. This will * fail if the count would go below zero. */ if (rtextents > 0) { error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS, -((int64_t)rtextents), rsvd); if (error) { error = XFS_ERROR(ENOSPC); goto undo_log; } tp->t_rtx_res += rtextents; } return 0; /* * Error cases jump to one of these labels to undo any * reservations which have already been performed. */ undo_log: if (logspace > 0) { if (flags & XFS_TRANS_PERM_LOG_RES) { log_flags = XFS_LOG_REL_PERM_RESERV; } else { log_flags = 0; } xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags); tp->t_ticket = NULL; tp->t_log_res = 0; tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; } undo_blocks: if (blocks > 0) { (void) xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FDBLOCKS, (int64_t)blocks, rsvd); tp->t_blk_res = 0; } current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); return error; } /* * Record the indicated change to the given field for application * to the file system's superblock when the transaction commits. * For now, just store the change in the transaction structure. * * Mark the transaction structure to indicate that the superblock * needs to be updated before committing. * * Because we may not be keeping track of allocated/free inodes and * used filesystem blocks in the superblock, we do not mark the * superblock dirty in this transaction if we modify these fields. * We still need to update the transaction deltas so that they get * applied to the incore superblock, but we don't want them to * cause the superblock to get locked and logged if these are the * only fields in the superblock that the transaction modifies. */ void xfs_trans_mod_sb( xfs_trans_t *tp, uint field, int64_t delta) { uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); xfs_mount_t *mp = tp->t_mountp; switch (field) { case XFS_TRANS_SB_ICOUNT: tp->t_icount_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_IFREE: tp->t_ifree_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_FDBLOCKS: /* * Track the number of blocks allocated in the * transaction. Make sure it does not exceed the * number reserved. */ if (delta < 0) { tp->t_blk_res_used += (uint)-delta; ASSERT(tp->t_blk_res_used <= tp->t_blk_res); } tp->t_fdblocks_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_RES_FDBLOCKS: /* * The allocation has already been applied to the * in-core superblock's counter. This should only * be applied to the on-disk superblock. */ ASSERT(delta < 0); tp->t_res_fdblocks_delta += delta; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) flags &= ~XFS_TRANS_SB_DIRTY; break; case XFS_TRANS_SB_FREXTENTS: /* * Track the number of blocks allocated in the * transaction. Make sure it does not exceed the * number reserved. */ if (delta < 0) { tp->t_rtx_res_used += (uint)-delta; ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); } tp->t_frextents_delta += delta; break; case XFS_TRANS_SB_RES_FREXTENTS: /* * The allocation has already been applied to the * in-core superblock's counter. This should only * be applied to the on-disk superblock. */ ASSERT(delta < 0); tp->t_res_frextents_delta += delta; break; case XFS_TRANS_SB_DBLOCKS: ASSERT(delta > 0); tp->t_dblocks_delta += delta; break; case XFS_TRANS_SB_AGCOUNT: ASSERT(delta > 0); tp->t_agcount_delta += delta; break; case XFS_TRANS_SB_IMAXPCT: tp->t_imaxpct_delta += delta; break; case XFS_TRANS_SB_REXTSIZE: tp->t_rextsize_delta += delta; break; case XFS_TRANS_SB_RBMBLOCKS: tp->t_rbmblocks_delta += delta; break; case XFS_TRANS_SB_RBLOCKS: tp->t_rblocks_delta += delta; break; case XFS_TRANS_SB_REXTENTS: tp->t_rextents_delta += delta; break; case XFS_TRANS_SB_REXTSLOG: tp->t_rextslog_delta += delta; break; default: ASSERT(0); return; } tp->t_flags |= flags; } /* * xfs_trans_apply_sb_deltas() is called from the commit code * to bring the superblock buffer into the current transaction * and modify it as requested by earlier calls to xfs_trans_mod_sb(). * * For now we just look at each field allowed to change and change * it if necessary. */ STATIC void xfs_trans_apply_sb_deltas( xfs_trans_t *tp) { xfs_dsb_t *sbp; xfs_buf_t *bp; int whole = 0; bp = xfs_trans_getsb(tp, tp->t_mountp, 0); sbp = XFS_BUF_TO_SBP(bp); /* * Check that superblock mods match the mods made to AGF counters. */ ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + tp->t_ag_btree_delta)); /* * Only update the superblock counters if we are logging them */ if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) { if (tp->t_icount_delta) be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); if (tp->t_ifree_delta) be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); if (tp->t_fdblocks_delta) be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); if (tp->t_res_fdblocks_delta) be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); } if (tp->t_frextents_delta) be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); if (tp->t_res_frextents_delta) be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); if (tp->t_dblocks_delta) { be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); whole = 1; } if (tp->t_agcount_delta) { be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); whole = 1; } if (tp->t_imaxpct_delta) { sbp->sb_imax_pct += tp->t_imaxpct_delta; whole = 1; } if (tp->t_rextsize_delta) { be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); whole = 1; } if (tp->t_rbmblocks_delta) { be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); whole = 1; } if (tp->t_rblocks_delta) { be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); whole = 1; } if (tp->t_rextents_delta) { be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); whole = 1; } if (tp->t_rextslog_delta) { sbp->sb_rextslog += tp->t_rextslog_delta; whole = 1; } if (whole) /* * Log the whole thing, the fields are noncontiguous. */ xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1); else /* * Since all the modifiable fields are contiguous, we * can get away with this. */ xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount), offsetof(xfs_dsb_t, sb_frextents) + sizeof(sbp->sb_frextents) - 1); } /* * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations * and apply superblock counter changes to the in-core superblock. The * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT * applied to the in-core superblock. The idea is that that has already been * done. * * This is done efficiently with a single call to xfs_mod_incore_sb_batch(). * However, we have to ensure that we only modify each superblock field only * once because the application of the delta values may not be atomic. That can * lead to ENOSPC races occurring if we have two separate modifcations of the * free space counter to put back the entire reservation and then take away * what we used. * * If we are not logging superblock counters, then the inode allocated/free and * used block counts are not updated in the on disk superblock. In this case, * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we * still need to update the incore superblock with the changes. */ STATIC void xfs_trans_unreserve_and_mod_sb( xfs_trans_t *tp) { xfs_mod_sb_t msb[14]; /* If you add cases, add entries */ xfs_mod_sb_t *msbp; xfs_mount_t *mp = tp->t_mountp; /* REFERENCED */ int error; int rsvd; int64_t blkdelta = 0; int64_t rtxdelta = 0; msbp = msb; rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; /* calculate free blocks delta */ if (tp->t_blk_res > 0) blkdelta = tp->t_blk_res; if ((tp->t_fdblocks_delta != 0) && (xfs_sb_version_haslazysbcount(&mp->m_sb) || (tp->t_flags & XFS_TRANS_SB_DIRTY))) blkdelta += tp->t_fdblocks_delta; if (blkdelta != 0) { msbp->msb_field = XFS_SBS_FDBLOCKS; msbp->msb_delta = blkdelta; msbp++; } /* calculate free realtime extents delta */ if (tp->t_rtx_res > 0) rtxdelta = tp->t_rtx_res; if ((tp->t_frextents_delta != 0) && (tp->t_flags & XFS_TRANS_SB_DIRTY)) rtxdelta += tp->t_frextents_delta; if (rtxdelta != 0) { msbp->msb_field = XFS_SBS_FREXTENTS; msbp->msb_delta = rtxdelta; msbp++; } /* apply remaining deltas */ if (xfs_sb_version_haslazysbcount(&mp->m_sb) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) { if (tp->t_icount_delta != 0) { msbp->msb_field = XFS_SBS_ICOUNT; msbp->msb_delta = tp->t_icount_delta; msbp++; } if (tp->t_ifree_delta != 0) { msbp->msb_field = XFS_SBS_IFREE; msbp->msb_delta = tp->t_ifree_delta; msbp++; } } if (tp->t_flags & XFS_TRANS_SB_DIRTY) { if (tp->t_dblocks_delta != 0) { msbp->msb_field = XFS_SBS_DBLOCKS; msbp->msb_delta = tp->t_dblocks_delta; msbp++; } if (tp->t_agcount_delta != 0) { msbp->msb_field = XFS_SBS_AGCOUNT; msbp->msb_delta = tp->t_agcount_delta; msbp++; } if (tp->t_imaxpct_delta != 0) { msbp->msb_field = XFS_SBS_IMAX_PCT; msbp->msb_delta = tp->t_imaxpct_delta; msbp++; } if (tp->t_rextsize_delta != 0) { msbp->msb_field = XFS_SBS_REXTSIZE; msbp->msb_delta = tp->t_rextsize_delta; msbp++; } if (tp->t_rbmblocks_delta != 0) { msbp->msb_field = XFS_SBS_RBMBLOCKS; msbp->msb_delta = tp->t_rbmblocks_delta; msbp++; } if (tp->t_rblocks_delta != 0) { msbp->msb_field = XFS_SBS_RBLOCKS; msbp->msb_delta = tp->t_rblocks_delta; msbp++; } if (tp->t_rextents_delta != 0) { msbp->msb_field = XFS_SBS_REXTENTS; msbp->msb_delta = tp->t_rextents_delta; msbp++; } if (tp->t_rextslog_delta != 0) { msbp->msb_field = XFS_SBS_REXTSLOG; msbp->msb_delta = tp->t_rextslog_delta; msbp++; } } /* * If we need to change anything, do it. */ if (msbp > msb) { error = xfs_mod_incore_sb_batch(tp->t_mountp, msb, (uint)(msbp - msb), rsvd); ASSERT(error == 0); } } /* * Total up the number of log iovecs needed to commit this * transaction. The transaction itself needs one for the * transaction header. Ask each dirty item in turn how many * it needs to get the total. */ static uint xfs_trans_count_vecs( xfs_trans_t *tp) { int nvecs; xfs_log_item_desc_t *lidp; nvecs = 1; lidp = xfs_trans_first_item(tp); ASSERT(lidp != NULL); /* In the non-debug case we need to start bailing out if we * didn't find a log_item here, return zero and let trans_commit * deal with it. */ if (lidp == NULL) return 0; while (lidp != NULL) { /* * Skip items which aren't dirty in this transaction. */ if (!(lidp->lid_flags & XFS_LID_DIRTY)) { lidp = xfs_trans_next_item(tp, lidp); continue; } lidp->lid_size = IOP_SIZE(lidp->lid_item); nvecs += lidp->lid_size; lidp = xfs_trans_next_item(tp, lidp); } return nvecs; } /* * Fill in the vector with pointers to data to be logged * by this transaction. The transaction header takes * the first vector, and then each dirty item takes the * number of vectors it indicated it needed in xfs_trans_count_vecs(). * * As each item fills in the entries it needs, also pin the item * so that it cannot be flushed out until the log write completes. */ static void xfs_trans_fill_vecs( struct xfs_trans *tp, struct xfs_log_iovec *log_vector) { xfs_log_item_desc_t *lidp; struct xfs_log_iovec *vecp; uint nitems; /* * Skip over the entry for the transaction header, we'll * fill that in at the end. */ vecp = log_vector + 1; nitems = 0; lidp = xfs_trans_first_item(tp); ASSERT(lidp); while (lidp) { /* Skip items which aren't dirty in this transaction. */ if (!(lidp->lid_flags & XFS_LID_DIRTY)) { lidp = xfs_trans_next_item(tp, lidp); continue; } /* * The item may be marked dirty but not log anything. This can * be used to get called when a transaction is committed. */ if (lidp->lid_size) nitems++; IOP_FORMAT(lidp->lid_item, vecp); vecp += lidp->lid_size; IOP_PIN(lidp->lid_item); lidp = xfs_trans_next_item(tp, lidp); } /* * Now that we've counted the number of items in this transaction, fill * in the transaction header. Note that the transaction header does not * have a log item. */ tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC; tp->t_header.th_type = tp->t_type; tp->t_header.th_num_items = nitems; log_vector->i_addr = (xfs_caddr_t)&tp->t_header; log_vector->i_len = sizeof(xfs_trans_header_t); log_vector->i_type = XLOG_REG_TYPE_TRANSHDR; } /* * Format the transaction direct to the iclog. This isolates the physical * transaction commit operation from the logical operation and hence allows * other methods to be introduced without affecting the existing commit path. */ static int xfs_trans_commit_iclog( struct xfs_mount *mp, struct xfs_trans *tp, xfs_lsn_t *commit_lsn, int flags) { int shutdown; int error; int log_flags = 0; struct xlog_in_core *commit_iclog; #define XFS_TRANS_LOGVEC_COUNT 16 struct xfs_log_iovec log_vector_fast[XFS_TRANS_LOGVEC_COUNT]; struct xfs_log_iovec *log_vector; uint nvec; /* * Ask each log item how many log_vector entries it will * need so we can figure out how many to allocate. * Try to avoid the kmem_alloc() call in the common case * by using a vector from the stack when it fits. */ nvec = xfs_trans_count_vecs(tp); if (nvec == 0) { return ENOMEM; /* triggers a shutdown! */ } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) { log_vector = log_vector_fast; } else { log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec * sizeof(xfs_log_iovec_t), KM_SLEEP); } /* * Fill in the log_vector and pin the logged items, and * then write the transaction to the log. */ xfs_trans_fill_vecs(tp, log_vector); if (flags & XFS_TRANS_RELEASE_LOG_RES) log_flags = XFS_LOG_REL_PERM_RESERV; error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn)); /* * The transaction is committed incore here, and can go out to disk * at any time after this call. However, all the items associated * with the transaction are still locked and pinned in memory. */ *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags); tp->t_commit_lsn = *commit_lsn; if (nvec > XFS_TRANS_LOGVEC_COUNT) kmem_free(log_vector); /* * If we got a log write error. Unpin the logitems that we * had pinned, clean up, free trans structure, and return error. */ if (error || *commit_lsn == -1) { current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT); return XFS_ERROR(EIO); } /* * Once the transaction has committed, unused * reservations need to be released and changes to * the superblock need to be reflected in the in-core * version. Do that now. */ xfs_trans_unreserve_and_mod_sb(tp); /* * Tell the LM to call the transaction completion routine * when the log write with LSN commit_lsn completes (e.g. * when the transaction commit really hits the on-disk log). * After this call we cannot reference tp, because the call * can happen at any time and the call will free the transaction * structure pointed to by tp. The only case where we call * the completion routine (xfs_trans_committed) directly is * if the log is turned off on a debug kernel or we're * running in simulation mode (the log is explicitly turned * off). */ tp->t_logcb.cb_func = (void(*)(void*, int))xfs_trans_committed; tp->t_logcb.cb_arg = tp; /* * We need to pass the iclog buffer which was used for the * transaction commit record into this function, and attach * the callback to it. The callback must be attached before * the items are unlocked to avoid racing with other threads * waiting for an item to unlock. */ shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb)); /* * Mark this thread as no longer being in a transaction */ current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); /* * Once all the items of the transaction have been copied * to the in core log and the callback is attached, the * items can be unlocked. * * This will free descriptors pointing to items which were * not logged since there is nothing more to do with them. * For items which were logged, we will keep pointers to them * so they can be unpinned after the transaction commits to disk. * This will also stamp each modified meta-data item with * the commit lsn of this transaction for dependency tracking * purposes. */ xfs_trans_unlock_items(tp, *commit_lsn); /* * If we detected a log error earlier, finish committing * the transaction now (unpin log items, etc). * * Order is critical here, to avoid using the transaction * pointer after its been freed (by xfs_trans_committed * either here now, or as a callback). We cannot do this * step inside xfs_log_notify as was done earlier because * of this issue. */ if (shutdown) xfs_trans_committed(tp, XFS_LI_ABORTED); /* * Now that the xfs_trans_committed callback has been attached, * and the items are released we can finally allow the iclog to * go to disk. */ return xfs_log_release_iclog(mp, commit_iclog); } /* * xfs_trans_commit * * Commit the given transaction to the log a/synchronously. * * XFS disk error handling mechanism is not based on a typical * transaction abort mechanism. Logically after the filesystem * gets marked 'SHUTDOWN', we can't let any new transactions * be durable - ie. committed to disk - because some metadata might * be inconsistent. In such cases, this returns an error, and the * caller may assume that all locked objects joined to the transaction * have already been unlocked as if the commit had succeeded. * Do not reference the transaction structure after this call. */ int _xfs_trans_commit( struct xfs_trans *tp, uint flags, int *log_flushed) { struct xfs_mount *mp = tp->t_mountp; xfs_lsn_t commit_lsn = -1; int error = 0; int log_flags = 0; int sync = tp->t_flags & XFS_TRANS_SYNC; /* * Determine whether this commit is releasing a permanent * log reservation or not. */ if (flags & XFS_TRANS_RELEASE_LOG_RES) { ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); log_flags = XFS_LOG_REL_PERM_RESERV; } /* * If there is nothing to be logged by the transaction, * then unlock all of the items associated with the * transaction and free the transaction structure. * Also make sure to return any reserved blocks to * the free pool. */ if (!(tp->t_flags & XFS_TRANS_DIRTY)) goto out_unreserve; if (XFS_FORCED_SHUTDOWN(mp)) { error = XFS_ERROR(EIO); goto out_unreserve; } ASSERT(tp->t_ticket != NULL); /* * If we need to update the superblock, then do it now. */ if (tp->t_flags & XFS_TRANS_SB_DIRTY) xfs_trans_apply_sb_deltas(tp); xfs_trans_apply_dquot_deltas(tp); error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags); if (error == ENOMEM) { xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); error = XFS_ERROR(EIO); goto out_unreserve; } /* * If the transaction needs to be synchronous, then force the * log out now and wait for it. */ if (sync) { if (!error) { error = _xfs_log_force_lsn(mp, commit_lsn, XFS_LOG_SYNC, log_flushed); } XFS_STATS_INC(xs_trans_sync); } else { XFS_STATS_INC(xs_trans_async); } return error; out_unreserve: xfs_trans_unreserve_and_mod_sb(tp); /* * It is indeed possible for the transaction to be not dirty but * the dqinfo portion to be. All that means is that we have some * (non-persistent) quota reservations that need to be unreserved. */ xfs_trans_unreserve_and_mod_dquots(tp); if (tp->t_ticket) { commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags); if (commit_lsn == -1 && !error) error = XFS_ERROR(EIO); } current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); xfs_trans_free_items(tp, error ? XFS_TRANS_ABORT : 0); xfs_trans_free_busy(tp); xfs_trans_free(tp); XFS_STATS_INC(xs_trans_empty); return error; } /* * Called from the trans_commit code when we notice that * the filesystem is in the middle of a forced shutdown. */ STATIC void xfs_trans_uncommit( xfs_trans_t *tp, uint flags) { xfs_log_item_desc_t *lidp; for (lidp = xfs_trans_first_item(tp); lidp != NULL; lidp = xfs_trans_next_item(tp, lidp)) { /* * Unpin all but those that aren't dirty. */ if (lidp->lid_flags & XFS_LID_DIRTY) IOP_UNPIN_REMOVE(lidp->lid_item, tp); } xfs_trans_unreserve_and_mod_sb(tp); xfs_trans_unreserve_and_mod_dquots(tp); xfs_trans_free_items(tp, flags); xfs_trans_free_busy(tp); xfs_trans_free(tp); } /* * Unlock all of the transaction's items and free the transaction. * The transaction must not have modified any of its items, because * there is no way to restore them to their previous state. * * If the transaction has made a log reservation, make sure to release * it as well. */ void xfs_trans_cancel( xfs_trans_t *tp, int flags) { int log_flags; #ifdef DEBUG xfs_log_item_chunk_t *licp; xfs_log_item_desc_t *lidp; xfs_log_item_t *lip; int i; #endif xfs_mount_t *mp = tp->t_mountp; /* * See if the caller is being too lazy to figure out if * the transaction really needs an abort. */ if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY)) flags &= ~XFS_TRANS_ABORT; /* * See if the caller is relying on us to shut down the * filesystem. This happens in paths where we detect * corruption and decide to give up. */ if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) { XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); } #ifdef DEBUG if (!(flags & XFS_TRANS_ABORT)) { licp = &(tp->t_items); while (licp != NULL) { lidp = licp->lic_descs; for (i = 0; i < licp->lic_unused; i++, lidp++) { if (xfs_lic_isfree(licp, i)) { continue; } lip = lidp->lid_item; if (!XFS_FORCED_SHUTDOWN(mp)) ASSERT(!(lip->li_type == XFS_LI_EFD)); } licp = licp->lic_next; } } #endif xfs_trans_unreserve_and_mod_sb(tp); xfs_trans_unreserve_and_mod_dquots(tp); if (tp->t_ticket) { if (flags & XFS_TRANS_RELEASE_LOG_RES) { ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); log_flags = XFS_LOG_REL_PERM_RESERV; } else { log_flags = 0; } xfs_log_done(mp, tp->t_ticket, NULL, log_flags); } /* mark this thread as no longer being in a transaction */ current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); xfs_trans_free_items(tp, flags); xfs_trans_free_busy(tp); xfs_trans_free(tp); } /* * Free the transaction structure. If there is more clean up * to do when the structure is freed, add it here. */ STATIC void xfs_trans_free( xfs_trans_t *tp) { atomic_dec(&tp->t_mountp->m_active_trans); xfs_trans_free_dqinfo(tp); kmem_zone_free(xfs_trans_zone, tp); } /* * Roll from one trans in the sequence of PERMANENT transactions to * the next: permanent transactions are only flushed out when * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon * as possible to let chunks of it go to the log. So we commit the * chunk we've been working on and get a new transaction to continue. */ int xfs_trans_roll( struct xfs_trans **tpp, struct xfs_inode *dp) { struct xfs_trans *trans; unsigned int logres, count; int error; /* * Ensure that the inode is always logged. */ trans = *tpp; xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE); /* * Copy the critical parameters from one trans to the next. */ logres = trans->t_log_res; count = trans->t_log_count; *tpp = xfs_trans_dup(trans); /* * Commit the current transaction. * If this commit failed, then it'd just unlock those items that * are not marked ihold. That also means that a filesystem shutdown * is in progress. The caller takes the responsibility to cancel * the duplicate transaction that gets returned. */ error = xfs_trans_commit(trans, 0); if (error) return (error); trans = *tpp; /* * transaction commit worked ok so we can drop the extra ticket * reference that we gained in xfs_trans_dup() */ xfs_log_ticket_put(trans->t_ticket); /* * Reserve space in the log for th next transaction. * This also pushes items in the "AIL", the list of logged items, * out to disk if they are taking up space at the tail of the log * that we want to use. This requires that either nothing be locked * across this call, or that anything that is locked be logged in * the prior and the next transactions. */ error = xfs_trans_reserve(trans, 0, logres, 0, XFS_TRANS_PERM_LOG_RES, count); /* * Ensure that the inode is in the new transaction and locked. */ if (error) return error; xfs_trans_ijoin(trans, dp, XFS_ILOCK_EXCL); xfs_trans_ihold(trans, dp); return 0; } /* * THIS SHOULD BE REWRITTEN TO USE xfs_trans_next_item(). * * This is typically called by the LM when a transaction has been fully * committed to disk. It needs to unpin the items which have * been logged by the transaction and update their positions * in the AIL if necessary. * This also gets called when the transactions didn't get written out * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then. * * Call xfs_trans_chunk_committed() to process the items in * each chunk. */ STATIC void xfs_trans_committed( xfs_trans_t *tp, int abortflag) { xfs_log_item_chunk_t *licp; xfs_log_item_chunk_t *next_licp; xfs_log_busy_chunk_t *lbcp; xfs_log_busy_slot_t *lbsp; int i; /* * Call the transaction's completion callback if there * is one. */ if (tp->t_callback != NULL) { tp->t_callback(tp, tp->t_callarg); } /* * Special case the chunk embedded in the transaction. */ licp = &(tp->t_items); if (!(xfs_lic_are_all_free(licp))) { xfs_trans_chunk_committed(licp, tp->t_lsn, abortflag); } /* * Process the items in each chunk in turn. */ licp = licp->lic_next; while (licp != NULL) { ASSERT(!xfs_lic_are_all_free(licp)); xfs_trans_chunk_committed(licp, tp->t_lsn, abortflag); next_licp = licp->lic_next; kmem_free(licp); licp = next_licp; } /* * Clear all the per-AG busy list items listed in this transaction */ lbcp = &tp->t_busy; while (lbcp != NULL) { for (i = 0, lbsp = lbcp->lbc_busy; i < lbcp->lbc_unused; i++, lbsp++) { if (!XFS_LBC_ISFREE(lbcp, i)) { xfs_alloc_clear_busy(tp, lbsp->lbc_ag, lbsp->lbc_idx); } } lbcp = lbcp->lbc_next; } xfs_trans_free_busy(tp); /* * That's it for the transaction structure. Free it. */ xfs_trans_free(tp); } /* * This is called to perform the commit processing for each * item described by the given chunk. * * The commit processing consists of unlocking items which were * held locked with the SYNC_UNLOCK attribute, calling the committed * routine of each logged item, updating the item's position in the AIL * if necessary, and unpinning each item. If the committed routine * returns -1, then do nothing further with the item because it * may have been freed. * * Since items are unlocked when they are copied to the incore * log, it is possible for two transactions to be completing * and manipulating the same item simultaneously. The AIL lock * will protect the lsn field of each item. The value of this * field can never go backwards. * * We unpin the items after repositioning them in the AIL, because * otherwise they could be immediately flushed and we'd have to race * with the flusher trying to pull the item from the AIL as we add it. */ STATIC void xfs_trans_chunk_committed( xfs_log_item_chunk_t *licp, xfs_lsn_t lsn, int aborted) { xfs_log_item_desc_t *lidp; xfs_log_item_t *lip; xfs_lsn_t item_lsn; int i; lidp = licp->lic_descs; for (i = 0; i < licp->lic_unused; i++, lidp++) { struct xfs_ail *ailp; if (xfs_lic_isfree(licp, i)) { continue; } lip = lidp->lid_item; if (aborted) lip->li_flags |= XFS_LI_ABORTED; /* * Send in the ABORTED flag to the COMMITTED routine * so that it knows whether the transaction was aborted * or not. */ item_lsn = IOP_COMMITTED(lip, lsn); /* * If the committed routine returns -1, make * no more references to the item. */ if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) { continue; } /* * If the returned lsn is greater than what it * contained before, update the location of the * item in the AIL. If it is not, then do nothing. * Items can never move backwards in the AIL. * * While the new lsn should usually be greater, it * is possible that a later transaction completing * simultaneously with an earlier one using the * same item could complete first with a higher lsn. * This would cause the earlier transaction to fail * the test below. */ ailp = lip->li_ailp; spin_lock(&ailp->xa_lock); if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) { /* * This will set the item's lsn to item_lsn * and update the position of the item in * the AIL. * * xfs_trans_ail_update() drops the AIL lock. */ xfs_trans_ail_update(ailp, lip, item_lsn); } else { spin_unlock(&ailp->xa_lock); } /* * Now that we've repositioned the item in the AIL, * unpin it so it can be flushed. Pass information * about buffer stale state down from the log item * flags, if anyone else stales the buffer we do not * want to pay any attention to it. */ IOP_UNPIN(lip); } }