/* * NVM Express device driver * Copyright (c) 2011, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NVME_Q_DEPTH 1024 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) #define NVME_MINORS 64 #define IO_TIMEOUT (5 * HZ) #define ADMIN_TIMEOUT (60 * HZ) static int nvme_major; module_param(nvme_major, int, 0); static int use_threaded_interrupts; module_param(use_threaded_interrupts, int, 0); /* * Represents an NVM Express device. Each nvme_dev is a PCI function. */ struct nvme_dev { struct nvme_queue **queues; u32 __iomem *dbs; struct pci_dev *pci_dev; struct dma_pool *prp_page_pool; struct dma_pool *prp_small_pool; int instance; int queue_count; u32 ctrl_config; struct msix_entry *entry; struct nvme_bar __iomem *bar; struct list_head namespaces; char serial[20]; char model[40]; char firmware_rev[8]; }; /* * An NVM Express namespace is equivalent to a SCSI LUN */ struct nvme_ns { struct list_head list; struct nvme_dev *dev; struct request_queue *queue; struct gendisk *disk; int ns_id; int lba_shift; }; /* * An NVM Express queue. Each device has at least two (one for admin * commands and one for I/O commands). */ struct nvme_queue { struct device *q_dmadev; struct nvme_dev *dev; spinlock_t q_lock; struct nvme_command *sq_cmds; volatile struct nvme_completion *cqes; dma_addr_t sq_dma_addr; dma_addr_t cq_dma_addr; wait_queue_head_t sq_full; struct bio_list sq_cong; u32 __iomem *q_db; u16 q_depth; u16 cq_vector; u16 sq_head; u16 sq_tail; u16 cq_head; u16 cq_phase; unsigned long cmdid_data[]; }; static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio); /* * Check we didin't inadvertently grow the command struct */ static inline void _nvme_check_size(void) { BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); BUILD_BUG_ON(sizeof(struct nvme_features) != 64); BUILD_BUG_ON(sizeof(struct nvme_command) != 64); BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); } struct nvme_cmd_info { unsigned long ctx; unsigned long timeout; }; static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq) { return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)]; } /** * alloc_cmdid - Allocate a Command ID * @param nvmeq The queue that will be used for this command * @param ctx A pointer that will be passed to the handler * @param handler The ID of the handler to call * * Allocate a Command ID for a queue. The data passed in will * be passed to the completion handler. This is implemented by using * the bottom two bits of the ctx pointer to store the handler ID. * Passing in a pointer that's not 4-byte aligned will cause a BUG. * We can change this if it becomes a problem. */ static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler, unsigned timeout) { int depth = nvmeq->q_depth; struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); int cmdid; BUG_ON((unsigned long)ctx & 3); do { cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth); if (cmdid >= depth) return -EBUSY; } while (test_and_set_bit(cmdid, nvmeq->cmdid_data)); info[cmdid].ctx = (unsigned long)ctx | handler; info[cmdid].timeout = jiffies + timeout; return cmdid; } static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx, int handler, unsigned timeout) { int cmdid; wait_event_killable(nvmeq->sq_full, (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0); return (cmdid < 0) ? -EINTR : cmdid; } /* If you need more than four handlers, you'll need to change how * alloc_cmdid and nvme_process_cq work. Consider using a special * CMD_CTX value instead, if that works for your situation. */ enum { sync_completion_id = 0, bio_completion_id, }; #define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id) #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE) #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE) #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE) static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid) { unsigned long data; struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); if (cmdid >= nvmeq->q_depth) return CMD_CTX_INVALID; data = info[cmdid].ctx; info[cmdid].ctx = CMD_CTX_COMPLETED; clear_bit(cmdid, nvmeq->cmdid_data); wake_up(&nvmeq->sq_full); return data; } static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid) { struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); info[cmdid].ctx = CMD_CTX_CANCELLED; } static struct nvme_queue *get_nvmeq(struct nvme_ns *ns) { int qid, cpu = get_cpu(); if (cpu < ns->dev->queue_count) qid = cpu + 1; else qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1; return ns->dev->queues[qid]; } static void put_nvmeq(struct nvme_queue *nvmeq) { put_cpu(); } /** * nvme_submit_cmd: Copy a command into a queue and ring the doorbell * @nvmeq: The queue to use * @cmd: The command to send * * Safe to use from interrupt context */ static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) { unsigned long flags; u16 tail; /* XXX: Need to check tail isn't going to overrun head */ spin_lock_irqsave(&nvmeq->q_lock, flags); tail = nvmeq->sq_tail; memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); writel(tail, nvmeq->q_db); if (++tail == nvmeq->q_depth) tail = 0; nvmeq->sq_tail = tail; spin_unlock_irqrestore(&nvmeq->q_lock, flags); return 0; } struct nvme_prps { int npages; dma_addr_t first_dma; __le64 *list[0]; }; static void nvme_free_prps(struct nvme_queue *nvmeq, struct nvme_prps *prps) { const int last_prp = PAGE_SIZE / 8 - 1; struct nvme_dev *dev = nvmeq->dev; int i; dma_addr_t prp_dma; if (!prps) return; prp_dma = prps->first_dma; if (prps->npages == 0) dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma); for (i = 0; i < prps->npages; i++) { __le64 *prp_list = prps->list[i]; dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); prp_dma = next_prp_dma; } kfree(prps); } struct nvme_bio { struct bio *bio; int nents; struct nvme_prps *prps; struct scatterlist sg[0]; }; /* XXX: use a mempool */ static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp) { return kzalloc(sizeof(struct nvme_bio) + sizeof(struct scatterlist) * nseg, gfp); } static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio) { nvme_free_prps(nvmeq, nbio->prps); kfree(nbio); } static void bio_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { struct nvme_bio *nbio = ctx; struct bio *bio = nbio->bio; u16 status = le16_to_cpup(&cqe->status) >> 1; dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents, bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); free_nbio(nvmeq, nbio); bio_endio(bio, status ? -EIO : 0); bio = bio_list_pop(&nvmeq->sq_cong); if (bio) nvme_resubmit_bio(nvmeq, bio); } /* length is in bytes */ static struct nvme_prps *nvme_setup_prps(struct nvme_queue *nvmeq, struct nvme_common_command *cmd, struct scatterlist *sg, int length) { struct nvme_dev *dev = nvmeq->dev; struct dma_pool *pool; int dma_len = sg_dma_len(sg); u64 dma_addr = sg_dma_address(sg); int offset = offset_in_page(dma_addr); __le64 *prp_list; dma_addr_t prp_dma; int nprps, npages, i, prp_page; struct nvme_prps *prps = NULL; cmd->prp1 = cpu_to_le64(dma_addr); length -= (PAGE_SIZE - offset); if (length <= 0) return prps; dma_len -= (PAGE_SIZE - offset); if (dma_len) { dma_addr += (PAGE_SIZE - offset); } else { sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } if (length <= PAGE_SIZE) { cmd->prp2 = cpu_to_le64(dma_addr); return prps; } nprps = DIV_ROUND_UP(length, PAGE_SIZE); npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE); prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC); prp_page = 0; if (nprps <= (256 / 8)) { pool = dev->prp_small_pool; prps->npages = 0; } else { pool = dev->prp_page_pool; prps->npages = npages; } prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); prps->list[prp_page++] = prp_list; prps->first_dma = prp_dma; cmd->prp2 = cpu_to_le64(prp_dma); i = 0; for (;;) { if (i == PAGE_SIZE / 8 - 1) { __le64 *old_prp_list = prp_list; prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); prps->list[prp_page++] = prp_list; old_prp_list[i] = cpu_to_le64(prp_dma); i = 0; } prp_list[i++] = cpu_to_le64(dma_addr); dma_len -= PAGE_SIZE; dma_addr += PAGE_SIZE; length -= PAGE_SIZE; if (length <= 0) break; if (dma_len > 0) continue; BUG_ON(dma_len < 0); sg = sg_next(sg); dma_addr = sg_dma_address(sg); dma_len = sg_dma_len(sg); } return prps; } static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio, struct bio *bio, enum dma_data_direction dma_dir, int psegs) { struct bio_vec *bvec; struct scatterlist *sg = nbio->sg; int i, nsegs; sg_init_table(sg, psegs); bio_for_each_segment(bvec, bio, i) { sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset); sg++; /* XXX: handle non-mergable here */ nsegs++; } nbio->nents = nsegs; return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir); } static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, struct bio *bio) { struct nvme_command *cmnd; struct nvme_bio *nbio; enum dma_data_direction dma_dir; int cmdid; u16 control; u32 dsmgmt; unsigned long flags; int psegs = bio_phys_segments(ns->queue, bio); nbio = alloc_nbio(psegs, GFP_NOIO); if (!nbio) goto congestion; nbio->bio = bio; cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT); if (unlikely(cmdid < 0)) goto free_nbio; control = 0; if (bio->bi_rw & REQ_FUA) control |= NVME_RW_FUA; if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD)) control |= NVME_RW_LR; dsmgmt = 0; if (bio->bi_rw & REQ_RAHEAD) dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; spin_lock_irqsave(&nvmeq->q_lock, flags); cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; memset(cmnd, 0, sizeof(*cmnd)); if (bio_data_dir(bio)) { cmnd->rw.opcode = nvme_cmd_write; dma_dir = DMA_TO_DEVICE; } else { cmnd->rw.opcode = nvme_cmd_read; dma_dir = DMA_FROM_DEVICE; } nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs); cmnd->rw.flags = 1; cmnd->rw.command_id = cmdid; cmnd->rw.nsid = cpu_to_le32(ns->ns_id); nbio->prps = nvme_setup_prps(nvmeq, &cmnd->common, nbio->sg, bio->bi_size); cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9)); cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1); cmnd->rw.control = cpu_to_le16(control); cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); writel(nvmeq->sq_tail, nvmeq->q_db); if (++nvmeq->sq_tail == nvmeq->q_depth) nvmeq->sq_tail = 0; spin_unlock_irqrestore(&nvmeq->q_lock, flags); return 0; free_nbio: free_nbio(nvmeq, nbio); congestion: return -EBUSY; } static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio) { struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data; if (nvme_submit_bio_queue(nvmeq, ns, bio)) bio_list_add_head(&nvmeq->sq_cong, bio); else if (bio_list_empty(&nvmeq->sq_cong)) blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw)); /* XXX: Need to duplicate the logic from __freed_request here */ } /* * NB: return value of non-zero would mean that we were a stacking driver. * make_request must always succeed. */ static int nvme_make_request(struct request_queue *q, struct bio *bio) { struct nvme_ns *ns = q->queuedata; struct nvme_queue *nvmeq = get_nvmeq(ns); if (nvme_submit_bio_queue(nvmeq, ns, bio)) { blk_set_queue_congested(q, rw_is_sync(bio->bi_rw)); spin_lock_irq(&nvmeq->q_lock); bio_list_add(&nvmeq->sq_cong, bio); spin_unlock_irq(&nvmeq->q_lock); } put_nvmeq(nvmeq); return 0; } struct sync_cmd_info { struct task_struct *task; u32 result; int status; }; static void sync_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { struct sync_cmd_info *cmdinfo = ctx; if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED) return; if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) { dev_warn(nvmeq->q_dmadev, "completed id %d twice on queue %d\n", cqe->command_id, le16_to_cpup(&cqe->sq_id)); return; } if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) { dev_warn(nvmeq->q_dmadev, "invalid id %d completed on queue %d\n", cqe->command_id, le16_to_cpup(&cqe->sq_id)); return; } cmdinfo->result = le32_to_cpup(&cqe->result); cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; wake_up_process(cmdinfo->task); } typedef void (*completion_fn)(struct nvme_queue *, void *, struct nvme_completion *); static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq) { u16 head, phase; static const completion_fn completions[4] = { [sync_completion_id] = sync_completion, [bio_completion_id] = bio_completion, }; head = nvmeq->cq_head; phase = nvmeq->cq_phase; for (;;) { unsigned long data; void *ptr; unsigned char handler; struct nvme_completion cqe = nvmeq->cqes[head]; if ((le16_to_cpu(cqe.status) & 1) != phase) break; nvmeq->sq_head = le16_to_cpu(cqe.sq_head); if (++head == nvmeq->q_depth) { head = 0; phase = !phase; } data = free_cmdid(nvmeq, cqe.command_id); handler = data & 3; ptr = (void *)(data & ~3UL); completions[handler](nvmeq, ptr, &cqe); } /* If the controller ignores the cq head doorbell and continuously * writes to the queue, it is theoretically possible to wrap around * the queue twice and mistakenly return IRQ_NONE. Linux only * requires that 0.1% of your interrupts are handled, so this isn't * a big problem. */ if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) return IRQ_NONE; writel(head, nvmeq->q_db + 1); nvmeq->cq_head = head; nvmeq->cq_phase = phase; return IRQ_HANDLED; } static irqreturn_t nvme_irq(int irq, void *data) { irqreturn_t result; struct nvme_queue *nvmeq = data; spin_lock(&nvmeq->q_lock); result = nvme_process_cq(nvmeq); spin_unlock(&nvmeq->q_lock); return result; } static irqreturn_t nvme_irq_check(int irq, void *data) { struct nvme_queue *nvmeq = data; struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) return IRQ_NONE; return IRQ_WAKE_THREAD; } static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid) { spin_lock_irq(&nvmeq->q_lock); cancel_cmdid_data(nvmeq, cmdid); spin_unlock_irq(&nvmeq->q_lock); } /* * Returns 0 on success. If the result is negative, it's a Linux error code; * if the result is positive, it's an NVM Express status code */ static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, u32 *result, unsigned timeout) { int cmdid; struct sync_cmd_info cmdinfo; cmdinfo.task = current; cmdinfo.status = -EINTR; cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id, timeout); if (cmdid < 0) return cmdid; cmd->common.command_id = cmdid; set_current_state(TASK_KILLABLE); nvme_submit_cmd(nvmeq, cmd); schedule(); if (cmdinfo.status == -EINTR) { nvme_abort_command(nvmeq, cmdid); return -EINTR; } if (result) *result = cmdinfo.result; return cmdinfo.status; } static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, u32 *result) { return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); } static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) { int status; struct nvme_command c; memset(&c, 0, sizeof(c)); c.delete_queue.opcode = opcode; c.delete_queue.qid = cpu_to_le16(id); status = nvme_submit_admin_cmd(dev, &c, NULL); if (status) return -EIO; return 0; } static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { int status; struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; memset(&c, 0, sizeof(c)); c.create_cq.opcode = nvme_admin_create_cq; c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); c.create_cq.cqid = cpu_to_le16(qid); c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_cq.cq_flags = cpu_to_le16(flags); c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); status = nvme_submit_admin_cmd(dev, &c, NULL); if (status) return -EIO; return 0; } static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { int status; struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; memset(&c, 0, sizeof(c)); c.create_sq.opcode = nvme_admin_create_sq; c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); c.create_sq.sqid = cpu_to_le16(qid); c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_sq.sq_flags = cpu_to_le16(flags); c.create_sq.cqid = cpu_to_le16(qid); status = nvme_submit_admin_cmd(dev, &c, NULL); if (status) return -EIO; return 0; } static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) { return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); } static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) { return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); } static void nvme_free_queue(struct nvme_dev *dev, int qid) { struct nvme_queue *nvmeq = dev->queues[qid]; free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq); /* Don't tell the adapter to delete the admin queue */ if (qid) { adapter_delete_sq(dev, qid); adapter_delete_cq(dev, qid); } dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), nvmeq->sq_cmds, nvmeq->sq_dma_addr); kfree(nvmeq); } static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth, int vector) { struct device *dmadev = &dev->pci_dev->dev; unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info)); struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL); if (!nvmeq) return NULL; nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth), &nvmeq->cq_dma_addr, GFP_KERNEL); if (!nvmeq->cqes) goto free_nvmeq; memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth)); nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth), &nvmeq->sq_dma_addr, GFP_KERNEL); if (!nvmeq->sq_cmds) goto free_cqdma; nvmeq->q_dmadev = dmadev; nvmeq->dev = dev; spin_lock_init(&nvmeq->q_lock); nvmeq->cq_head = 0; nvmeq->cq_phase = 1; init_waitqueue_head(&nvmeq->sq_full); bio_list_init(&nvmeq->sq_cong); nvmeq->q_db = &dev->dbs[qid * 2]; nvmeq->q_depth = depth; nvmeq->cq_vector = vector; return nvmeq; free_cqdma: dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); free_nvmeq: kfree(nvmeq); return NULL; } static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, const char *name) { if (use_threaded_interrupts) return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq_check, nvme_irq, IRQF_DISABLED | IRQF_SHARED, name, nvmeq); return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, IRQF_DISABLED | IRQF_SHARED, name, nvmeq); } static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid, int cq_size, int vector) { int result; struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector); if (!nvmeq) return NULL; result = adapter_alloc_cq(dev, qid, nvmeq); if (result < 0) goto free_nvmeq; result = adapter_alloc_sq(dev, qid, nvmeq); if (result < 0) goto release_cq; result = queue_request_irq(dev, nvmeq, "nvme"); if (result < 0) goto release_sq; return nvmeq; release_sq: adapter_delete_sq(dev, qid); release_cq: adapter_delete_cq(dev, qid); free_nvmeq: dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), nvmeq->sq_cmds, nvmeq->sq_dma_addr); kfree(nvmeq); return NULL; } static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev) { int result; u32 aqa; struct nvme_queue *nvmeq; dev->dbs = ((void __iomem *)dev->bar) + 4096; nvmeq = nvme_alloc_queue(dev, 0, 64, 0); if (!nvmeq) return -ENOMEM; aqa = nvmeq->q_depth - 1; aqa |= aqa << 16; dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM; dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; writel(0, &dev->bar->cc); writel(aqa, &dev->bar->aqa); writeq(nvmeq->sq_dma_addr, &dev->bar->asq); writeq(nvmeq->cq_dma_addr, &dev->bar->acq); writel(dev->ctrl_config, &dev->bar->cc); while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) { msleep(100); if (fatal_signal_pending(current)) return -EINTR; } result = queue_request_irq(dev, nvmeq, "nvme admin"); dev->queues[0] = nvmeq; return result; } static int nvme_map_user_pages(struct nvme_dev *dev, int write, unsigned long addr, unsigned length, struct scatterlist **sgp) { int i, err, count, nents, offset; struct scatterlist *sg; struct page **pages; if (addr & 3) return -EINVAL; if (!length) return -EINVAL; offset = offset_in_page(addr); count = DIV_ROUND_UP(offset + length, PAGE_SIZE); pages = kcalloc(count, sizeof(*pages), GFP_KERNEL); err = get_user_pages_fast(addr, count, 1, pages); if (err < count) { count = err; err = -EFAULT; goto put_pages; } sg = kcalloc(count, sizeof(*sg), GFP_KERNEL); sg_init_table(sg, count); sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset); length -= (PAGE_SIZE - offset); for (i = 1; i < count; i++) { sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0); length -= PAGE_SIZE; } err = -ENOMEM; nents = dma_map_sg(&dev->pci_dev->dev, sg, count, write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (!nents) goto put_pages; kfree(pages); *sgp = sg; return nents; put_pages: for (i = 0; i < count; i++) put_page(pages[i]); kfree(pages); return err; } static void nvme_unmap_user_pages(struct nvme_dev *dev, int write, unsigned long addr, int length, struct scatterlist *sg, int nents) { int i, count; count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE); dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE); for (i = 0; i < count; i++) put_page(sg_page(&sg[i])); } static int nvme_submit_user_admin_command(struct nvme_dev *dev, unsigned long addr, unsigned length, struct nvme_command *cmd) { int err, nents; struct scatterlist *sg; struct nvme_prps *prps; nents = nvme_map_user_pages(dev, 0, addr, length, &sg); if (nents < 0) return nents; prps = nvme_setup_prps(dev->queues[0], &cmd->common, sg, length); err = nvme_submit_admin_cmd(dev, cmd, NULL); nvme_unmap_user_pages(dev, 0, addr, length, sg, nents); nvme_free_prps(dev->queues[0], prps); return err ? -EIO : 0; } static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.identify.opcode = nvme_admin_identify; c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id); c.identify.cns = cpu_to_le32(cns); return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c); } static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_get_features; c.features.nsid = cpu_to_le32(ns->ns_id); c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE); return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c); } static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) { struct nvme_dev *dev = ns->dev; struct nvme_queue *nvmeq; struct nvme_user_io io; struct nvme_command c; unsigned length; u32 result; int nents, status; struct scatterlist *sg; struct nvme_prps *prps; if (copy_from_user(&io, uio, sizeof(io))) return -EFAULT; length = io.nblocks << io.block_shift; nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg); if (nents < 0) return nents; memset(&c, 0, sizeof(c)); c.rw.opcode = io.opcode; c.rw.flags = io.flags; c.rw.nsid = cpu_to_le32(io.nsid); c.rw.slba = cpu_to_le64(io.slba); c.rw.length = cpu_to_le16(io.nblocks - 1); c.rw.control = cpu_to_le16(io.control); c.rw.dsmgmt = cpu_to_le16(io.dsmgmt); c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */ c.rw.apptag = cpu_to_le16(io.apptag); c.rw.appmask = cpu_to_le16(io.appmask); nvmeq = get_nvmeq(ns); /* XXX: metadata */ prps = nvme_setup_prps(nvmeq, &c.common, sg, length); /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption * disabled. We may be preempted at any point, and be rescheduled * to a different CPU. That will cause cacheline bouncing, but no * additional races since q_lock already protects against other CPUs. */ put_nvmeq(nvmeq); status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT); nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents); nvme_free_prps(nvmeq, prps); put_user(result, &uio->result); return status; } static int nvme_download_firmware(struct nvme_ns *ns, struct nvme_dlfw __user *udlfw) { struct nvme_dev *dev = ns->dev; struct nvme_dlfw dlfw; struct nvme_command c; int nents, status; struct scatterlist *sg; struct nvme_prps *prps; if (copy_from_user(&dlfw, udlfw, sizeof(dlfw))) return -EFAULT; if (dlfw.length >= (1 << 30)) return -EINVAL; nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg); if (nents < 0) return nents; memset(&c, 0, sizeof(c)); c.dlfw.opcode = nvme_admin_download_fw; c.dlfw.numd = cpu_to_le32(dlfw.length); c.dlfw.offset = cpu_to_le32(dlfw.offset); prps = nvme_setup_prps(dev->queues[0], &c.common, sg, dlfw.length * 4); status = nvme_submit_admin_cmd(dev, &c, NULL); nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents); nvme_free_prps(dev->queues[0], prps); return status; } static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg) { struct nvme_dev *dev = ns->dev; struct nvme_command c; memset(&c, 0, sizeof(c)); c.common.opcode = nvme_admin_activate_fw; c.common.rsvd10[0] = cpu_to_le32(arg); return nvme_submit_admin_cmd(dev, &c, NULL); } static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct nvme_ns *ns = bdev->bd_disk->private_data; switch (cmd) { case NVME_IOCTL_IDENTIFY_NS: return nvme_identify(ns, arg, 0); case NVME_IOCTL_IDENTIFY_CTRL: return nvme_identify(ns, arg, 1); case NVME_IOCTL_GET_RANGE_TYPE: return nvme_get_range_type(ns, arg); case NVME_IOCTL_SUBMIT_IO: return nvme_submit_io(ns, (void __user *)arg); case NVME_IOCTL_DOWNLOAD_FW: return nvme_download_firmware(ns, (void __user *)arg); case NVME_IOCTL_ACTIVATE_FW: return nvme_activate_firmware(ns, arg); default: return -ENOTTY; } } static const struct block_device_operations nvme_fops = { .owner = THIS_MODULE, .ioctl = nvme_ioctl, }; static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index, struct nvme_id_ns *id, struct nvme_lba_range_type *rt) { struct nvme_ns *ns; struct gendisk *disk; int lbaf; if (rt->attributes & NVME_LBART_ATTRIB_HIDE) return NULL; ns = kzalloc(sizeof(*ns), GFP_KERNEL); if (!ns) return NULL; ns->queue = blk_alloc_queue(GFP_KERNEL); if (!ns->queue) goto out_free_ns; ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES | QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD; blk_queue_make_request(ns->queue, nvme_make_request); ns->dev = dev; ns->queue->queuedata = ns; disk = alloc_disk(NVME_MINORS); if (!disk) goto out_free_queue; ns->ns_id = index; ns->disk = disk; lbaf = id->flbas & 0xf; ns->lba_shift = id->lbaf[lbaf].ds; disk->major = nvme_major; disk->minors = NVME_MINORS; disk->first_minor = NVME_MINORS * index; disk->fops = &nvme_fops; disk->private_data = ns; disk->queue = ns->queue; disk->driverfs_dev = &dev->pci_dev->dev; sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index); set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); return ns; out_free_queue: blk_cleanup_queue(ns->queue); out_free_ns: kfree(ns); return NULL; } static void nvme_ns_free(struct nvme_ns *ns) { put_disk(ns->disk); blk_cleanup_queue(ns->queue); kfree(ns); } static int set_queue_count(struct nvme_dev *dev, int count) { int status; u32 result; struct nvme_command c; u32 q_count = (count - 1) | ((count - 1) << 16); memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_get_features; c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES); c.features.dword11 = cpu_to_le32(q_count); status = nvme_submit_admin_cmd(dev, &c, &result); if (status) return -EIO; return min(result & 0xffff, result >> 16) + 1; } static int __devinit nvme_setup_io_queues(struct nvme_dev *dev) { int result, cpu, i, nr_queues; nr_queues = num_online_cpus(); result = set_queue_count(dev, nr_queues); if (result < 0) return result; if (result < nr_queues) nr_queues = result; /* Deregister the admin queue's interrupt */ free_irq(dev->entry[0].vector, dev->queues[0]); for (i = 0; i < nr_queues; i++) dev->entry[i].entry = i; for (;;) { result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues); if (result == 0) { break; } else if (result > 0) { nr_queues = result; continue; } else { nr_queues = 1; break; } } result = queue_request_irq(dev, dev->queues[0], "nvme admin"); /* XXX: handle failure here */ cpu = cpumask_first(cpu_online_mask); for (i = 0; i < nr_queues; i++) { irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu)); cpu = cpumask_next(cpu, cpu_online_mask); } for (i = 0; i < nr_queues; i++) { dev->queues[i + 1] = nvme_create_queue(dev, i + 1, NVME_Q_DEPTH, i); if (!dev->queues[i + 1]) return -ENOMEM; dev->queue_count++; } return 0; } static void nvme_free_queues(struct nvme_dev *dev) { int i; for (i = dev->queue_count - 1; i >= 0; i--) nvme_free_queue(dev, i); } static int __devinit nvme_dev_add(struct nvme_dev *dev) { int res, nn, i; struct nvme_ns *ns, *next; struct nvme_id_ctrl *ctrl; void *id; dma_addr_t dma_addr; struct nvme_command cid, crt; res = nvme_setup_io_queues(dev); if (res) return res; /* XXX: Switch to a SG list once prp2 works */ id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr, GFP_KERNEL); memset(&cid, 0, sizeof(cid)); cid.identify.opcode = nvme_admin_identify; cid.identify.nsid = 0; cid.identify.prp1 = cpu_to_le64(dma_addr); cid.identify.cns = cpu_to_le32(1); res = nvme_submit_admin_cmd(dev, &cid, NULL); if (res) { res = -EIO; goto out_free; } ctrl = id; nn = le32_to_cpup(&ctrl->nn); memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); cid.identify.cns = 0; memset(&crt, 0, sizeof(crt)); crt.features.opcode = nvme_admin_get_features; crt.features.prp1 = cpu_to_le64(dma_addr + 4096); crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE); for (i = 0; i < nn; i++) { cid.identify.nsid = cpu_to_le32(i); res = nvme_submit_admin_cmd(dev, &cid, NULL); if (res) continue; if (((struct nvme_id_ns *)id)->ncap == 0) continue; crt.features.nsid = cpu_to_le32(i); res = nvme_submit_admin_cmd(dev, &crt, NULL); if (res) continue; ns = nvme_alloc_ns(dev, i, id, id + 4096); if (ns) list_add_tail(&ns->list, &dev->namespaces); } list_for_each_entry(ns, &dev->namespaces, list) add_disk(ns->disk); dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr); return 0; out_free: list_for_each_entry_safe(ns, next, &dev->namespaces, list) { list_del(&ns->list); nvme_ns_free(ns); } dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr); return res; } static int nvme_dev_remove(struct nvme_dev *dev) { struct nvme_ns *ns, *next; /* TODO: wait all I/O finished or cancel them */ list_for_each_entry_safe(ns, next, &dev->namespaces, list) { list_del(&ns->list); del_gendisk(ns->disk); nvme_ns_free(ns); } nvme_free_queues(dev); return 0; } static int nvme_setup_prp_pools(struct nvme_dev *dev) { struct device *dmadev = &dev->pci_dev->dev; dev->prp_page_pool = dma_pool_create("prp list page", dmadev, PAGE_SIZE, PAGE_SIZE, 0); if (!dev->prp_page_pool) return -ENOMEM; /* Optimisation for I/Os between 4k and 128k */ dev->prp_small_pool = dma_pool_create("prp list 256", dmadev, 256, 256, 0); if (!dev->prp_small_pool) { dma_pool_destroy(dev->prp_page_pool); return -ENOMEM; } return 0; } static void nvme_release_prp_pools(struct nvme_dev *dev) { dma_pool_destroy(dev->prp_page_pool); dma_pool_destroy(dev->prp_small_pool); } /* XXX: Use an ida or something to let remove / add work correctly */ static void nvme_set_instance(struct nvme_dev *dev) { static int instance; dev->instance = instance++; } static void nvme_release_instance(struct nvme_dev *dev) { } static int __devinit nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int bars, result = -ENOMEM; struct nvme_dev *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry), GFP_KERNEL); if (!dev->entry) goto free; dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *), GFP_KERNEL); if (!dev->queues) goto free; if (pci_enable_device_mem(pdev)) goto free; pci_set_master(pdev); bars = pci_select_bars(pdev, IORESOURCE_MEM); if (pci_request_selected_regions(pdev, bars, "nvme")) goto disable; INIT_LIST_HEAD(&dev->namespaces); dev->pci_dev = pdev; pci_set_drvdata(pdev, dev); dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); nvme_set_instance(dev); dev->entry[0].vector = pdev->irq; result = nvme_setup_prp_pools(dev); if (result) goto disable_msix; dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); if (!dev->bar) { result = -ENOMEM; goto disable_msix; } result = nvme_configure_admin_queue(dev); if (result) goto unmap; dev->queue_count++; result = nvme_dev_add(dev); if (result) goto delete; return 0; delete: nvme_free_queues(dev); unmap: iounmap(dev->bar); disable_msix: pci_disable_msix(pdev); nvme_release_instance(dev); nvme_release_prp_pools(dev); disable: pci_disable_device(pdev); pci_release_regions(pdev); free: kfree(dev->queues); kfree(dev->entry); kfree(dev); return result; } static void __devexit nvme_remove(struct pci_dev *pdev) { struct nvme_dev *dev = pci_get_drvdata(pdev); nvme_dev_remove(dev); pci_disable_msix(pdev); iounmap(dev->bar); nvme_release_instance(dev); nvme_release_prp_pools(dev); pci_disable_device(pdev); pci_release_regions(pdev); kfree(dev->queues); kfree(dev->entry); kfree(dev); } /* These functions are yet to be implemented */ #define nvme_error_detected NULL #define nvme_dump_registers NULL #define nvme_link_reset NULL #define nvme_slot_reset NULL #define nvme_error_resume NULL #define nvme_suspend NULL #define nvme_resume NULL static struct pci_error_handlers nvme_err_handler = { .error_detected = nvme_error_detected, .mmio_enabled = nvme_dump_registers, .link_reset = nvme_link_reset, .slot_reset = nvme_slot_reset, .resume = nvme_error_resume, }; /* Move to pci_ids.h later */ #define PCI_CLASS_STORAGE_EXPRESS 0x010802 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = { { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, { 0, } }; MODULE_DEVICE_TABLE(pci, nvme_id_table); static struct pci_driver nvme_driver = { .name = "nvme", .id_table = nvme_id_table, .probe = nvme_probe, .remove = __devexit_p(nvme_remove), .suspend = nvme_suspend, .resume = nvme_resume, .err_handler = &nvme_err_handler, }; static int __init nvme_init(void) { int result; nvme_major = register_blkdev(nvme_major, "nvme"); if (nvme_major <= 0) return -EBUSY; result = pci_register_driver(&nvme_driver); if (!result) return 0; unregister_blkdev(nvme_major, "nvme"); return result; } static void __exit nvme_exit(void) { pci_unregister_driver(&nvme_driver); unregister_blkdev(nvme_major, "nvme"); } MODULE_AUTHOR("Matthew Wilcox "); MODULE_LICENSE("GPL"); MODULE_VERSION("0.2"); module_init(nvme_init); module_exit(nvme_exit);