/* * ARMv6 Performance counter handling code. * * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles * * ARMv6 has 2 configurable performance counters and a single cycle counter. * They all share a single reset bit but can be written to zero so we can use * that for a reset. * * The counters can't be individually enabled or disabled so when we remove * one event and replace it with another we could get spurious counts from the * wrong event. However, we can take advantage of the fact that the * performance counters can export events to the event bus, and the event bus * itself can be monitored. This requires that we *don't* export the events to * the event bus. The procedure for disabling a configurable counter is: * - change the counter to count the ETMEXTOUT[0] signal (0x20). This * effectively stops the counter from counting. * - disable the counter's interrupt generation (each counter has it's * own interrupt enable bit). * Once stopped, the counter value can be written as 0 to reset. * * To enable a counter: * - enable the counter's interrupt generation. * - set the new event type. * * Note: the dedicated cycle counter only counts cycles and can't be * enabled/disabled independently of the others. When we want to disable the * cycle counter, we have to just disable the interrupt reporting and start * ignoring that counter. When re-enabling, we have to reset the value and * enable the interrupt. */ #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K) enum armv6_perf_types { ARMV6_PERFCTR_ICACHE_MISS = 0x0, ARMV6_PERFCTR_IBUF_STALL = 0x1, ARMV6_PERFCTR_DDEP_STALL = 0x2, ARMV6_PERFCTR_ITLB_MISS = 0x3, ARMV6_PERFCTR_DTLB_MISS = 0x4, ARMV6_PERFCTR_BR_EXEC = 0x5, ARMV6_PERFCTR_BR_MISPREDICT = 0x6, ARMV6_PERFCTR_INSTR_EXEC = 0x7, ARMV6_PERFCTR_DCACHE_HIT = 0x9, ARMV6_PERFCTR_DCACHE_ACCESS = 0xA, ARMV6_PERFCTR_DCACHE_MISS = 0xB, ARMV6_PERFCTR_DCACHE_WBACK = 0xC, ARMV6_PERFCTR_SW_PC_CHANGE = 0xD, ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF, ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10, ARMV6_PERFCTR_LSU_FULL_STALL = 0x11, ARMV6_PERFCTR_WBUF_DRAINED = 0x12, ARMV6_PERFCTR_CPU_CYCLES = 0xFF, ARMV6_PERFCTR_NOP = 0x20, }; enum armv6_counters { ARMV6_CYCLE_COUNTER = 0, ARMV6_COUNTER0, ARMV6_COUNTER1, }; /* * The hardware events that we support. We do support cache operations but * we have harvard caches and no way to combine instruction and data * accesses/misses in hardware. */ static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES, [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC, [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC, [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT, [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED, }; static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * The performance counters don't differentiate between read * and write accesses/misses so this isn't strictly correct, * but it's the best we can do. Writes and reads get * combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS, [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS, [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(DTLB)] = { /* * The ARM performance counters can count micro DTLB misses, * micro ITLB misses and main TLB misses. There isn't an event * for TLB misses, so use the micro misses here and if users * want the main TLB misses they can use a raw counter. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(NODE)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, }; enum armv6mpcore_perf_types { ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0, ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1, ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2, ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3, ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4, ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5, ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6, ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7, ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8, ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA, ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB, ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC, ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD, ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE, ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF, ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10, ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11, ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12, ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13, ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF, }; /* * The hardware events that we support. We do support cache operations but * we have harvard caches and no way to combine instruction and data * accesses/misses in hardware. */ static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES, [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC, [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC, [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT, [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED, }; static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS, [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DCACHE_RDMISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS, [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DCACHE_WRMISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(DTLB)] = { /* * The ARM performance counters can count micro DTLB misses, * micro ITLB misses and main TLB misses. There isn't an event * for TLB misses, so use the micro misses here and if users * want the main TLB misses they can use a raw counter. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, [C(NODE)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, }, }, }; static inline unsigned long armv6_pmcr_read(void) { u32 val; asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val)); return val; } static inline void armv6_pmcr_write(unsigned long val) { asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val)); } #define ARMV6_PMCR_ENABLE (1 << 0) #define ARMV6_PMCR_CTR01_RESET (1 << 1) #define ARMV6_PMCR_CCOUNT_RESET (1 << 2) #define ARMV6_PMCR_CCOUNT_DIV (1 << 3) #define ARMV6_PMCR_COUNT0_IEN (1 << 4) #define ARMV6_PMCR_COUNT1_IEN (1 << 5) #define ARMV6_PMCR_CCOUNT_IEN (1 << 6) #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8) #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9) #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10) #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20 #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT) #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12 #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT) #define ARMV6_PMCR_OVERFLOWED_MASK \ (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \ ARMV6_PMCR_CCOUNT_OVERFLOW) static inline int armv6_pmcr_has_overflowed(unsigned long pmcr) { return pmcr & ARMV6_PMCR_OVERFLOWED_MASK; } static inline int armv6_pmcr_counter_has_overflowed(unsigned long pmcr, enum armv6_counters counter) { int ret = 0; if (ARMV6_CYCLE_COUNTER == counter) ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW; else if (ARMV6_COUNTER0 == counter) ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW; else if (ARMV6_COUNTER1 == counter) ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW; else WARN_ONCE(1, "invalid counter number (%d)\n", counter); return ret; } static inline u32 armv6pmu_read_counter(int counter) { unsigned long value = 0; if (ARMV6_CYCLE_COUNTER == counter) asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value)); else if (ARMV6_COUNTER0 == counter) asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value)); else if (ARMV6_COUNTER1 == counter) asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value)); else WARN_ONCE(1, "invalid counter number (%d)\n", counter); return value; } static inline void armv6pmu_write_counter(int counter, u32 value) { if (ARMV6_CYCLE_COUNTER == counter) asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value)); else if (ARMV6_COUNTER0 == counter) asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value)); else if (ARMV6_COUNTER1 == counter) asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value)); else WARN_ONCE(1, "invalid counter number (%d)\n", counter); } static void armv6pmu_enable_event(struct hw_perf_event *hwc, int idx) { unsigned long val, mask, evt, flags; struct cpu_hw_events *events = armpmu->get_hw_events(); if (ARMV6_CYCLE_COUNTER == idx) { mask = 0; evt = ARMV6_PMCR_CCOUNT_IEN; } else if (ARMV6_COUNTER0 == idx) { mask = ARMV6_PMCR_EVT_COUNT0_MASK; evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) | ARMV6_PMCR_COUNT0_IEN; } else if (ARMV6_COUNTER1 == idx) { mask = ARMV6_PMCR_EVT_COUNT1_MASK; evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) | ARMV6_PMCR_COUNT1_IEN; } else { WARN_ONCE(1, "invalid counter number (%d)\n", idx); return; } /* * Mask out the current event and set the counter to count the event * that we're interested in. */ raw_spin_lock_irqsave(&events->pmu_lock, flags); val = armv6_pmcr_read(); val &= ~mask; val |= evt; armv6_pmcr_write(val); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static int counter_is_active(unsigned long pmcr, int idx) { unsigned long mask = 0; if (idx == ARMV6_CYCLE_COUNTER) mask = ARMV6_PMCR_CCOUNT_IEN; else if (idx == ARMV6_COUNTER0) mask = ARMV6_PMCR_COUNT0_IEN; else if (idx == ARMV6_COUNTER1) mask = ARMV6_PMCR_COUNT1_IEN; if (mask) return pmcr & mask; WARN_ONCE(1, "invalid counter number (%d)\n", idx); return 0; } static irqreturn_t armv6pmu_handle_irq(int irq_num, void *dev) { unsigned long pmcr = armv6_pmcr_read(); struct perf_sample_data data; struct cpu_hw_events *cpuc; struct pt_regs *regs; int idx; if (!armv6_pmcr_has_overflowed(pmcr)) return IRQ_NONE; regs = get_irq_regs(); /* * The interrupts are cleared by writing the overflow flags back to * the control register. All of the other bits don't have any effect * if they are rewritten, so write the whole value back. */ armv6_pmcr_write(pmcr); perf_sample_data_init(&data, 0); cpuc = &__get_cpu_var(cpu_hw_events); for (idx = 0; idx < armpmu->num_events; ++idx) { struct perf_event *event = cpuc->events[idx]; struct hw_perf_event *hwc; if (!counter_is_active(pmcr, idx)) continue; /* * We have a single interrupt for all counters. Check that * each counter has overflowed before we process it. */ if (!armv6_pmcr_counter_has_overflowed(pmcr, idx)) continue; hwc = &event->hw; armpmu_event_update(event, hwc, idx, 1); data.period = event->hw.last_period; if (!armpmu_event_set_period(event, hwc, idx)) continue; if (perf_event_overflow(event, &data, regs)) armpmu->disable(hwc, idx); } /* * Handle the pending perf events. * * Note: this call *must* be run with interrupts disabled. For * platforms that can have the PMU interrupts raised as an NMI, this * will not work. */ irq_work_run(); return IRQ_HANDLED; } static void armv6pmu_start(void) { unsigned long flags, val; struct cpu_hw_events *events = armpmu->get_hw_events(); raw_spin_lock_irqsave(&events->pmu_lock, flags); val = armv6_pmcr_read(); val |= ARMV6_PMCR_ENABLE; armv6_pmcr_write(val); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static void armv6pmu_stop(void) { unsigned long flags, val; struct cpu_hw_events *events = armpmu->get_hw_events(); raw_spin_lock_irqsave(&events->pmu_lock, flags); val = armv6_pmcr_read(); val &= ~ARMV6_PMCR_ENABLE; armv6_pmcr_write(val); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static int armv6pmu_get_event_idx(struct cpu_hw_events *cpuc, struct hw_perf_event *event) { /* Always place a cycle counter into the cycle counter. */ if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) { if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask)) return -EAGAIN; return ARMV6_CYCLE_COUNTER; } else { /* * For anything other than a cycle counter, try and use * counter0 and counter1. */ if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask)) return ARMV6_COUNTER1; if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask)) return ARMV6_COUNTER0; /* The counters are all in use. */ return -EAGAIN; } } static void armv6pmu_disable_event(struct hw_perf_event *hwc, int idx) { unsigned long val, mask, evt, flags; struct cpu_hw_events *events = armpmu->get_hw_events(); if (ARMV6_CYCLE_COUNTER == idx) { mask = ARMV6_PMCR_CCOUNT_IEN; evt = 0; } else if (ARMV6_COUNTER0 == idx) { mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK; evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT; } else if (ARMV6_COUNTER1 == idx) { mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK; evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT; } else { WARN_ONCE(1, "invalid counter number (%d)\n", idx); return; } /* * Mask out the current event and set the counter to count the number * of ETM bus signal assertion cycles. The external reporting should * be disabled and so this should never increment. */ raw_spin_lock_irqsave(&events->pmu_lock, flags); val = armv6_pmcr_read(); val &= ~mask; val |= evt; armv6_pmcr_write(val); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static void armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc, int idx) { unsigned long val, mask, flags, evt = 0; struct cpu_hw_events *events = armpmu->get_hw_events(); if (ARMV6_CYCLE_COUNTER == idx) { mask = ARMV6_PMCR_CCOUNT_IEN; } else if (ARMV6_COUNTER0 == idx) { mask = ARMV6_PMCR_COUNT0_IEN; } else if (ARMV6_COUNTER1 == idx) { mask = ARMV6_PMCR_COUNT1_IEN; } else { WARN_ONCE(1, "invalid counter number (%d)\n", idx); return; } /* * Unlike UP ARMv6, we don't have a way of stopping the counters. We * simply disable the interrupt reporting. */ raw_spin_lock_irqsave(&events->pmu_lock, flags); val = armv6_pmcr_read(); val &= ~mask; val |= evt; armv6_pmcr_write(val); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static struct arm_pmu armv6pmu = { .id = ARM_PERF_PMU_ID_V6, .name = "v6", .handle_irq = armv6pmu_handle_irq, .enable = armv6pmu_enable_event, .disable = armv6pmu_disable_event, .read_counter = armv6pmu_read_counter, .write_counter = armv6pmu_write_counter, .get_event_idx = armv6pmu_get_event_idx, .start = armv6pmu_start, .stop = armv6pmu_stop, .cache_map = &armv6_perf_cache_map, .event_map = &armv6_perf_map, .raw_event_mask = 0xFF, .num_events = 3, .max_period = (1LLU << 32) - 1, }; static struct arm_pmu *__init armv6pmu_init(void) { return &armv6pmu; } /* * ARMv6mpcore is almost identical to single core ARMv6 with the exception * that some of the events have different enumerations and that there is no * *hack* to stop the programmable counters. To stop the counters we simply * disable the interrupt reporting and update the event. When unthrottling we * reset the period and enable the interrupt reporting. */ static struct arm_pmu armv6mpcore_pmu = { .id = ARM_PERF_PMU_ID_V6MP, .name = "v6mpcore", .handle_irq = armv6pmu_handle_irq, .enable = armv6pmu_enable_event, .disable = armv6mpcore_pmu_disable_event, .read_counter = armv6pmu_read_counter, .write_counter = armv6pmu_write_counter, .get_event_idx = armv6pmu_get_event_idx, .start = armv6pmu_start, .stop = armv6pmu_stop, .cache_map = &armv6mpcore_perf_cache_map, .event_map = &armv6mpcore_perf_map, .raw_event_mask = 0xFF, .num_events = 3, .max_period = (1LLU << 32) - 1, }; static struct arm_pmu *__init armv6mpcore_pmu_init(void) { return &armv6mpcore_pmu; } #else static struct arm_pmu *__init armv6pmu_init(void) { return NULL; } static struct arm_pmu *__init armv6mpcore_pmu_init(void) { return NULL; } #endif /* CONFIG_CPU_V6 || CONFIG_CPU_V6K */