/* * Procedures for creating, accessing and interpreting the device tree. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com * * Adapted for sparc64 by David S. Miller davem@davemloft.net * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "prom.h" struct device_node *of_find_node_by_phandle(phandle handle) { struct device_node *np; for (np = allnodes; np; np = np->allnext) if (np->node == handle) break; return np; } EXPORT_SYMBOL(of_find_node_by_phandle); int of_getintprop_default(struct device_node *np, const char *name, int def) { struct property *prop; int len; prop = of_find_property(np, name, &len); if (!prop || len != 4) return def; return *(int *) prop->value; } EXPORT_SYMBOL(of_getintprop_default); DEFINE_MUTEX(of_set_property_mutex); EXPORT_SYMBOL(of_set_property_mutex); int of_set_property(struct device_node *dp, const char *name, void *val, int len) { struct property **prevp; void *new_val; int err; new_val = kmalloc(len, GFP_KERNEL); if (!new_val) return -ENOMEM; memcpy(new_val, val, len); err = -ENODEV; write_lock(&devtree_lock); prevp = &dp->properties; while (*prevp) { struct property *prop = *prevp; if (!strcasecmp(prop->name, name)) { void *old_val = prop->value; int ret; mutex_lock(&of_set_property_mutex); ret = prom_setprop(dp->node, name, val, len); mutex_unlock(&of_set_property_mutex); err = -EINVAL; if (ret >= 0) { prop->value = new_val; prop->length = len; if (OF_IS_DYNAMIC(prop)) kfree(old_val); OF_MARK_DYNAMIC(prop); err = 0; } break; } prevp = &(*prevp)->next; } write_unlock(&devtree_lock); /* XXX Upate procfs if necessary... */ return err; } EXPORT_SYMBOL(of_set_property); int of_find_in_proplist(const char *list, const char *match, int len) { while (len > 0) { int l; if (!strcmp(list, match)) return 1; l = strlen(list) + 1; list += l; len -= l; } return 0; } EXPORT_SYMBOL(of_find_in_proplist); static unsigned int prom_early_allocated __initdata; static void * __init prom_early_alloc(unsigned long size) { unsigned long paddr = lmb_alloc(size, SMP_CACHE_BYTES); void *ret; if (!paddr) { prom_printf("prom_early_alloc(%lu) failed\n"); prom_halt(); } ret = __va(paddr); memset(ret, 0, size); prom_early_allocated += size; return ret; } #ifdef CONFIG_PCI /* PSYCHO interrupt mapping support. */ #define PSYCHO_IMAP_A_SLOT0 0x0c00UL #define PSYCHO_IMAP_B_SLOT0 0x0c20UL static unsigned long psycho_pcislot_imap_offset(unsigned long ino) { unsigned int bus = (ino & 0x10) >> 4; unsigned int slot = (ino & 0x0c) >> 2; if (bus == 0) return PSYCHO_IMAP_A_SLOT0 + (slot * 8); else return PSYCHO_IMAP_B_SLOT0 + (slot * 8); } #define PSYCHO_OBIO_IMAP_BASE 0x1000UL #define PSYCHO_ONBOARD_IRQ_BASE 0x20 #define psycho_onboard_imap_offset(__ino) \ (PSYCHO_OBIO_IMAP_BASE + (((__ino) & 0x1f) << 3)) #define PSYCHO_ICLR_A_SLOT0 0x1400UL #define PSYCHO_ICLR_SCSI 0x1800UL #define psycho_iclr_offset(ino) \ ((ino & 0x20) ? (PSYCHO_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ (PSYCHO_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) static unsigned int psycho_irq_build(struct device_node *dp, unsigned int ino, void *_data) { unsigned long controller_regs = (unsigned long) _data; unsigned long imap, iclr; unsigned long imap_off, iclr_off; int inofixup = 0; ino &= 0x3f; if (ino < PSYCHO_ONBOARD_IRQ_BASE) { /* PCI slot */ imap_off = psycho_pcislot_imap_offset(ino); } else { /* Onboard device */ imap_off = psycho_onboard_imap_offset(ino); } /* Now build the IRQ bucket. */ imap = controller_regs + imap_off; iclr_off = psycho_iclr_offset(ino); iclr = controller_regs + iclr_off; if ((ino & 0x20) == 0) inofixup = ino & 0x03; return build_irq(inofixup, iclr, imap); } static void __init psycho_irq_trans_init(struct device_node *dp) { const struct linux_prom64_registers *regs; dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); dp->irq_trans->irq_build = psycho_irq_build; regs = of_get_property(dp, "reg", NULL); dp->irq_trans->data = (void *) regs[2].phys_addr; } #define sabre_read(__reg) \ ({ u64 __ret; \ __asm__ __volatile__("ldxa [%1] %2, %0" \ : "=r" (__ret) \ : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ : "memory"); \ __ret; \ }) struct sabre_irq_data { unsigned long controller_regs; unsigned int pci_first_busno; }; #define SABRE_CONFIGSPACE 0x001000000UL #define SABRE_WRSYNC 0x1c20UL #define SABRE_CONFIG_BASE(CONFIG_SPACE) \ (CONFIG_SPACE | (1UL << 24)) #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \ (((unsigned long)(BUS) << 16) | \ ((unsigned long)(DEVFN) << 8) | \ ((unsigned long)(REG))) /* When a device lives behind a bridge deeper in the PCI bus topology * than APB, a special sequence must run to make sure all pending DMA * transfers at the time of IRQ delivery are visible in the coherency * domain by the cpu. This sequence is to perform a read on the far * side of the non-APB bridge, then perform a read of Sabre's DMA * write-sync register. */ static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2) { unsigned int phys_hi = (unsigned int) (unsigned long) _arg1; struct sabre_irq_data *irq_data = _arg2; unsigned long controller_regs = irq_data->controller_regs; unsigned long sync_reg = controller_regs + SABRE_WRSYNC; unsigned long config_space = controller_regs + SABRE_CONFIGSPACE; unsigned int bus, devfn; u16 _unused; config_space = SABRE_CONFIG_BASE(config_space); bus = (phys_hi >> 16) & 0xff; devfn = (phys_hi >> 8) & 0xff; config_space |= SABRE_CONFIG_ENCODE(bus, devfn, 0x00); __asm__ __volatile__("membar #Sync\n\t" "lduha [%1] %2, %0\n\t" "membar #Sync" : "=r" (_unused) : "r" ((u16 *) config_space), "i" (ASI_PHYS_BYPASS_EC_E_L) : "memory"); sabre_read(sync_reg); } #define SABRE_IMAP_A_SLOT0 0x0c00UL #define SABRE_IMAP_B_SLOT0 0x0c20UL #define SABRE_ICLR_A_SLOT0 0x1400UL #define SABRE_ICLR_B_SLOT0 0x1480UL #define SABRE_ICLR_SCSI 0x1800UL #define SABRE_ICLR_ETH 0x1808UL #define SABRE_ICLR_BPP 0x1810UL #define SABRE_ICLR_AU_REC 0x1818UL #define SABRE_ICLR_AU_PLAY 0x1820UL #define SABRE_ICLR_PFAIL 0x1828UL #define SABRE_ICLR_KMS 0x1830UL #define SABRE_ICLR_FLPY 0x1838UL #define SABRE_ICLR_SHW 0x1840UL #define SABRE_ICLR_KBD 0x1848UL #define SABRE_ICLR_MS 0x1850UL #define SABRE_ICLR_SER 0x1858UL #define SABRE_ICLR_UE 0x1870UL #define SABRE_ICLR_CE 0x1878UL #define SABRE_ICLR_PCIERR 0x1880UL static unsigned long sabre_pcislot_imap_offset(unsigned long ino) { unsigned int bus = (ino & 0x10) >> 4; unsigned int slot = (ino & 0x0c) >> 2; if (bus == 0) return SABRE_IMAP_A_SLOT0 + (slot * 8); else return SABRE_IMAP_B_SLOT0 + (slot * 8); } #define SABRE_OBIO_IMAP_BASE 0x1000UL #define SABRE_ONBOARD_IRQ_BASE 0x20 #define sabre_onboard_imap_offset(__ino) \ (SABRE_OBIO_IMAP_BASE + (((__ino) & 0x1f) << 3)) #define sabre_iclr_offset(ino) \ ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) static int sabre_device_needs_wsync(struct device_node *dp) { struct device_node *parent = dp->parent; const char *parent_model, *parent_compat; /* This traversal up towards the root is meant to * handle two cases: * * 1) non-PCI bus sitting under PCI, such as 'ebus' * 2) the PCI controller interrupts themselves, which * will use the sabre_irq_build but do not need * the DMA synchronization handling */ while (parent) { if (!strcmp(parent->type, "pci")) break; parent = parent->parent; } if (!parent) return 0; parent_model = of_get_property(parent, "model", NULL); if (parent_model && (!strcmp(parent_model, "SUNW,sabre") || !strcmp(parent_model, "SUNW,simba"))) return 0; parent_compat = of_get_property(parent, "compatible", NULL); if (parent_compat && (!strcmp(parent_compat, "pci108e,a000") || !strcmp(parent_compat, "pci108e,a001"))) return 0; return 1; } static unsigned int sabre_irq_build(struct device_node *dp, unsigned int ino, void *_data) { struct sabre_irq_data *irq_data = _data; unsigned long controller_regs = irq_data->controller_regs; const struct linux_prom_pci_registers *regs; unsigned long imap, iclr; unsigned long imap_off, iclr_off; int inofixup = 0; int virt_irq; ino &= 0x3f; if (ino < SABRE_ONBOARD_IRQ_BASE) { /* PCI slot */ imap_off = sabre_pcislot_imap_offset(ino); } else { /* onboard device */ imap_off = sabre_onboard_imap_offset(ino); } /* Now build the IRQ bucket. */ imap = controller_regs + imap_off; iclr_off = sabre_iclr_offset(ino); iclr = controller_regs + iclr_off; if ((ino & 0x20) == 0) inofixup = ino & 0x03; virt_irq = build_irq(inofixup, iclr, imap); /* If the parent device is a PCI<->PCI bridge other than * APB, we have to install a pre-handler to ensure that * all pending DMA is drained before the interrupt handler * is run. */ regs = of_get_property(dp, "reg", NULL); if (regs && sabre_device_needs_wsync(dp)) { irq_install_pre_handler(virt_irq, sabre_wsync_handler, (void *) (long) regs->phys_hi, (void *) irq_data); } return virt_irq; } static void __init sabre_irq_trans_init(struct device_node *dp) { const struct linux_prom64_registers *regs; struct sabre_irq_data *irq_data; const u32 *busrange; dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); dp->irq_trans->irq_build = sabre_irq_build; irq_data = prom_early_alloc(sizeof(struct sabre_irq_data)); regs = of_get_property(dp, "reg", NULL); irq_data->controller_regs = regs[0].phys_addr; busrange = of_get_property(dp, "bus-range", NULL); irq_data->pci_first_busno = busrange[0]; dp->irq_trans->data = irq_data; } /* SCHIZO interrupt mapping support. Unlike Psycho, for this controller the * imap/iclr registers are per-PBM. */ #define SCHIZO_IMAP_BASE 0x1000UL #define SCHIZO_ICLR_BASE 0x1400UL static unsigned long schizo_imap_offset(unsigned long ino) { return SCHIZO_IMAP_BASE + (ino * 8UL); } static unsigned long schizo_iclr_offset(unsigned long ino) { return SCHIZO_ICLR_BASE + (ino * 8UL); } static unsigned long schizo_ino_to_iclr(unsigned long pbm_regs, unsigned int ino) { return pbm_regs + schizo_iclr_offset(ino); } static unsigned long schizo_ino_to_imap(unsigned long pbm_regs, unsigned int ino) { return pbm_regs + schizo_imap_offset(ino); } #define schizo_read(__reg) \ ({ u64 __ret; \ __asm__ __volatile__("ldxa [%1] %2, %0" \ : "=r" (__ret) \ : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ : "memory"); \ __ret; \ }) #define schizo_write(__reg, __val) \ __asm__ __volatile__("stxa %0, [%1] %2" \ : /* no outputs */ \ : "r" (__val), "r" (__reg), \ "i" (ASI_PHYS_BYPASS_EC_E) \ : "memory") static void tomatillo_wsync_handler(unsigned int ino, void *_arg1, void *_arg2) { unsigned long sync_reg = (unsigned long) _arg2; u64 mask = 1UL << (ino & IMAP_INO); u64 val; int limit; schizo_write(sync_reg, mask); limit = 100000; val = 0; while (--limit) { val = schizo_read(sync_reg); if (!(val & mask)) break; } if (limit <= 0) { printk("tomatillo_wsync_handler: DMA won't sync [%lx:%lx]\n", val, mask); } if (_arg1) { static unsigned char cacheline[64] __attribute__ ((aligned (64))); __asm__ __volatile__("rd %%fprs, %0\n\t" "or %0, %4, %1\n\t" "wr %1, 0x0, %%fprs\n\t" "stda %%f0, [%5] %6\n\t" "wr %0, 0x0, %%fprs\n\t" "membar #Sync" : "=&r" (mask), "=&r" (val) : "0" (mask), "1" (val), "i" (FPRS_FEF), "r" (&cacheline[0]), "i" (ASI_BLK_COMMIT_P)); } } struct schizo_irq_data { unsigned long pbm_regs; unsigned long sync_reg; u32 portid; int chip_version; }; static unsigned int schizo_irq_build(struct device_node *dp, unsigned int ino, void *_data) { struct schizo_irq_data *irq_data = _data; unsigned long pbm_regs = irq_data->pbm_regs; unsigned long imap, iclr; int ign_fixup; int virt_irq; int is_tomatillo; ino &= 0x3f; /* Now build the IRQ bucket. */ imap = schizo_ino_to_imap(pbm_regs, ino); iclr = schizo_ino_to_iclr(pbm_regs, ino); /* On Schizo, no inofixup occurs. This is because each * INO has it's own IMAP register. On Psycho and Sabre * there is only one IMAP register for each PCI slot even * though four different INOs can be generated by each * PCI slot. * * But, for JBUS variants (essentially, Tomatillo), we have * to fixup the lowest bit of the interrupt group number. */ ign_fixup = 0; is_tomatillo = (irq_data->sync_reg != 0UL); if (is_tomatillo) { if (irq_data->portid & 1) ign_fixup = (1 << 6); } virt_irq = build_irq(ign_fixup, iclr, imap); if (is_tomatillo) { irq_install_pre_handler(virt_irq, tomatillo_wsync_handler, ((irq_data->chip_version <= 4) ? (void *) 1 : (void *) 0), (void *) irq_data->sync_reg); } return virt_irq; } static void __init __schizo_irq_trans_init(struct device_node *dp, int is_tomatillo) { const struct linux_prom64_registers *regs; struct schizo_irq_data *irq_data; dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); dp->irq_trans->irq_build = schizo_irq_build; irq_data = prom_early_alloc(sizeof(struct schizo_irq_data)); regs = of_get_property(dp, "reg", NULL); dp->irq_trans->data = irq_data; irq_data->pbm_regs = regs[0].phys_addr; if (is_tomatillo) irq_data->sync_reg = regs[3].phys_addr + 0x1a18UL; else irq_data->sync_reg = 0UL; irq_data->portid = of_getintprop_default(dp, "portid", 0); irq_data->chip_version = of_getintprop_default(dp, "version#", 0); } static void __init schizo_irq_trans_init(struct device_node *dp) { __schizo_irq_trans_init(dp, 0); } static void __init tomatillo_irq_trans_init(struct device_node *dp) { __schizo_irq_trans_init(dp, 1); } static unsigned int pci_sun4v_irq_build(struct device_node *dp, unsigned int devino, void *_data) { u32 devhandle = (u32) (unsigned long) _data; return sun4v_build_irq(devhandle, devino); } static void __init pci_sun4v_irq_trans_init(struct device_node *dp) { const struct linux_prom64_registers *regs; dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); dp->irq_trans->irq_build = pci_sun4v_irq_build; regs = of_get_property(dp, "reg", NULL); dp->irq_trans->data = (void *) (unsigned long) ((regs->phys_addr >> 32UL) & 0x0fffffff); } struct fire_irq_data { unsigned long pbm_regs; u32 portid; }; #define FIRE_IMAP_BASE 0x001000 #define FIRE_ICLR_BASE 0x001400 static unsigned long fire_imap_offset(unsigned long ino) { return FIRE_IMAP_BASE + (ino * 8UL); } static unsigned long fire_iclr_offset(unsigned long ino) { return FIRE_ICLR_BASE + (ino * 8UL); } static unsigned long fire_ino_to_iclr(unsigned long pbm_regs, unsigned int ino) { return pbm_regs + fire_iclr_offset(ino); } static unsigned long fire_ino_to_imap(unsigned long pbm_regs, unsigned int ino) { return pbm_regs + fire_imap_offset(ino); } static unsigned int fire_irq_build(struct device_node *dp, unsigned int ino, void *_data) { struct fire_irq_data *irq_data = _data; unsigned long pbm_regs = irq_data->pbm_regs; unsigned long imap, iclr; unsigned long int_ctrlr; ino &= 0x3f; /* Now build the IRQ bucket. */ imap = fire_ino_to_imap(pbm_regs, ino); iclr = fire_ino_to_iclr(pbm_regs, ino); /* Set the interrupt controller number. */ int_ctrlr = 1 << 6; upa_writeq(int_ctrlr, imap); /* The interrupt map registers do not have an INO field * like other chips do. They return zero in the INO * field, and the interrupt controller number is controlled * in bits 6 to 9. So in order for build_irq() to get * the INO right we pass it in as part of the fixup * which will get added to the map register zero value * read by build_irq(). */ ino |= (irq_data->portid << 6); ino -= int_ctrlr; return build_irq(ino, iclr, imap); } static void __init fire_irq_trans_init(struct device_node *dp) { const struct linux_prom64_registers *regs; struct fire_irq_data *irq_data; dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); dp->irq_trans->irq_build = fire_irq_build; irq_data = prom_early_alloc(sizeof(struct fire_irq_data)); regs = of_get_property(dp, "reg", NULL); dp->irq_trans->data = irq_data; irq_data->pbm_regs = regs[0].phys_addr; irq_data->portid = of_getintprop_default(dp, "portid", 0); } #endif /* CONFIG_PCI */ #ifdef CONFIG_SBUS /* INO number to IMAP register offset for SYSIO external IRQ's. * This should conform to both Sunfire/Wildfire server and Fusion * desktop designs. */ #define SYSIO_IMAP_SLOT0 0x2c00UL #define SYSIO_IMAP_SLOT1 0x2c08UL #define SYSIO_IMAP_SLOT2 0x2c10UL #define SYSIO_IMAP_SLOT3 0x2c18UL #define SYSIO_IMAP_SCSI 0x3000UL #define SYSIO_IMAP_ETH 0x3008UL #define SYSIO_IMAP_BPP 0x3010UL #define SYSIO_IMAP_AUDIO 0x3018UL #define SYSIO_IMAP_PFAIL 0x3020UL #define SYSIO_IMAP_KMS 0x3028UL #define SYSIO_IMAP_FLPY 0x3030UL #define SYSIO_IMAP_SHW 0x3038UL #define SYSIO_IMAP_KBD 0x3040UL #define SYSIO_IMAP_MS 0x3048UL #define SYSIO_IMAP_SER 0x3050UL #define SYSIO_IMAP_TIM0 0x3060UL #define SYSIO_IMAP_TIM1 0x3068UL #define SYSIO_IMAP_UE 0x3070UL #define SYSIO_IMAP_CE 0x3078UL #define SYSIO_IMAP_SBERR 0x3080UL #define SYSIO_IMAP_PMGMT 0x3088UL #define SYSIO_IMAP_GFX 0x3090UL #define SYSIO_IMAP_EUPA 0x3098UL #define bogon ((unsigned long) -1) static unsigned long sysio_irq_offsets[] = { /* SBUS Slot 0 --> 3, level 1 --> 7 */ SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, /* Onboard devices (not relevant/used on SunFire). */ SYSIO_IMAP_SCSI, SYSIO_IMAP_ETH, SYSIO_IMAP_BPP, bogon, SYSIO_IMAP_AUDIO, SYSIO_IMAP_PFAIL, bogon, bogon, SYSIO_IMAP_KMS, SYSIO_IMAP_FLPY, SYSIO_IMAP_SHW, SYSIO_IMAP_KBD, SYSIO_IMAP_MS, SYSIO_IMAP_SER, bogon, bogon, SYSIO_IMAP_TIM0, SYSIO_IMAP_TIM1, bogon, bogon, SYSIO_IMAP_UE, SYSIO_IMAP_CE, SYSIO_IMAP_SBERR, SYSIO_IMAP_PMGMT, SYSIO_IMAP_GFX, SYSIO_IMAP_EUPA, }; #undef bogon #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets) /* Convert Interrupt Mapping register pointer to associated * Interrupt Clear register pointer, SYSIO specific version. */ #define SYSIO_ICLR_UNUSED0 0x3400UL #define SYSIO_ICLR_SLOT0 0x3408UL #define SYSIO_ICLR_SLOT1 0x3448UL #define SYSIO_ICLR_SLOT2 0x3488UL #define SYSIO_ICLR_SLOT3 0x34c8UL static unsigned long sysio_imap_to_iclr(unsigned long imap) { unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0; return imap + diff; } static unsigned int sbus_of_build_irq(struct device_node *dp, unsigned int ino, void *_data) { unsigned long reg_base = (unsigned long) _data; const struct linux_prom_registers *regs; unsigned long imap, iclr; int sbus_slot = 0; int sbus_level = 0; ino &= 0x3f; regs = of_get_property(dp, "reg", NULL); if (regs) sbus_slot = regs->which_io; if (ino < 0x20) ino += (sbus_slot * 8); imap = sysio_irq_offsets[ino]; if (imap == ((unsigned long)-1)) { prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n", ino); prom_halt(); } imap += reg_base; /* SYSIO inconsistency. For external SLOTS, we have to select * the right ICLR register based upon the lower SBUS irq level * bits. */ if (ino >= 0x20) { iclr = sysio_imap_to_iclr(imap); } else { sbus_level = ino & 0x7; switch(sbus_slot) { case 0: iclr = reg_base + SYSIO_ICLR_SLOT0; break; case 1: iclr = reg_base + SYSIO_ICLR_SLOT1; break; case 2: iclr = reg_base + SYSIO_ICLR_SLOT2; break; default: case 3: iclr = reg_base + SYSIO_ICLR_SLOT3; break; }; iclr += ((unsigned long)sbus_level - 1UL) * 8UL; } return build_irq(sbus_level, iclr, imap); } static void __init sbus_irq_trans_init(struct device_node *dp) { const struct linux_prom64_registers *regs; dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); dp->irq_trans->irq_build = sbus_of_build_irq; regs = of_get_property(dp, "reg", NULL); dp->irq_trans->data = (void *) (unsigned long) regs->phys_addr; } #endif /* CONFIG_SBUS */ static unsigned int central_build_irq(struct device_node *dp, unsigned int ino, void *_data) { struct device_node *central_dp = _data; struct of_device *central_op = of_find_device_by_node(central_dp); struct resource *res; unsigned long imap, iclr; u32 tmp; if (!strcmp(dp->name, "eeprom")) { res = ¢ral_op->resource[5]; } else if (!strcmp(dp->name, "zs")) { res = ¢ral_op->resource[4]; } else if (!strcmp(dp->name, "clock-board")) { res = ¢ral_op->resource[3]; } else { return ino; } imap = res->start + 0x00UL; iclr = res->start + 0x10UL; /* Set the INO state to idle, and disable. */ upa_writel(0, iclr); upa_readl(iclr); tmp = upa_readl(imap); tmp &= ~0x80000000; upa_writel(tmp, imap); return build_irq(0, iclr, imap); } static void __init central_irq_trans_init(struct device_node *dp) { dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); dp->irq_trans->irq_build = central_build_irq; dp->irq_trans->data = dp; } struct irq_trans { const char *name; void (*init)(struct device_node *); }; #ifdef CONFIG_PCI static struct irq_trans __initdata pci_irq_trans_table[] = { { "SUNW,sabre", sabre_irq_trans_init }, { "pci108e,a000", sabre_irq_trans_init }, { "pci108e,a001", sabre_irq_trans_init }, { "SUNW,psycho", psycho_irq_trans_init }, { "pci108e,8000", psycho_irq_trans_init }, { "SUNW,schizo", schizo_irq_trans_init }, { "pci108e,8001", schizo_irq_trans_init }, { "SUNW,schizo+", schizo_irq_trans_init }, { "pci108e,8002", schizo_irq_trans_init }, { "SUNW,tomatillo", tomatillo_irq_trans_init }, { "pci108e,a801", tomatillo_irq_trans_init }, { "SUNW,sun4v-pci", pci_sun4v_irq_trans_init }, { "pciex108e,80f0", fire_irq_trans_init }, }; #endif static unsigned int sun4v_vdev_irq_build(struct device_node *dp, unsigned int devino, void *_data) { u32 devhandle = (u32) (unsigned long) _data; return sun4v_build_irq(devhandle, devino); } static void __init sun4v_vdev_irq_trans_init(struct device_node *dp) { const struct linux_prom64_registers *regs; dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); dp->irq_trans->irq_build = sun4v_vdev_irq_build; regs = of_get_property(dp, "reg", NULL); dp->irq_trans->data = (void *) (unsigned long) ((regs->phys_addr >> 32UL) & 0x0fffffff); } static void __init irq_trans_init(struct device_node *dp) { #ifdef CONFIG_PCI const char *model; int i; #endif #ifdef CONFIG_PCI model = of_get_property(dp, "model", NULL); if (!model) model = of_get_property(dp, "compatible", NULL); if (model) { for (i = 0; i < ARRAY_SIZE(pci_irq_trans_table); i++) { struct irq_trans *t = &pci_irq_trans_table[i]; if (!strcmp(model, t->name)) { t->init(dp); return; } } } #endif #ifdef CONFIG_SBUS if (!strcmp(dp->name, "sbus") || !strcmp(dp->name, "sbi")) { sbus_irq_trans_init(dp); return; } #endif if (!strcmp(dp->name, "fhc") && !strcmp(dp->parent->name, "central")) { central_irq_trans_init(dp); return; } if (!strcmp(dp->name, "virtual-devices") || !strcmp(dp->name, "niu")) { sun4v_vdev_irq_trans_init(dp); return; } } static int is_root_node(const struct device_node *dp) { if (!dp) return 0; return (dp->parent == NULL); } /* The following routines deal with the black magic of fully naming a * node. * * Certain well known named nodes are just the simple name string. * * Actual devices have an address specifier appended to the base name * string, like this "foo@addr". The "addr" can be in any number of * formats, and the platform plus the type of the node determine the * format and how it is constructed. * * For children of the ROOT node, the naming convention is fixed and * determined by whether this is a sun4u or sun4v system. * * For children of other nodes, it is bus type specific. So * we walk up the tree until we discover a "device_type" property * we recognize and we go from there. * * As an example, the boot device on my workstation has a full path: * * /pci@1e,600000/ide@d/disk@0,0:c */ static void __init sun4v_path_component(struct device_node *dp, char *tmp_buf) { struct linux_prom64_registers *regs; struct property *rprop; u32 high_bits, low_bits, type; rprop = of_find_property(dp, "reg", NULL); if (!rprop) return; regs = rprop->value; if (!is_root_node(dp->parent)) { sprintf(tmp_buf, "%s@%x,%x", dp->name, (unsigned int) (regs->phys_addr >> 32UL), (unsigned int) (regs->phys_addr & 0xffffffffUL)); return; } type = regs->phys_addr >> 60UL; high_bits = (regs->phys_addr >> 32UL) & 0x0fffffffUL; low_bits = (regs->phys_addr & 0xffffffffUL); if (type == 0 || type == 8) { const char *prefix = (type == 0) ? "m" : "i"; if (low_bits) sprintf(tmp_buf, "%s@%s%x,%x", dp->name, prefix, high_bits, low_bits); else sprintf(tmp_buf, "%s@%s%x", dp->name, prefix, high_bits); } else if (type == 12) { sprintf(tmp_buf, "%s@%x", dp->name, high_bits); } } static void __init sun4u_path_component(struct device_node *dp, char *tmp_buf) { struct linux_prom64_registers *regs; struct property *prop; prop = of_find_property(dp, "reg", NULL); if (!prop) return; regs = prop->value; if (!is_root_node(dp->parent)) { sprintf(tmp_buf, "%s@%x,%x", dp->name, (unsigned int) (regs->phys_addr >> 32UL), (unsigned int) (regs->phys_addr & 0xffffffffUL)); return; } prop = of_find_property(dp, "upa-portid", NULL); if (!prop) prop = of_find_property(dp, "portid", NULL); if (prop) { unsigned long mask = 0xffffffffUL; if (tlb_type >= cheetah) mask = 0x7fffff; sprintf(tmp_buf, "%s@%x,%x", dp->name, *(u32 *)prop->value, (unsigned int) (regs->phys_addr & mask)); } } /* "name@slot,offset" */ static void __init sbus_path_component(struct device_node *dp, char *tmp_buf) { struct linux_prom_registers *regs; struct property *prop; prop = of_find_property(dp, "reg", NULL); if (!prop) return; regs = prop->value; sprintf(tmp_buf, "%s@%x,%x", dp->name, regs->which_io, regs->phys_addr); } /* "name@devnum[,func]" */ static void __init pci_path_component(struct device_node *dp, char *tmp_buf) { struct linux_prom_pci_registers *regs; struct property *prop; unsigned int devfn; prop = of_find_property(dp, "reg", NULL); if (!prop) return; regs = prop->value; devfn = (regs->phys_hi >> 8) & 0xff; if (devfn & 0x07) { sprintf(tmp_buf, "%s@%x,%x", dp->name, devfn >> 3, devfn & 0x07); } else { sprintf(tmp_buf, "%s@%x", dp->name, devfn >> 3); } } /* "name@UPA_PORTID,offset" */ static void __init upa_path_component(struct device_node *dp, char *tmp_buf) { struct linux_prom64_registers *regs; struct property *prop; prop = of_find_property(dp, "reg", NULL); if (!prop) return; regs = prop->value; prop = of_find_property(dp, "upa-portid", NULL); if (!prop) return; sprintf(tmp_buf, "%s@%x,%x", dp->name, *(u32 *) prop->value, (unsigned int) (regs->phys_addr & 0xffffffffUL)); } /* "name@reg" */ static void __init vdev_path_component(struct device_node *dp, char *tmp_buf) { struct property *prop; u32 *regs; prop = of_find_property(dp, "reg", NULL); if (!prop) return; regs = prop->value; sprintf(tmp_buf, "%s@%x", dp->name, *regs); } /* "name@addrhi,addrlo" */ static void __init ebus_path_component(struct device_node *dp, char *tmp_buf) { struct linux_prom64_registers *regs; struct property *prop; prop = of_find_property(dp, "reg", NULL); if (!prop) return; regs = prop->value; sprintf(tmp_buf, "%s@%x,%x", dp->name, (unsigned int) (regs->phys_addr >> 32UL), (unsigned int) (regs->phys_addr & 0xffffffffUL)); } /* "name@bus,addr" */ static void __init i2c_path_component(struct device_node *dp, char *tmp_buf) { struct property *prop; u32 *regs; prop = of_find_property(dp, "reg", NULL); if (!prop) return; regs = prop->value; /* This actually isn't right... should look at the #address-cells * property of the i2c bus node etc. etc. */ sprintf(tmp_buf, "%s@%x,%x", dp->name, regs[0], regs[1]); } /* "name@reg0[,reg1]" */ static void __init usb_path_component(struct device_node *dp, char *tmp_buf) { struct property *prop; u32 *regs; prop = of_find_property(dp, "reg", NULL); if (!prop) return; regs = prop->value; if (prop->length == sizeof(u32) || regs[1] == 1) { sprintf(tmp_buf, "%s@%x", dp->name, regs[0]); } else { sprintf(tmp_buf, "%s@%x,%x", dp->name, regs[0], regs[1]); } } /* "name@reg0reg1[,reg2reg3]" */ static void __init ieee1394_path_component(struct device_node *dp, char *tmp_buf) { struct property *prop; u32 *regs; prop = of_find_property(dp, "reg", NULL); if (!prop) return; regs = prop->value; if (regs[2] || regs[3]) { sprintf(tmp_buf, "%s@%08x%08x,%04x%08x", dp->name, regs[0], regs[1], regs[2], regs[3]); } else { sprintf(tmp_buf, "%s@%08x%08x", dp->name, regs[0], regs[1]); } } static void __init __build_path_component(struct device_node *dp, char *tmp_buf) { struct device_node *parent = dp->parent; if (parent != NULL) { if (!strcmp(parent->type, "pci") || !strcmp(parent->type, "pciex")) { pci_path_component(dp, tmp_buf); return; } if (!strcmp(parent->type, "sbus")) { sbus_path_component(dp, tmp_buf); return; } if (!strcmp(parent->type, "upa")) { upa_path_component(dp, tmp_buf); return; } if (!strcmp(parent->type, "ebus")) { ebus_path_component(dp, tmp_buf); return; } if (!strcmp(parent->name, "usb") || !strcmp(parent->name, "hub")) { usb_path_component(dp, tmp_buf); return; } if (!strcmp(parent->type, "i2c")) { i2c_path_component(dp, tmp_buf); return; } if (!strcmp(parent->type, "firewire")) { ieee1394_path_component(dp, tmp_buf); return; } if (!strcmp(parent->type, "virtual-devices")) { vdev_path_component(dp, tmp_buf); return; } /* "isa" is handled with platform naming */ } /* Use platform naming convention. */ if (tlb_type == hypervisor) { sun4v_path_component(dp, tmp_buf); return; } else { sun4u_path_component(dp, tmp_buf); } } static char * __init build_path_component(struct device_node *dp) { char tmp_buf[64], *n; tmp_buf[0] = '\0'; __build_path_component(dp, tmp_buf); if (tmp_buf[0] == '\0') strcpy(tmp_buf, dp->name); n = prom_early_alloc(strlen(tmp_buf) + 1); strcpy(n, tmp_buf); return n; } static char * __init build_full_name(struct device_node *dp) { int len, ourlen, plen; char *n; plen = strlen(dp->parent->full_name); ourlen = strlen(dp->path_component_name); len = ourlen + plen + 2; n = prom_early_alloc(len); strcpy(n, dp->parent->full_name); if (!is_root_node(dp->parent)) { strcpy(n + plen, "/"); plen++; } strcpy(n + plen, dp->path_component_name); return n; } static unsigned int unique_id; static struct property * __init build_one_prop(phandle node, char *prev, char *special_name, void *special_val, int special_len) { static struct property *tmp = NULL; struct property *p; if (tmp) { p = tmp; memset(p, 0, sizeof(*p) + 32); tmp = NULL; } else { p = prom_early_alloc(sizeof(struct property) + 32); p->unique_id = unique_id++; } p->name = (char *) (p + 1); if (special_name) { strcpy(p->name, special_name); p->length = special_len; p->value = prom_early_alloc(special_len); memcpy(p->value, special_val, special_len); } else { if (prev == NULL) { prom_firstprop(node, p->name); } else { prom_nextprop(node, prev, p->name); } if (strlen(p->name) == 0) { tmp = p; return NULL; } p->length = prom_getproplen(node, p->name); if (p->length <= 0) { p->length = 0; } else { p->value = prom_early_alloc(p->length + 1); prom_getproperty(node, p->name, p->value, p->length); ((unsigned char *)p->value)[p->length] = '\0'; } } return p; } static struct property * __init build_prop_list(phandle node) { struct property *head, *tail; head = tail = build_one_prop(node, NULL, ".node", &node, sizeof(node)); tail->next = build_one_prop(node, NULL, NULL, NULL, 0); tail = tail->next; while(tail) { tail->next = build_one_prop(node, tail->name, NULL, NULL, 0); tail = tail->next; } return head; } static char * __init get_one_property(phandle node, const char *name) { char *buf = ""; int len; len = prom_getproplen(node, name); if (len > 0) { buf = prom_early_alloc(len); prom_getproperty(node, name, buf, len); } return buf; } static struct device_node * __init create_node(phandle node, struct device_node *parent) { struct device_node *dp; if (!node) return NULL; dp = prom_early_alloc(sizeof(*dp)); dp->unique_id = unique_id++; dp->parent = parent; kref_init(&dp->kref); dp->name = get_one_property(node, "name"); dp->type = get_one_property(node, "device_type"); dp->node = node; dp->properties = build_prop_list(node); irq_trans_init(dp); return dp; } static struct device_node * __init build_tree(struct device_node *parent, phandle node, struct device_node ***nextp) { struct device_node *ret = NULL, *prev_sibling = NULL; struct device_node *dp; while (1) { dp = create_node(node, parent); if (!dp) break; if (prev_sibling) prev_sibling->sibling = dp; if (!ret) ret = dp; prev_sibling = dp; *(*nextp) = dp; *nextp = &dp->allnext; dp->path_component_name = build_path_component(dp); dp->full_name = build_full_name(dp); dp->child = build_tree(dp, prom_getchild(node), nextp); node = prom_getsibling(node); } return ret; } static const char *get_mid_prop(void) { return (tlb_type == spitfire ? "upa-portid" : "portid"); } struct device_node *of_find_node_by_cpuid(int cpuid) { struct device_node *dp; const char *mid_prop = get_mid_prop(); for_each_node_by_type(dp, "cpu") { int id = of_getintprop_default(dp, mid_prop, -1); const char *this_mid_prop = mid_prop; if (id < 0) { this_mid_prop = "cpuid"; id = of_getintprop_default(dp, this_mid_prop, -1); } if (id < 0) { prom_printf("OF: Serious problem, cpu lacks " "%s property", this_mid_prop); prom_halt(); } if (cpuid == id) return dp; } return NULL; } static void __init of_fill_in_cpu_data(void) { struct device_node *dp; const char *mid_prop = get_mid_prop(); ncpus_probed = 0; for_each_node_by_type(dp, "cpu") { int cpuid = of_getintprop_default(dp, mid_prop, -1); const char *this_mid_prop = mid_prop; struct device_node *portid_parent; int portid = -1; portid_parent = NULL; if (cpuid < 0) { this_mid_prop = "cpuid"; cpuid = of_getintprop_default(dp, this_mid_prop, -1); if (cpuid >= 0) { int limit = 2; portid_parent = dp; while (limit--) { portid_parent = portid_parent->parent; if (!portid_parent) break; portid = of_getintprop_default(portid_parent, "portid", -1); if (portid >= 0) break; } } } if (cpuid < 0) { prom_printf("OF: Serious problem, cpu lacks " "%s property", this_mid_prop); prom_halt(); } ncpus_probed++; #ifdef CONFIG_SMP if (cpuid >= NR_CPUS) { printk(KERN_WARNING "Ignoring CPU %d which is " ">= NR_CPUS (%d)\n", cpuid, NR_CPUS); continue; } #else /* On uniprocessor we only want the values for the * real physical cpu the kernel booted onto, however * cpu_data() only has one entry at index 0. */ if (cpuid != real_hard_smp_processor_id()) continue; cpuid = 0; #endif cpu_data(cpuid).clock_tick = of_getintprop_default(dp, "clock-frequency", 0); if (portid_parent) { cpu_data(cpuid).dcache_size = of_getintprop_default(dp, "l1-dcache-size", 16 * 1024); cpu_data(cpuid).dcache_line_size = of_getintprop_default(dp, "l1-dcache-line-size", 32); cpu_data(cpuid).icache_size = of_getintprop_default(dp, "l1-icache-size", 8 * 1024); cpu_data(cpuid).icache_line_size = of_getintprop_default(dp, "l1-icache-line-size", 32); cpu_data(cpuid).ecache_size = of_getintprop_default(dp, "l2-cache-size", 0); cpu_data(cpuid).ecache_line_size = of_getintprop_default(dp, "l2-cache-line-size", 0); if (!cpu_data(cpuid).ecache_size || !cpu_data(cpuid).ecache_line_size) { cpu_data(cpuid).ecache_size = of_getintprop_default(portid_parent, "l2-cache-size", (4 * 1024 * 1024)); cpu_data(cpuid).ecache_line_size = of_getintprop_default(portid_parent, "l2-cache-line-size", 64); } cpu_data(cpuid).core_id = portid + 1; cpu_data(cpuid).proc_id = portid; #ifdef CONFIG_SMP sparc64_multi_core = 1; #endif } else { cpu_data(cpuid).dcache_size = of_getintprop_default(dp, "dcache-size", 16 * 1024); cpu_data(cpuid).dcache_line_size = of_getintprop_default(dp, "dcache-line-size", 32); cpu_data(cpuid).icache_size = of_getintprop_default(dp, "icache-size", 16 * 1024); cpu_data(cpuid).icache_line_size = of_getintprop_default(dp, "icache-line-size", 32); cpu_data(cpuid).ecache_size = of_getintprop_default(dp, "ecache-size", (4 * 1024 * 1024)); cpu_data(cpuid).ecache_line_size = of_getintprop_default(dp, "ecache-line-size", 64); cpu_data(cpuid).core_id = 0; cpu_data(cpuid).proc_id = -1; } #ifdef CONFIG_SMP cpu_set(cpuid, cpu_present_map); cpu_set(cpuid, cpu_possible_map); #endif } smp_fill_in_sib_core_maps(); } struct device_node *of_console_device; EXPORT_SYMBOL(of_console_device); char *of_console_path; EXPORT_SYMBOL(of_console_path); char *of_console_options; EXPORT_SYMBOL(of_console_options); static void __init of_console_init(void) { char *msg = "OF stdout device is: %s\n"; struct device_node *dp; const char *type; phandle node; of_console_path = prom_early_alloc(256); if (prom_ihandle2path(prom_stdout, of_console_path, 256) < 0) { prom_printf("Cannot obtain path of stdout.\n"); prom_halt(); } of_console_options = strrchr(of_console_path, ':'); if (of_console_options) { of_console_options++; if (*of_console_options == '\0') of_console_options = NULL; } node = prom_inst2pkg(prom_stdout); if (!node) { prom_printf("Cannot resolve stdout node from " "instance %08x.\n", prom_stdout); prom_halt(); } dp = of_find_node_by_phandle(node); type = of_get_property(dp, "device_type", NULL); if (!type) { prom_printf("Console stdout lacks device_type property.\n"); prom_halt(); } if (strcmp(type, "display") && strcmp(type, "serial")) { prom_printf("Console device_type is neither display " "nor serial.\n"); prom_halt(); } of_console_device = dp; printk(msg, of_console_path); } void __init prom_build_devicetree(void) { struct device_node **nextp; allnodes = create_node(prom_root_node, NULL); allnodes->path_component_name = ""; allnodes->full_name = "/"; nextp = &allnodes->allnext; allnodes->child = build_tree(allnodes, prom_getchild(allnodes->node), &nextp); of_console_init(); printk("PROM: Built device tree with %u bytes of memory.\n", prom_early_allocated); if (tlb_type != hypervisor) of_fill_in_cpu_data(); }