/* * kvm_ia64.c: Basic KVM suppport On Itanium series processors * * * Copyright (C) 2007, Intel Corporation. * Xiantao Zhang (xiantao.zhang@intel.com) * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "misc.h" #include "vti.h" #include "iodev.h" #include "ioapic.h" #include "lapic.h" #include "irq.h" static unsigned long kvm_vmm_base; static unsigned long kvm_vsa_base; static unsigned long kvm_vm_buffer; static unsigned long kvm_vm_buffer_size; unsigned long kvm_vmm_gp; static long vp_env_info; static struct kvm_vmm_info *kvm_vmm_info; static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu); struct kvm_stats_debugfs_item debugfs_entries[] = { { NULL } }; static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu) { #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC) if (vcpu->kvm->arch.is_sn2) return rtc_time(); else #endif return ia64_getreg(_IA64_REG_AR_ITC); } static void kvm_flush_icache(unsigned long start, unsigned long len) { int l; for (l = 0; l < (len + 32); l += 32) ia64_fc((void *)(start + l)); ia64_sync_i(); ia64_srlz_i(); } static void kvm_flush_tlb_all(void) { unsigned long i, j, count0, count1, stride0, stride1, addr; long flags; addr = local_cpu_data->ptce_base; count0 = local_cpu_data->ptce_count[0]; count1 = local_cpu_data->ptce_count[1]; stride0 = local_cpu_data->ptce_stride[0]; stride1 = local_cpu_data->ptce_stride[1]; local_irq_save(flags); for (i = 0; i < count0; ++i) { for (j = 0; j < count1; ++j) { ia64_ptce(addr); addr += stride1; } addr += stride0; } local_irq_restore(flags); ia64_srlz_i(); /* srlz.i implies srlz.d */ } long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler) { struct ia64_pal_retval iprv; PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva, (u64)opt_handler); return iprv.status; } static DEFINE_SPINLOCK(vp_lock); int kvm_arch_hardware_enable(void *garbage) { long status; long tmp_base; unsigned long pte; unsigned long saved_psr; int slot; pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL)); local_irq_save(saved_psr); slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT); local_irq_restore(saved_psr); if (slot < 0) return -EINVAL; spin_lock(&vp_lock); status = ia64_pal_vp_init_env(kvm_vsa_base ? VP_INIT_ENV : VP_INIT_ENV_INITALIZE, __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base); if (status != 0) { spin_unlock(&vp_lock); printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n"); return -EINVAL; } if (!kvm_vsa_base) { kvm_vsa_base = tmp_base; printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base); } spin_unlock(&vp_lock); ia64_ptr_entry(0x3, slot); return 0; } void kvm_arch_hardware_disable(void *garbage) { long status; int slot; unsigned long pte; unsigned long saved_psr; unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA); pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL)); local_irq_save(saved_psr); slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT); local_irq_restore(saved_psr); if (slot < 0) return; status = ia64_pal_vp_exit_env(host_iva); if (status) printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n", status); ia64_ptr_entry(0x3, slot); } void kvm_arch_check_processor_compat(void *rtn) { *(int *)rtn = 0; } int kvm_dev_ioctl_check_extension(long ext) { int r; switch (ext) { case KVM_CAP_IRQCHIP: case KVM_CAP_MP_STATE: case KVM_CAP_IRQ_INJECT_STATUS: r = 1; break; case KVM_CAP_COALESCED_MMIO: r = KVM_COALESCED_MMIO_PAGE_OFFSET; break; case KVM_CAP_IOMMU: r = iommu_present(&pci_bus_type); break; default: r = 0; } return r; } static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { kvm_run->exit_reason = KVM_EXIT_UNKNOWN; kvm_run->hw.hardware_exit_reason = 1; return 0; } static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { struct kvm_mmio_req *p; struct kvm_io_device *mmio_dev; int r; p = kvm_get_vcpu_ioreq(vcpu); if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS) goto mmio; vcpu->mmio_needed = 1; vcpu->mmio_fragments[0].gpa = kvm_run->mmio.phys_addr = p->addr; vcpu->mmio_fragments[0].len = kvm_run->mmio.len = p->size; vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir; if (vcpu->mmio_is_write) memcpy(vcpu->arch.mmio_data, &p->data, p->size); memcpy(kvm_run->mmio.data, &p->data, p->size); kvm_run->exit_reason = KVM_EXIT_MMIO; return 0; mmio: if (p->dir) r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr, p->size, &p->data); else r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr, p->size, &p->data); if (r) printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr); p->state = STATE_IORESP_READY; return 1; } static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { struct exit_ctl_data *p; p = kvm_get_exit_data(vcpu); if (p->exit_reason == EXIT_REASON_PAL_CALL) return kvm_pal_emul(vcpu, kvm_run); else { kvm_run->exit_reason = KVM_EXIT_UNKNOWN; kvm_run->hw.hardware_exit_reason = 2; return 0; } } static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { struct exit_ctl_data *p; p = kvm_get_exit_data(vcpu); if (p->exit_reason == EXIT_REASON_SAL_CALL) { kvm_sal_emul(vcpu); return 1; } else { kvm_run->exit_reason = KVM_EXIT_UNKNOWN; kvm_run->hw.hardware_exit_reason = 3; return 0; } } static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector) { struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd); if (!test_and_set_bit(vector, &vpd->irr[0])) { vcpu->arch.irq_new_pending = 1; kvm_vcpu_kick(vcpu); return 1; } return 0; } /* * offset: address offset to IPI space. * value: deliver value. */ static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm, uint64_t vector) { switch (dm) { case SAPIC_FIXED: break; case SAPIC_NMI: vector = 2; break; case SAPIC_EXTINT: vector = 0; break; case SAPIC_INIT: case SAPIC_PMI: default: printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n"); return; } __apic_accept_irq(vcpu, vector); } static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id, unsigned long eid) { union ia64_lid lid; int i; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) { lid.val = VCPU_LID(vcpu); if (lid.id == id && lid.eid == eid) return vcpu; } return NULL; } static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { struct exit_ctl_data *p = kvm_get_exit_data(vcpu); struct kvm_vcpu *target_vcpu; struct kvm_pt_regs *regs; union ia64_ipi_a addr = p->u.ipi_data.addr; union ia64_ipi_d data = p->u.ipi_data.data; target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid); if (!target_vcpu) return handle_vm_error(vcpu, kvm_run); if (!target_vcpu->arch.launched) { regs = vcpu_regs(target_vcpu); regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip; regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp; target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; if (waitqueue_active(&target_vcpu->wq)) wake_up_interruptible(&target_vcpu->wq); } else { vcpu_deliver_ipi(target_vcpu, data.dm, data.vector); if (target_vcpu != vcpu) kvm_vcpu_kick(target_vcpu); } return 1; } struct call_data { struct kvm_ptc_g ptc_g_data; struct kvm_vcpu *vcpu; }; static void vcpu_global_purge(void *info) { struct call_data *p = (struct call_data *)info; struct kvm_vcpu *vcpu = p->vcpu; if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) return; set_bit(KVM_REQ_PTC_G, &vcpu->requests); if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) { vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] = p->ptc_g_data; } else { clear_bit(KVM_REQ_PTC_G, &vcpu->requests); vcpu->arch.ptc_g_count = 0; set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests); } } static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { struct exit_ctl_data *p = kvm_get_exit_data(vcpu); struct kvm *kvm = vcpu->kvm; struct call_data call_data; int i; struct kvm_vcpu *vcpui; call_data.ptc_g_data = p->u.ptc_g_data; kvm_for_each_vcpu(i, vcpui, kvm) { if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED || vcpu == vcpui) continue; if (waitqueue_active(&vcpui->wq)) wake_up_interruptible(&vcpui->wq); if (vcpui->cpu != -1) { call_data.vcpu = vcpui; smp_call_function_single(vcpui->cpu, vcpu_global_purge, &call_data, 1); } else printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n"); } return 1; } static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { return 1; } static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu) { unsigned long pte, rtc_phys_addr, map_addr; int slot; map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT); rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC; pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC)); slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT); vcpu->arch.sn_rtc_tr_slot = slot; if (slot < 0) { printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n"); slot = 0; } return slot; } int kvm_emulate_halt(struct kvm_vcpu *vcpu) { ktime_t kt; long itc_diff; unsigned long vcpu_now_itc; unsigned long expires; struct hrtimer *p_ht = &vcpu->arch.hlt_timer; unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec; struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd); if (irqchip_in_kernel(vcpu->kvm)) { vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset; if (time_after(vcpu_now_itc, vpd->itm)) { vcpu->arch.timer_check = 1; return 1; } itc_diff = vpd->itm - vcpu_now_itc; if (itc_diff < 0) itc_diff = -itc_diff; expires = div64_u64(itc_diff, cyc_per_usec); kt = ktime_set(0, 1000 * expires); vcpu->arch.ht_active = 1; hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS); vcpu->arch.mp_state = KVM_MP_STATE_HALTED; kvm_vcpu_block(vcpu); hrtimer_cancel(p_ht); vcpu->arch.ht_active = 0; if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) || kvm_cpu_has_pending_timer(vcpu)) if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) return -EINTR; return 1; } else { printk(KERN_ERR"kvm: Unsupported userspace halt!"); return 0; } } static int handle_vm_shutdown(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; } static int handle_external_interrupt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { return 1; } static int handle_vcpu_debug(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { printk("VMM: %s", vcpu->arch.log_buf); return 1; } static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) = { [EXIT_REASON_VM_PANIC] = handle_vm_error, [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio, [EXIT_REASON_PAL_CALL] = handle_pal_call, [EXIT_REASON_SAL_CALL] = handle_sal_call, [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6, [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown, [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, [EXIT_REASON_IPI] = handle_ipi, [EXIT_REASON_PTC_G] = handle_global_purge, [EXIT_REASON_DEBUG] = handle_vcpu_debug, }; static const int kvm_vti_max_exit_handlers = sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers); static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu) { struct exit_ctl_data *p_exit_data; p_exit_data = kvm_get_exit_data(vcpu); return p_exit_data->exit_reason; } /* * The guest has exited. See if we can fix it or if we need userspace * assistance. */ static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { u32 exit_reason = kvm_get_exit_reason(vcpu); vcpu->arch.last_exit = exit_reason; if (exit_reason < kvm_vti_max_exit_handlers && kvm_vti_exit_handlers[exit_reason]) return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run); else { kvm_run->exit_reason = KVM_EXIT_UNKNOWN; kvm_run->hw.hardware_exit_reason = exit_reason; } return 0; } static inline void vti_set_rr6(unsigned long rr6) { ia64_set_rr(RR6, rr6); ia64_srlz_i(); } static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu) { unsigned long pte; struct kvm *kvm = vcpu->kvm; int r; /*Insert a pair of tr to map vmm*/ pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL)); r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT); if (r < 0) goto out; vcpu->arch.vmm_tr_slot = r; /*Insert a pairt of tr to map data of vm*/ pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL)); r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE, pte, KVM_VM_DATA_SHIFT); if (r < 0) goto out; vcpu->arch.vm_tr_slot = r; #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC) if (kvm->arch.is_sn2) { r = kvm_sn2_setup_mappings(vcpu); if (r < 0) goto out; } #endif r = 0; out: return r; } static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot); ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot); #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC) if (kvm->arch.is_sn2) ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot); #endif } static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu) { unsigned long psr; int r; int cpu = smp_processor_id(); if (vcpu->arch.last_run_cpu != cpu || per_cpu(last_vcpu, cpu) != vcpu) { per_cpu(last_vcpu, cpu) = vcpu; vcpu->arch.last_run_cpu = cpu; kvm_flush_tlb_all(); } vcpu->arch.host_rr6 = ia64_get_rr(RR6); vti_set_rr6(vcpu->arch.vmm_rr); local_irq_save(psr); r = kvm_insert_vmm_mapping(vcpu); local_irq_restore(psr); return r; } static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu) { kvm_purge_vmm_mapping(vcpu); vti_set_rr6(vcpu->arch.host_rr6); } static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { union context *host_ctx, *guest_ctx; int r, idx; idx = srcu_read_lock(&vcpu->kvm->srcu); again: if (signal_pending(current)) { r = -EINTR; kvm_run->exit_reason = KVM_EXIT_INTR; goto out; } preempt_disable(); local_irq_disable(); /*Get host and guest context with guest address space.*/ host_ctx = kvm_get_host_context(vcpu); guest_ctx = kvm_get_guest_context(vcpu); clear_bit(KVM_REQ_KICK, &vcpu->requests); r = kvm_vcpu_pre_transition(vcpu); if (r < 0) goto vcpu_run_fail; srcu_read_unlock(&vcpu->kvm->srcu, idx); vcpu->mode = IN_GUEST_MODE; kvm_guest_enter(); /* * Transition to the guest */ kvm_vmm_info->tramp_entry(host_ctx, guest_ctx); kvm_vcpu_post_transition(vcpu); vcpu->arch.launched = 1; set_bit(KVM_REQ_KICK, &vcpu->requests); local_irq_enable(); /* * We must have an instruction between local_irq_enable() and * kvm_guest_exit(), so the timer interrupt isn't delayed by * the interrupt shadow. The stat.exits increment will do nicely. * But we need to prevent reordering, hence this barrier(): */ barrier(); kvm_guest_exit(); vcpu->mode = OUTSIDE_GUEST_MODE; preempt_enable(); idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvm_handle_exit(kvm_run, vcpu); if (r > 0) { if (!need_resched()) goto again; } out: srcu_read_unlock(&vcpu->kvm->srcu, idx); if (r > 0) { kvm_resched(vcpu); idx = srcu_read_lock(&vcpu->kvm->srcu); goto again; } return r; vcpu_run_fail: local_irq_enable(); preempt_enable(); kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; goto out; } static void kvm_set_mmio_data(struct kvm_vcpu *vcpu) { struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu); if (!vcpu->mmio_is_write) memcpy(&p->data, vcpu->arch.mmio_data, 8); p->state = STATE_IORESP_READY; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { int r; sigset_t sigsaved; if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { kvm_vcpu_block(vcpu); clear_bit(KVM_REQ_UNHALT, &vcpu->requests); r = -EAGAIN; goto out; } if (vcpu->mmio_needed) { memcpy(vcpu->arch.mmio_data, kvm_run->mmio.data, 8); kvm_set_mmio_data(vcpu); vcpu->mmio_read_completed = 1; vcpu->mmio_needed = 0; } r = __vcpu_run(vcpu, kvm_run); out: if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); return r; } struct kvm *kvm_arch_alloc_vm(void) { struct kvm *kvm; uint64_t vm_base; BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE); vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE)); if (!vm_base) return NULL; memset((void *)vm_base, 0, KVM_VM_DATA_SIZE); kvm = (struct kvm *)(vm_base + offsetof(struct kvm_vm_data, kvm_vm_struct)); kvm->arch.vm_base = vm_base; printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base); return kvm; } struct kvm_ia64_io_range { unsigned long start; unsigned long size; unsigned long type; }; static const struct kvm_ia64_io_range io_ranges[] = { {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER}, {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO}, {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO}, {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC}, {PIB_START, PIB_SIZE, GPFN_PIB}, }; static void kvm_build_io_pmt(struct kvm *kvm) { unsigned long i, j; /* Mark I/O ranges */ for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range)); i++) { for (j = io_ranges[i].start; j < io_ranges[i].start + io_ranges[i].size; j += PAGE_SIZE) kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT, io_ranges[i].type, 0); } } /*Use unused rids to virtualize guest rid.*/ #define GUEST_PHYSICAL_RR0 0x1739 #define GUEST_PHYSICAL_RR4 0x2739 #define VMM_INIT_RR 0x1660 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { BUG_ON(!kvm); if (type) return -EINVAL; kvm->arch.is_sn2 = ia64_platform_is("sn2"); kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0; kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4; kvm->arch.vmm_init_rr = VMM_INIT_RR; /* *Fill P2M entries for MMIO/IO ranges */ kvm_build_io_pmt(kvm); INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); return 0; } static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_IOAPIC: r = kvm_get_ioapic(kvm, &chip->chip.ioapic); break; default: r = -EINVAL; break; } return r; } static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_IOAPIC: r = kvm_set_ioapic(kvm, &chip->chip.ioapic); break; default: r = -EINVAL; break; } return r; } #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd); int i; for (i = 0; i < 16; i++) { vpd->vgr[i] = regs->vpd.vgr[i]; vpd->vbgr[i] = regs->vpd.vbgr[i]; } for (i = 0; i < 128; i++) vpd->vcr[i] = regs->vpd.vcr[i]; vpd->vhpi = regs->vpd.vhpi; vpd->vnat = regs->vpd.vnat; vpd->vbnat = regs->vpd.vbnat; vpd->vpsr = regs->vpd.vpsr; vpd->vpr = regs->vpd.vpr; memcpy(&vcpu->arch.guest, ®s->saved_guest, sizeof(union context)); RESTORE_REGS(mp_state); RESTORE_REGS(vmm_rr); memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS); memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS); RESTORE_REGS(itr_regions); RESTORE_REGS(dtr_regions); RESTORE_REGS(tc_regions); RESTORE_REGS(irq_check); RESTORE_REGS(itc_check); RESTORE_REGS(timer_check); RESTORE_REGS(timer_pending); RESTORE_REGS(last_itc); for (i = 0; i < 8; i++) { vcpu->arch.vrr[i] = regs->vrr[i]; vcpu->arch.ibr[i] = regs->ibr[i]; vcpu->arch.dbr[i] = regs->dbr[i]; } for (i = 0; i < 4; i++) vcpu->arch.insvc[i] = regs->insvc[i]; RESTORE_REGS(xtp); RESTORE_REGS(metaphysical_rr0); RESTORE_REGS(metaphysical_rr4); RESTORE_REGS(metaphysical_saved_rr0); RESTORE_REGS(metaphysical_saved_rr4); RESTORE_REGS(fp_psr); RESTORE_REGS(saved_gp); vcpu->arch.irq_new_pending = 1; vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu); set_bit(KVM_REQ_RESUME, &vcpu->requests); return 0; } int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event) { if (!irqchip_in_kernel(kvm)) return -ENXIO; irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irq_event->irq, irq_event->level); return 0; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; void __user *argp = (void __user *)arg; int r = -ENOTTY; switch (ioctl) { case KVM_SET_MEMORY_REGION: { struct kvm_memory_region kvm_mem; struct kvm_userspace_memory_region kvm_userspace_mem; r = -EFAULT; if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem)) goto out; kvm_userspace_mem.slot = kvm_mem.slot; kvm_userspace_mem.flags = kvm_mem.flags; kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr; kvm_userspace_mem.memory_size = kvm_mem.memory_size; r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0); if (r) goto out; break; } case KVM_CREATE_IRQCHIP: r = -EFAULT; r = kvm_ioapic_init(kvm); if (r) goto out; r = kvm_setup_default_irq_routing(kvm); if (r) { mutex_lock(&kvm->slots_lock); kvm_ioapic_destroy(kvm); mutex_unlock(&kvm->slots_lock); goto out; } break; case KVM_GET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip chip; r = -EFAULT; if (copy_from_user(&chip, argp, sizeof chip)) goto out; r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto out; r = kvm_vm_ioctl_get_irqchip(kvm, &chip); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &chip, sizeof chip)) goto out; r = 0; break; } case KVM_SET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip chip; r = -EFAULT; if (copy_from_user(&chip, argp, sizeof chip)) goto out; r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto out; r = kvm_vm_ioctl_set_irqchip(kvm, &chip); if (r) goto out; r = 0; break; } default: ; } out: return r; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { return -EINVAL; } static int kvm_alloc_vmm_area(void) { if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) { kvm_vmm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VMM_SIZE)); if (!kvm_vmm_base) return -ENOMEM; memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE); kvm_vm_buffer = kvm_vmm_base + VMM_SIZE; printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n", kvm_vmm_base, kvm_vm_buffer); } return 0; } static void kvm_free_vmm_area(void) { if (kvm_vmm_base) { /*Zero this area before free to avoid bits leak!!*/ memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE); free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE)); kvm_vmm_base = 0; kvm_vm_buffer = 0; kvm_vsa_base = 0; } } static int vti_init_vpd(struct kvm_vcpu *vcpu) { int i; union cpuid3_t cpuid3; struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd); if (IS_ERR(vpd)) return PTR_ERR(vpd); /* CPUID init */ for (i = 0; i < 5; i++) vpd->vcpuid[i] = ia64_get_cpuid(i); /* Limit the CPUID number to 5 */ cpuid3.value = vpd->vcpuid[3]; cpuid3.number = 4; /* 5 - 1 */ vpd->vcpuid[3] = cpuid3.value; /*Set vac and vdc fields*/ vpd->vac.a_from_int_cr = 1; vpd->vac.a_to_int_cr = 1; vpd->vac.a_from_psr = 1; vpd->vac.a_from_cpuid = 1; vpd->vac.a_cover = 1; vpd->vac.a_bsw = 1; vpd->vac.a_int = 1; vpd->vdc.d_vmsw = 1; /*Set virtual buffer*/ vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE; return 0; } static int vti_create_vp(struct kvm_vcpu *vcpu) { long ret; struct vpd *vpd = vcpu->arch.vpd; unsigned long vmm_ivt; vmm_ivt = kvm_vmm_info->vmm_ivt; printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt); ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0); if (ret) { printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n"); return -EINVAL; } return 0; } static void init_ptce_info(struct kvm_vcpu *vcpu) { ia64_ptce_info_t ptce = {0}; ia64_get_ptce(&ptce); vcpu->arch.ptce_base = ptce.base; vcpu->arch.ptce_count[0] = ptce.count[0]; vcpu->arch.ptce_count[1] = ptce.count[1]; vcpu->arch.ptce_stride[0] = ptce.stride[0]; vcpu->arch.ptce_stride[1] = ptce.stride[1]; } static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu) { struct hrtimer *p_ht = &vcpu->arch.hlt_timer; if (hrtimer_cancel(p_ht)) hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS); } static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data) { struct kvm_vcpu *vcpu; wait_queue_head_t *q; vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer); q = &vcpu->wq; if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED) goto out; if (waitqueue_active(q)) wake_up_interruptible(q); out: vcpu->arch.timer_fired = 1; vcpu->arch.timer_check = 1; return HRTIMER_NORESTART; } #define PALE_RESET_ENTRY 0x80000000ffffffb0UL bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) { return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { struct kvm_vcpu *v; int r; int i; long itc_offset; struct kvm *kvm = vcpu->kvm; struct kvm_pt_regs *regs = vcpu_regs(vcpu); union context *p_ctx = &vcpu->arch.guest; struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu); /*Init vcpu context for first run.*/ if (IS_ERR(vmm_vcpu)) return PTR_ERR(vmm_vcpu); if (kvm_vcpu_is_bsp(vcpu)) { vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; /*Set entry address for first run.*/ regs->cr_iip = PALE_RESET_ENTRY; /*Initialize itc offset for vcpus*/ itc_offset = 0UL - kvm_get_itc(vcpu); for (i = 0; i < KVM_MAX_VCPUS; i++) { v = (struct kvm_vcpu *)((char *)vcpu + sizeof(struct kvm_vcpu_data) * i); v->arch.itc_offset = itc_offset; v->arch.last_itc = 0; } } else vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; r = -ENOMEM; vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL); if (!vcpu->arch.apic) goto out; vcpu->arch.apic->vcpu = vcpu; p_ctx->gr[1] = 0; p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET); p_ctx->gr[13] = (unsigned long)vmm_vcpu; p_ctx->psr = 0x1008522000UL; p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/ p_ctx->caller_unat = 0; p_ctx->pr = 0x0; p_ctx->ar[36] = 0x0; /*unat*/ p_ctx->ar[19] = 0x0; /*rnat*/ p_ctx->ar[18] = (unsigned long)vmm_vcpu + ((sizeof(struct kvm_vcpu)+15) & ~15); p_ctx->ar[64] = 0x0; /*pfs*/ p_ctx->cr[0] = 0x7e04UL; p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt; p_ctx->cr[8] = 0x3c; /*Initialize region register*/ p_ctx->rr[0] = 0x30; p_ctx->rr[1] = 0x30; p_ctx->rr[2] = 0x30; p_ctx->rr[3] = 0x30; p_ctx->rr[4] = 0x30; p_ctx->rr[5] = 0x30; p_ctx->rr[7] = 0x30; /*Initialize branch register 0*/ p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry; vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr; vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0; vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4; hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); vcpu->arch.hlt_timer.function = hlt_timer_fn; vcpu->arch.last_run_cpu = -1; vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id); vcpu->arch.vsa_base = kvm_vsa_base; vcpu->arch.__gp = kvm_vmm_gp; vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock); vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id); vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id); init_ptce_info(vcpu); r = 0; out: return r; } static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id) { unsigned long psr; int r; local_irq_save(psr); r = kvm_insert_vmm_mapping(vcpu); local_irq_restore(psr); if (r) goto fail; r = kvm_vcpu_init(vcpu, vcpu->kvm, id); if (r) goto fail; r = vti_init_vpd(vcpu); if (r) { printk(KERN_DEBUG"kvm: vpd init error!!\n"); goto uninit; } r = vti_create_vp(vcpu); if (r) goto uninit; kvm_purge_vmm_mapping(vcpu); return 0; uninit: kvm_vcpu_uninit(vcpu); fail: return r; } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvm_vcpu *vcpu; unsigned long vm_base = kvm->arch.vm_base; int r; int cpu; BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2); r = -EINVAL; if (id >= KVM_MAX_VCPUS) { printk(KERN_ERR"kvm: Can't configure vcpus > %ld", KVM_MAX_VCPUS); goto fail; } r = -ENOMEM; if (!vm_base) { printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id); goto fail; } vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data, vcpu_data[id].vcpu_struct)); vcpu->kvm = kvm; cpu = get_cpu(); r = vti_vcpu_setup(vcpu, id); put_cpu(); if (r) { printk(KERN_DEBUG"kvm: vcpu_setup error!!\n"); goto fail; } return vcpu; fail: return ERR_PTR(r); } int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { return -EINVAL; } void kvm_arch_free_vm(struct kvm *kvm) { unsigned long vm_base = kvm->arch.vm_base; if (vm_base) { memset((void *)vm_base, 0, KVM_VM_DATA_SIZE); free_pages(vm_base, get_order(KVM_VM_DATA_SIZE)); } } static void kvm_release_vm_pages(struct kvm *kvm) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; int j; slots = kvm_memslots(kvm); kvm_for_each_memslot(memslot, slots) { for (j = 0; j < memslot->npages; j++) { if (memslot->rmap[j]) put_page((struct page *)memslot->rmap[j]); } } } void kvm_arch_sync_events(struct kvm *kvm) { } void kvm_arch_destroy_vm(struct kvm *kvm) { kvm_iommu_unmap_guest(kvm); #ifdef KVM_CAP_DEVICE_ASSIGNMENT kvm_free_all_assigned_devices(kvm); #endif kfree(kvm->arch.vioapic); kvm_release_vm_pages(kvm); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { if (cpu != vcpu->cpu) { vcpu->cpu = cpu; if (vcpu->arch.ht_active) kvm_migrate_hlt_timer(vcpu); } } #define SAVE_REGS(_x) regs->_x = vcpu->arch._x int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd); int i; vcpu_load(vcpu); for (i = 0; i < 16; i++) { regs->vpd.vgr[i] = vpd->vgr[i]; regs->vpd.vbgr[i] = vpd->vbgr[i]; } for (i = 0; i < 128; i++) regs->vpd.vcr[i] = vpd->vcr[i]; regs->vpd.vhpi = vpd->vhpi; regs->vpd.vnat = vpd->vnat; regs->vpd.vbnat = vpd->vbnat; regs->vpd.vpsr = vpd->vpsr; regs->vpd.vpr = vpd->vpr; memcpy(®s->saved_guest, &vcpu->arch.guest, sizeof(union context)); SAVE_REGS(mp_state); SAVE_REGS(vmm_rr); memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS); memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS); SAVE_REGS(itr_regions); SAVE_REGS(dtr_regions); SAVE_REGS(tc_regions); SAVE_REGS(irq_check); SAVE_REGS(itc_check); SAVE_REGS(timer_check); SAVE_REGS(timer_pending); SAVE_REGS(last_itc); for (i = 0; i < 8; i++) { regs->vrr[i] = vcpu->arch.vrr[i]; regs->ibr[i] = vcpu->arch.ibr[i]; regs->dbr[i] = vcpu->arch.dbr[i]; } for (i = 0; i < 4; i++) regs->insvc[i] = vcpu->arch.insvc[i]; regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu); SAVE_REGS(xtp); SAVE_REGS(metaphysical_rr0); SAVE_REGS(metaphysical_rr4); SAVE_REGS(metaphysical_saved_rr0); SAVE_REGS(metaphysical_saved_rr4); SAVE_REGS(fp_psr); SAVE_REGS(saved_gp); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu, struct kvm_ia64_vcpu_stack *stack) { memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack)); return 0; } int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu, struct kvm_ia64_vcpu_stack *stack) { memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu), sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu)); vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data; return 0; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { hrtimer_cancel(&vcpu->arch.hlt_timer); kfree(vcpu->arch.apic); } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; struct kvm_ia64_vcpu_stack *stack = NULL; long r; switch (ioctl) { case KVM_IA64_VCPU_GET_STACK: { struct kvm_ia64_vcpu_stack __user *user_stack; void __user *first_p = argp; r = -EFAULT; if (copy_from_user(&user_stack, first_p, sizeof(void *))) goto out; if (!access_ok(VERIFY_WRITE, user_stack, sizeof(struct kvm_ia64_vcpu_stack))) { printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: " "Illegal user destination address for stack\n"); goto out; } stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL); if (!stack) { r = -ENOMEM; goto out; } r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack); if (r) goto out; if (copy_to_user(user_stack, stack, sizeof(struct kvm_ia64_vcpu_stack))) { r = -EFAULT; goto out; } break; } case KVM_IA64_VCPU_SET_STACK: { struct kvm_ia64_vcpu_stack __user *user_stack; void __user *first_p = argp; r = -EFAULT; if (copy_from_user(&user_stack, first_p, sizeof(void *))) goto out; if (!access_ok(VERIFY_READ, user_stack, sizeof(struct kvm_ia64_vcpu_stack))) { printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: " "Illegal user address for stack\n"); goto out; } stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL); if (!stack) { r = -ENOMEM; goto out; } if (copy_from_user(stack, user_stack, sizeof(struct kvm_ia64_vcpu_stack))) goto out; r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack); break; } default: r = -EINVAL; } out: kfree(stack); return r; } int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } void kvm_arch_free_memslot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { } int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) { return 0; } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_memory_slot old, struct kvm_userspace_memory_region *mem, int user_alloc) { unsigned long i; unsigned long pfn; int npages = memslot->npages; unsigned long base_gfn = memslot->base_gfn; if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT)) return -ENOMEM; for (i = 0; i < npages; i++) { pfn = gfn_to_pfn(kvm, base_gfn + i); if (!kvm_is_mmio_pfn(pfn)) { kvm_set_pmt_entry(kvm, base_gfn + i, pfn << PAGE_SHIFT, _PAGE_AR_RWX | _PAGE_MA_WB); memslot->rmap[i] = (unsigned long)pfn_to_page(pfn); } else { kvm_set_pmt_entry(kvm, base_gfn + i, GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT), _PAGE_MA_UC); memslot->rmap[i] = 0; } } return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { return; } void kvm_arch_flush_shadow_all(struct kvm *kvm) { kvm_flush_remote_tlbs(kvm); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { kvm_arch_flush_shadow_all(); } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -EINVAL; } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { kvm_vcpu_uninit(vcpu); } static int vti_cpu_has_kvm_support(void) { long avail = 1, status = 1, control = 1; long ret; ret = ia64_pal_proc_get_features(&avail, &status, &control, 0); if (ret) goto out; if (!(avail & PAL_PROC_VM_BIT)) goto out; printk(KERN_DEBUG"kvm: Hardware Supports VT\n"); ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info); if (ret) goto out; printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size); if (!(vp_env_info & VP_OPCODE)) { printk(KERN_WARNING"kvm: No opcode ability on hardware, " "vm_env_info:0x%lx\n", vp_env_info); } return 1; out: return 0; } /* * On SN2, the ITC isn't stable, so copy in fast path code to use the * SN2 RTC, replacing the ITC based default verion. */ static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info, struct module *module) { unsigned long new_ar, new_ar_sn2; unsigned long module_base; if (!ia64_platform_is("sn2")) return; module_base = (unsigned long)module->module_core; new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base; new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base; printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC " "as source\n"); /* * Copy the SN2 version of mov_ar into place. They are both * the same size, so 6 bundles is sufficient (6 * 0x10). */ memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60); } static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info, struct module *module) { unsigned long module_base; unsigned long vmm_size; unsigned long vmm_offset, func_offset, fdesc_offset; struct fdesc *p_fdesc; BUG_ON(!module); if (!kvm_vmm_base) { printk("kvm: kvm area hasn't been initialized yet!!\n"); return -EFAULT; } /*Calculate new position of relocated vmm module.*/ module_base = (unsigned long)module->module_core; vmm_size = module->core_size; if (unlikely(vmm_size > KVM_VMM_SIZE)) return -EFAULT; memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size); kvm_patch_vmm(vmm_info, module); kvm_flush_icache(kvm_vmm_base, vmm_size); /*Recalculate kvm_vmm_info based on new VMM*/ vmm_offset = vmm_info->vmm_ivt - module_base; kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset; printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n", kvm_vmm_info->vmm_ivt); fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base; kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE + fdesc_offset); func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base; p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset); p_fdesc->ip = KVM_VMM_BASE + func_offset; p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base); printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n", KVM_VMM_BASE+func_offset); fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base; kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE + fdesc_offset); func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base; p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset); p_fdesc->ip = KVM_VMM_BASE + func_offset; p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base); kvm_vmm_gp = p_fdesc->gp; printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n", kvm_vmm_info->vmm_entry); printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n", KVM_VMM_BASE + func_offset); return 0; } int kvm_arch_init(void *opaque) { int r; struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque; if (!vti_cpu_has_kvm_support()) { printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n"); r = -EOPNOTSUPP; goto out; } if (kvm_vmm_info) { printk(KERN_ERR "kvm: Already loaded VMM module!\n"); r = -EEXIST; goto out; } r = -ENOMEM; kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL); if (!kvm_vmm_info) goto out; if (kvm_alloc_vmm_area()) goto out_free0; r = kvm_relocate_vmm(vmm_info, vmm_info->module); if (r) goto out_free1; return 0; out_free1: kvm_free_vmm_area(); out_free0: kfree(kvm_vmm_info); out: return r; } void kvm_arch_exit(void) { kvm_free_vmm_area(); kfree(kvm_vmm_info); kvm_vmm_info = NULL; } static void kvm_ia64_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) { int i; long base; unsigned long n; unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base + offsetof(struct kvm_vm_data, kvm_mem_dirty_log)); n = kvm_dirty_bitmap_bytes(memslot); base = memslot->base_gfn / BITS_PER_LONG; spin_lock(&kvm->arch.dirty_log_lock); for (i = 0; i < n/sizeof(long); ++i) { memslot->dirty_bitmap[i] = dirty_bitmap[base + i]; dirty_bitmap[base + i] = 0; } spin_unlock(&kvm->arch.dirty_log_lock); } int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { int r; unsigned long n; struct kvm_memory_slot *memslot; int is_dirty = 0; mutex_lock(&kvm->slots_lock); r = -EINVAL; if (log->slot >= KVM_MEMORY_SLOTS) goto out; memslot = id_to_memslot(kvm->memslots, log->slot); r = -ENOENT; if (!memslot->dirty_bitmap) goto out; kvm_ia64_sync_dirty_log(kvm, memslot); r = kvm_get_dirty_log(kvm, log, &is_dirty); if (r) goto out; /* If nothing is dirty, don't bother messing with page tables. */ if (is_dirty) { kvm_flush_remote_tlbs(kvm); n = kvm_dirty_bitmap_bytes(memslot); memset(memslot->dirty_bitmap, 0, n); } r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } int kvm_arch_hardware_setup(void) { return 0; } void kvm_arch_hardware_unsetup(void) { } int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq) { return __apic_accept_irq(vcpu, irq->vector); } int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest) { return apic->vcpu->vcpu_id == dest; } int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda) { return 0; } int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) { return vcpu1->arch.xtp - vcpu2->arch.xtp; } int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, int short_hand, int dest, int dest_mode) { struct kvm_lapic *target = vcpu->arch.apic; return (dest_mode == 0) ? kvm_apic_match_physical_addr(target, dest) : kvm_apic_match_logical_addr(target, dest); } static int find_highest_bits(int *dat) { u32 bits, bitnum; int i; /* loop for all 256 bits */ for (i = 7; i >= 0 ; i--) { bits = dat[i]; if (bits) { bitnum = fls(bits); return i * 32 + bitnum - 1; } } return -1; } int kvm_highest_pending_irq(struct kvm_vcpu *vcpu) { struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd); if (vpd->irr[0] & (1UL << NMI_VECTOR)) return NMI_VECTOR; if (vpd->irr[0] & (1UL << ExtINT_VECTOR)) return ExtINT_VECTOR; return find_highest_bits((int *)&vpd->irr[0]); } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return vcpu->arch.timer_fired; } int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) || (kvm_highest_pending_irq(vcpu) != -1); } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { return (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests)); } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { mp_state->mp_state = vcpu->arch.mp_state; return 0; } static int vcpu_reset(struct kvm_vcpu *vcpu) { int r; long psr; local_irq_save(psr); r = kvm_insert_vmm_mapping(vcpu); local_irq_restore(psr); if (r) goto fail; vcpu->arch.launched = 0; kvm_arch_vcpu_uninit(vcpu); r = kvm_arch_vcpu_init(vcpu); if (r) goto fail; kvm_purge_vmm_mapping(vcpu); r = 0; fail: return r; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { int r = 0; vcpu->arch.mp_state = mp_state->mp_state; if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) r = vcpu_reset(vcpu); return r; }