/* * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Rafał Miłecki * Alex Deucher */ #include "drmP.h" #include "radeon.h" #define RADEON_IDLE_LOOP_MS 100 #define RADEON_RECLOCK_DELAY_MS 200 static void radeon_pm_set_clocks_locked(struct radeon_device *rdev); static void radeon_pm_set_clocks(struct radeon_device *rdev); static void radeon_pm_reclock_work_handler(struct work_struct *work); static void radeon_pm_idle_work_handler(struct work_struct *work); static int radeon_debugfs_pm_init(struct radeon_device *rdev); static const char *pm_state_names[4] = { "PM_STATE_DISABLED", "PM_STATE_MINIMUM", "PM_STATE_PAUSED", "PM_STATE_ACTIVE" }; static const char *pm_state_types[5] = { "Default", "Powersave", "Battery", "Balanced", "Performance", }; static void radeon_print_power_mode_info(struct radeon_device *rdev) { int i, j; bool is_default; DRM_INFO("%d Power State(s)\n", rdev->pm.num_power_states); for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.default_power_state == &rdev->pm.power_state[i]) is_default = true; else is_default = false; DRM_INFO("State %d %s %s\n", i, pm_state_types[rdev->pm.power_state[i].type], is_default ? "(default)" : ""); if ((rdev->flags & RADEON_IS_PCIE) && !(rdev->flags & RADEON_IS_IGP)) DRM_INFO("\t%d PCIE Lanes\n", rdev->pm.power_state[i].non_clock_info.pcie_lanes); DRM_INFO("\t%d Clock Mode(s)\n", rdev->pm.power_state[i].num_clock_modes); for (j = 0; j < rdev->pm.power_state[i].num_clock_modes; j++) { if (rdev->flags & RADEON_IS_IGP) DRM_INFO("\t\t%d engine: %d\n", j, rdev->pm.power_state[i].clock_info[j].sclk * 10); else DRM_INFO("\t\t%d engine/memory: %d/%d\n", j, rdev->pm.power_state[i].clock_info[j].sclk * 10, rdev->pm.power_state[i].clock_info[j].mclk * 10); } } } static struct radeon_power_state * radeon_pick_power_state(struct radeon_device *rdev, enum radeon_pm_state_type type) { int i; struct radeon_power_state *power_state = NULL; switch (type) { case POWER_STATE_TYPE_DEFAULT: default: return rdev->pm.default_power_state; case POWER_STATE_TYPE_POWERSAVE: for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.power_state[i].type == POWER_STATE_TYPE_POWERSAVE) { power_state = &rdev->pm.power_state[i]; break; } } if (power_state == NULL) { for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.power_state[i].type == POWER_STATE_TYPE_BATTERY) { power_state = &rdev->pm.power_state[i]; break; } } } break; case POWER_STATE_TYPE_BATTERY: for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.power_state[i].type == POWER_STATE_TYPE_BATTERY) { power_state = &rdev->pm.power_state[i]; break; } } if (power_state == NULL) { for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.power_state[i].type == POWER_STATE_TYPE_POWERSAVE) { power_state = &rdev->pm.power_state[i]; break; } } } break; case POWER_STATE_TYPE_BALANCED: case POWER_STATE_TYPE_PERFORMANCE: for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.power_state[i].type == type) { power_state = &rdev->pm.power_state[i]; break; } } break; } if (power_state == NULL) return rdev->pm.default_power_state; return power_state; } static struct radeon_pm_clock_info * radeon_pick_clock_mode(struct radeon_device *rdev, struct radeon_power_state *power_state, enum radeon_pm_clock_mode_type type) { switch (type) { case POWER_MODE_TYPE_DEFAULT: default: return power_state->default_clock_mode; case POWER_MODE_TYPE_LOW: return &power_state->clock_info[0]; case POWER_MODE_TYPE_MID: if (power_state->num_clock_modes > 2) return &power_state->clock_info[1]; else return &power_state->clock_info[0]; break; case POWER_MODE_TYPE_HIGH: return &power_state->clock_info[power_state->num_clock_modes - 1]; } } static void radeon_get_power_state(struct radeon_device *rdev, enum radeon_pm_action action) { switch (action) { case PM_ACTION_NONE: default: rdev->pm.requested_power_state = rdev->pm.current_power_state; rdev->pm.requested_power_state->requested_clock_mode = rdev->pm.requested_power_state->current_clock_mode; break; case PM_ACTION_MINIMUM: rdev->pm.requested_power_state = radeon_pick_power_state(rdev, POWER_STATE_TYPE_BATTERY); rdev->pm.requested_power_state->requested_clock_mode = radeon_pick_clock_mode(rdev, rdev->pm.requested_power_state, POWER_MODE_TYPE_LOW); break; case PM_ACTION_DOWNCLOCK: rdev->pm.requested_power_state = radeon_pick_power_state(rdev, POWER_STATE_TYPE_POWERSAVE); rdev->pm.requested_power_state->requested_clock_mode = radeon_pick_clock_mode(rdev, rdev->pm.requested_power_state, POWER_MODE_TYPE_MID); break; case PM_ACTION_UPCLOCK: rdev->pm.requested_power_state = radeon_pick_power_state(rdev, POWER_STATE_TYPE_DEFAULT); rdev->pm.requested_power_state->requested_clock_mode = radeon_pick_clock_mode(rdev, rdev->pm.requested_power_state, POWER_MODE_TYPE_HIGH); break; } DRM_INFO("Requested: e: %d m: %d p: %d\n", rdev->pm.requested_power_state->requested_clock_mode->sclk, rdev->pm.requested_power_state->requested_clock_mode->mclk, rdev->pm.requested_power_state->non_clock_info.pcie_lanes); } static void radeon_set_power_state(struct radeon_device *rdev) { if (rdev->pm.requested_power_state == rdev->pm.current_power_state) return; DRM_INFO("Setting: e: %d m: %d p: %d\n", rdev->pm.requested_power_state->requested_clock_mode->sclk, rdev->pm.requested_power_state->requested_clock_mode->mclk, rdev->pm.requested_power_state->non_clock_info.pcie_lanes); /* set pcie lanes */ /* set voltage */ /* set engine clock */ radeon_set_engine_clock(rdev, rdev->pm.requested_power_state->requested_clock_mode->sclk); /* set memory clock */ rdev->pm.current_power_state = rdev->pm.requested_power_state; } int radeon_pm_init(struct radeon_device *rdev) { rdev->pm.state = PM_STATE_DISABLED; rdev->pm.planned_action = PM_ACTION_NONE; rdev->pm.downclocked = false; rdev->pm.vblank_callback = false; if (rdev->bios) { if (rdev->is_atom_bios) radeon_atombios_get_power_modes(rdev); else radeon_combios_get_power_modes(rdev); radeon_print_power_mode_info(rdev); } if (radeon_debugfs_pm_init(rdev)) { DRM_ERROR("Failed to register debugfs file for PM!\n"); } INIT_WORK(&rdev->pm.reclock_work, radeon_pm_reclock_work_handler); INIT_DELAYED_WORK(&rdev->pm.idle_work, radeon_pm_idle_work_handler); if (radeon_dynpm != -1 && radeon_dynpm) { rdev->pm.state = PM_STATE_PAUSED; DRM_INFO("radeon: dynamic power management enabled\n"); } DRM_INFO("radeon: power management initialized\n"); return 0; } void radeon_pm_compute_clocks(struct radeon_device *rdev) { struct drm_device *ddev = rdev->ddev; struct drm_connector *connector; struct radeon_crtc *radeon_crtc; int count = 0; if (rdev->pm.state == PM_STATE_DISABLED) return; mutex_lock(&rdev->pm.mutex); rdev->pm.active_crtcs = 0; list_for_each_entry(connector, &ddev->mode_config.connector_list, head) { if (connector->encoder && connector->dpms != DRM_MODE_DPMS_OFF) { radeon_crtc = to_radeon_crtc(connector->encoder->crtc); rdev->pm.active_crtcs |= (1 << radeon_crtc->crtc_id); ++count; } } if (count > 1) { if (rdev->pm.state == PM_STATE_ACTIVE) { wait_queue_head_t wait; init_waitqueue_head(&wait); cancel_delayed_work(&rdev->pm.idle_work); rdev->pm.state = PM_STATE_PAUSED; rdev->pm.planned_action = PM_ACTION_UPCLOCK; rdev->pm.vblank_callback = true; mutex_unlock(&rdev->pm.mutex); wait_event_timeout(wait, !rdev->pm.downclocked, msecs_to_jiffies(300)); if (!rdev->pm.downclocked) radeon_pm_set_clocks(rdev); DRM_DEBUG("radeon: dynamic power management deactivated\n"); } else { mutex_unlock(&rdev->pm.mutex); } } else if (count == 1) { /* TODO: Increase clocks if needed for current mode */ if (rdev->pm.state == PM_STATE_MINIMUM) { rdev->pm.state = PM_STATE_ACTIVE; rdev->pm.planned_action = PM_ACTION_UPCLOCK; radeon_pm_set_clocks_locked(rdev); queue_delayed_work(rdev->wq, &rdev->pm.idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); } else if (rdev->pm.state == PM_STATE_PAUSED) { rdev->pm.state = PM_STATE_ACTIVE; queue_delayed_work(rdev->wq, &rdev->pm.idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); DRM_DEBUG("radeon: dynamic power management activated\n"); } mutex_unlock(&rdev->pm.mutex); } else { /* count == 0 */ if (rdev->pm.state != PM_STATE_MINIMUM) { cancel_delayed_work(&rdev->pm.idle_work); rdev->pm.state = PM_STATE_MINIMUM; rdev->pm.planned_action = PM_ACTION_MINIMUM; radeon_pm_set_clocks_locked(rdev); } mutex_unlock(&rdev->pm.mutex); } } static void radeon_pm_set_clocks_locked(struct radeon_device *rdev) { /*radeon_fence_wait_last(rdev);*/ switch (rdev->pm.planned_action) { case PM_ACTION_UPCLOCK: radeon_get_power_state(rdev, PM_ACTION_UPCLOCK); rdev->pm.downclocked = false; break; case PM_ACTION_DOWNCLOCK: radeon_get_power_state(rdev, PM_ACTION_DOWNCLOCK); rdev->pm.downclocked = true; break; case PM_ACTION_MINIMUM: radeon_get_power_state(rdev, PM_ACTION_MINIMUM); break; case PM_ACTION_NONE: radeon_get_power_state(rdev, PM_ACTION_NONE); DRM_ERROR("%s: PM_ACTION_NONE\n", __func__); break; } radeon_set_power_state(rdev); rdev->pm.planned_action = PM_ACTION_NONE; } static void radeon_pm_set_clocks(struct radeon_device *rdev) { mutex_lock(&rdev->pm.mutex); /* new VBLANK irq may come before handling previous one */ if (rdev->pm.vblank_callback) { mutex_lock(&rdev->cp.mutex); if (rdev->pm.req_vblank & (1 << 0)) { rdev->pm.req_vblank &= ~(1 << 0); drm_vblank_put(rdev->ddev, 0); } if (rdev->pm.req_vblank & (1 << 1)) { rdev->pm.req_vblank &= ~(1 << 1); drm_vblank_put(rdev->ddev, 1); } rdev->pm.vblank_callback = false; radeon_pm_set_clocks_locked(rdev); mutex_unlock(&rdev->cp.mutex); } mutex_unlock(&rdev->pm.mutex); } static void radeon_pm_reclock_work_handler(struct work_struct *work) { struct radeon_device *rdev; rdev = container_of(work, struct radeon_device, pm.reclock_work); radeon_pm_set_clocks(rdev); } static void radeon_pm_idle_work_handler(struct work_struct *work) { struct radeon_device *rdev; rdev = container_of(work, struct radeon_device, pm.idle_work.work); mutex_lock(&rdev->pm.mutex); if (rdev->pm.state == PM_STATE_ACTIVE && !rdev->pm.vblank_callback) { unsigned long irq_flags; int not_processed = 0; read_lock_irqsave(&rdev->fence_drv.lock, irq_flags); if (!list_empty(&rdev->fence_drv.emited)) { struct list_head *ptr; list_for_each(ptr, &rdev->fence_drv.emited) { /* count up to 3, that's enought info */ if (++not_processed >= 3) break; } } read_unlock_irqrestore(&rdev->fence_drv.lock, irq_flags); if (not_processed >= 3) { /* should upclock */ if (rdev->pm.planned_action == PM_ACTION_DOWNCLOCK) { rdev->pm.planned_action = PM_ACTION_NONE; } else if (rdev->pm.planned_action == PM_ACTION_NONE && rdev->pm.downclocked) { rdev->pm.planned_action = PM_ACTION_UPCLOCK; rdev->pm.action_timeout = jiffies + msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS); } } else if (not_processed == 0) { /* should downclock */ if (rdev->pm.planned_action == PM_ACTION_UPCLOCK) { rdev->pm.planned_action = PM_ACTION_NONE; } else if (rdev->pm.planned_action == PM_ACTION_NONE && !rdev->pm.downclocked) { rdev->pm.planned_action = PM_ACTION_DOWNCLOCK; rdev->pm.action_timeout = jiffies + msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS); } } if (rdev->pm.planned_action != PM_ACTION_NONE && jiffies > rdev->pm.action_timeout) { if (rdev->pm.active_crtcs & (1 << 0)) { rdev->pm.req_vblank |= (1 << 0); drm_vblank_get(rdev->ddev, 0); } if (rdev->pm.active_crtcs & (1 << 1)) { rdev->pm.req_vblank |= (1 << 1); drm_vblank_get(rdev->ddev, 1); } rdev->pm.vblank_callback = true; } } mutex_unlock(&rdev->pm.mutex); queue_delayed_work(rdev->wq, &rdev->pm.idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int radeon_debugfs_pm_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; seq_printf(m, "state: %s\n", pm_state_names[rdev->pm.state]); seq_printf(m, "default engine clock: %u0 kHz\n", rdev->clock.default_sclk); seq_printf(m, "current engine clock: %u0 kHz\n", radeon_get_engine_clock(rdev)); seq_printf(m, "default memory clock: %u0 kHz\n", rdev->clock.default_mclk); if (rdev->asic->get_memory_clock) seq_printf(m, "current memory clock: %u0 kHz\n", radeon_get_memory_clock(rdev)); return 0; } static struct drm_info_list radeon_pm_info_list[] = { {"radeon_pm_info", radeon_debugfs_pm_info, 0, NULL}, }; #endif static int radeon_debugfs_pm_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, radeon_pm_info_list, ARRAY_SIZE(radeon_pm_info_list)); #else return 0; #endif }