/* * Copyright (C) STRATO AG 2011. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ /* * This module can be used to catch cases when the btrfs kernel * code executes write requests to the disk that bring the file * system in an inconsistent state. In such a state, a power-loss * or kernel panic event would cause that the data on disk is * lost or at least damaged. * * Code is added that examines all block write requests during * runtime (including writes of the super block). Three rules * are verified and an error is printed on violation of the * rules: * 1. It is not allowed to write a disk block which is * currently referenced by the super block (either directly * or indirectly). * 2. When a super block is written, it is verified that all * referenced (directly or indirectly) blocks fulfill the * following requirements: * 2a. All referenced blocks have either been present when * the file system was mounted, (i.e., they have been * referenced by the super block) or they have been * written since then and the write completion callback * was called and a FLUSH request to the device where * these blocks are located was received and completed. * 2b. All referenced blocks need to have a generation * number which is equal to the parent's number. * * One issue that was found using this module was that the log * tree on disk became temporarily corrupted because disk blocks * that had been in use for the log tree had been freed and * reused too early, while being referenced by the written super * block. * * The search term in the kernel log that can be used to filter * on the existence of detected integrity issues is * "btrfs: attempt". * * The integrity check is enabled via mount options. These * mount options are only supported if the integrity check * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY. * * Example #1, apply integrity checks to all metadata: * mount /dev/sdb1 /mnt -o check_int * * Example #2, apply integrity checks to all metadata and * to data extents: * mount /dev/sdb1 /mnt -o check_int_data * * Example #3, apply integrity checks to all metadata and dump * the tree that the super block references to kernel messages * each time after a super block was written: * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263 * * If the integrity check tool is included and activated in * the mount options, plenty of kernel memory is used, and * plenty of additional CPU cycles are spent. Enabling this * functionality is not intended for normal use. In most * cases, unless you are a btrfs developer who needs to verify * the integrity of (super)-block write requests, do not * enable the config option BTRFS_FS_CHECK_INTEGRITY to * include and compile the integrity check tool. */ #include <linux/sched.h> #include <linux/slab.h> #include <linux/buffer_head.h> #include <linux/mutex.h> #include <linux/crc32c.h> #include <linux/genhd.h> #include <linux/blkdev.h> #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "extent_io.h" #include "disk-io.h" #include "volumes.h" #include "print-tree.h" #include "locking.h" #include "check-integrity.h" #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters, * excluding " [...]" */ #define BTRFSIC_BLOCK_SIZE PAGE_SIZE #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1) /* * The definition of the bitmask fields for the print_mask. * They are specified with the mount option check_integrity_print_mask. */ #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000 struct btrfsic_dev_state; struct btrfsic_state; struct btrfsic_block { u32 magic_num; /* only used for debug purposes */ unsigned int is_metadata:1; /* if it is meta-data, not data-data */ unsigned int is_superblock:1; /* if it is one of the superblocks */ unsigned int is_iodone:1; /* if is done by lower subsystem */ unsigned int iodone_w_error:1; /* error was indicated to endio */ unsigned int never_written:1; /* block was added because it was * referenced, not because it was * written */ unsigned int mirror_num:2; /* large enough to hold * BTRFS_SUPER_MIRROR_MAX */ struct btrfsic_dev_state *dev_state; u64 dev_bytenr; /* key, physical byte num on disk */ u64 logical_bytenr; /* logical byte num on disk */ u64 generation; struct btrfs_disk_key disk_key; /* extra info to print in case of * issues, will not always be correct */ struct list_head collision_resolving_node; /* list node */ struct list_head all_blocks_node; /* list node */ /* the following two lists contain block_link items */ struct list_head ref_to_list; /* list */ struct list_head ref_from_list; /* list */ struct btrfsic_block *next_in_same_bio; void *orig_bio_bh_private; union { bio_end_io_t *bio; bh_end_io_t *bh; } orig_bio_bh_end_io; int submit_bio_bh_rw; u64 flush_gen; /* only valid if !never_written */ }; /* * Elements of this type are allocated dynamically and required because * each block object can refer to and can be ref from multiple blocks. * The key to lookup them in the hashtable is the dev_bytenr of * the block ref to plus the one from the block refered from. * The fact that they are searchable via a hashtable and that a * ref_cnt is maintained is not required for the btrfs integrity * check algorithm itself, it is only used to make the output more * beautiful in case that an error is detected (an error is defined * as a write operation to a block while that block is still referenced). */ struct btrfsic_block_link { u32 magic_num; /* only used for debug purposes */ u32 ref_cnt; struct list_head node_ref_to; /* list node */ struct list_head node_ref_from; /* list node */ struct list_head collision_resolving_node; /* list node */ struct btrfsic_block *block_ref_to; struct btrfsic_block *block_ref_from; u64 parent_generation; }; struct btrfsic_dev_state { u32 magic_num; /* only used for debug purposes */ struct block_device *bdev; struct btrfsic_state *state; struct list_head collision_resolving_node; /* list node */ struct btrfsic_block dummy_block_for_bio_bh_flush; u64 last_flush_gen; char name[BDEVNAME_SIZE]; }; struct btrfsic_block_hashtable { struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE]; }; struct btrfsic_block_link_hashtable { struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE]; }; struct btrfsic_dev_state_hashtable { struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE]; }; struct btrfsic_block_data_ctx { u64 start; /* virtual bytenr */ u64 dev_bytenr; /* physical bytenr on device */ u32 len; struct btrfsic_dev_state *dev; char *data; struct buffer_head *bh; /* do not use if set to NULL */ }; /* This structure is used to implement recursion without occupying * any stack space, refer to btrfsic_process_metablock() */ struct btrfsic_stack_frame { u32 magic; u32 nr; int error; int i; int limit_nesting; int num_copies; int mirror_num; struct btrfsic_block *block; struct btrfsic_block_data_ctx *block_ctx; struct btrfsic_block *next_block; struct btrfsic_block_data_ctx next_block_ctx; struct btrfs_header *hdr; struct btrfsic_stack_frame *prev; }; /* Some state per mounted filesystem */ struct btrfsic_state { u32 print_mask; int include_extent_data; int csum_size; struct list_head all_blocks_list; struct btrfsic_block_hashtable block_hashtable; struct btrfsic_block_link_hashtable block_link_hashtable; struct btrfs_root *root; u64 max_superblock_generation; struct btrfsic_block *latest_superblock; }; static void btrfsic_block_init(struct btrfsic_block *b); static struct btrfsic_block *btrfsic_block_alloc(void); static void btrfsic_block_free(struct btrfsic_block *b); static void btrfsic_block_link_init(struct btrfsic_block_link *n); static struct btrfsic_block_link *btrfsic_block_link_alloc(void); static void btrfsic_block_link_free(struct btrfsic_block_link *n); static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds); static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void); static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds); static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h); static void btrfsic_block_hashtable_add(struct btrfsic_block *b, struct btrfsic_block_hashtable *h); static void btrfsic_block_hashtable_remove(struct btrfsic_block *b); static struct btrfsic_block *btrfsic_block_hashtable_lookup( struct block_device *bdev, u64 dev_bytenr, struct btrfsic_block_hashtable *h); static void btrfsic_block_link_hashtable_init( struct btrfsic_block_link_hashtable *h); static void btrfsic_block_link_hashtable_add( struct btrfsic_block_link *l, struct btrfsic_block_link_hashtable *h); static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l); static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( struct block_device *bdev_ref_to, u64 dev_bytenr_ref_to, struct block_device *bdev_ref_from, u64 dev_bytenr_ref_from, struct btrfsic_block_link_hashtable *h); static void btrfsic_dev_state_hashtable_init( struct btrfsic_dev_state_hashtable *h); static void btrfsic_dev_state_hashtable_add( struct btrfsic_dev_state *ds, struct btrfsic_dev_state_hashtable *h); static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds); static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( struct block_device *bdev, struct btrfsic_dev_state_hashtable *h); static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void); static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf); static int btrfsic_process_superblock(struct btrfsic_state *state, struct btrfs_fs_devices *fs_devices); static int btrfsic_process_metablock(struct btrfsic_state *state, struct btrfsic_block *block, struct btrfsic_block_data_ctx *block_ctx, struct btrfs_header *hdr, int limit_nesting, int force_iodone_flag); static int btrfsic_create_link_to_next_block( struct btrfsic_state *state, struct btrfsic_block *block, struct btrfsic_block_data_ctx *block_ctx, u64 next_bytenr, int limit_nesting, struct btrfsic_block_data_ctx *next_block_ctx, struct btrfsic_block **next_blockp, int force_iodone_flag, int *num_copiesp, int *mirror_nump, struct btrfs_disk_key *disk_key, u64 parent_generation); static int btrfsic_handle_extent_data(struct btrfsic_state *state, struct btrfsic_block *block, struct btrfsic_block_data_ctx *block_ctx, u32 item_offset, int force_iodone_flag); static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, struct btrfsic_block_data_ctx *block_ctx_out, int mirror_num); static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr, u32 len, struct block_device *bdev, struct btrfsic_block_data_ctx *block_ctx_out); static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx); static int btrfsic_read_block(struct btrfsic_state *state, struct btrfsic_block_data_ctx *block_ctx); static void btrfsic_dump_database(struct btrfsic_state *state); static int btrfsic_test_for_metadata(struct btrfsic_state *state, const u8 *data, unsigned int size); static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, u64 dev_bytenr, u8 *mapped_data, unsigned int len, struct bio *bio, int *bio_is_patched, struct buffer_head *bh, int submit_bio_bh_rw); static int btrfsic_process_written_superblock( struct btrfsic_state *state, struct btrfsic_block *const block, struct btrfs_super_block *const super_hdr); static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status); static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate); static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state, const struct btrfsic_block *block, int recursion_level); static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, struct btrfsic_block *const block, int recursion_level); static void btrfsic_print_add_link(const struct btrfsic_state *state, const struct btrfsic_block_link *l); static void btrfsic_print_rem_link(const struct btrfsic_state *state, const struct btrfsic_block_link *l); static char btrfsic_get_block_type(const struct btrfsic_state *state, const struct btrfsic_block *block); static void btrfsic_dump_tree(const struct btrfsic_state *state); static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, const struct btrfsic_block *block, int indent_level); static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( struct btrfsic_state *state, struct btrfsic_block_data_ctx *next_block_ctx, struct btrfsic_block *next_block, struct btrfsic_block *from_block, u64 parent_generation); static struct btrfsic_block *btrfsic_block_lookup_or_add( struct btrfsic_state *state, struct btrfsic_block_data_ctx *block_ctx, const char *additional_string, int is_metadata, int is_iodone, int never_written, int mirror_num, int *was_created); static int btrfsic_process_superblock_dev_mirror( struct btrfsic_state *state, struct btrfsic_dev_state *dev_state, struct btrfs_device *device, int superblock_mirror_num, struct btrfsic_dev_state **selected_dev_state, struct btrfs_super_block *selected_super); static struct btrfsic_dev_state *btrfsic_dev_state_lookup( struct block_device *bdev); static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, u64 bytenr, struct btrfsic_dev_state *dev_state, u64 dev_bytenr, char *data); static struct mutex btrfsic_mutex; static int btrfsic_is_initialized; static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable; static void btrfsic_block_init(struct btrfsic_block *b) { b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER; b->dev_state = NULL; b->dev_bytenr = 0; b->logical_bytenr = 0; b->generation = BTRFSIC_GENERATION_UNKNOWN; b->disk_key.objectid = 0; b->disk_key.type = 0; b->disk_key.offset = 0; b->is_metadata = 0; b->is_superblock = 0; b->is_iodone = 0; b->iodone_w_error = 0; b->never_written = 0; b->mirror_num = 0; b->next_in_same_bio = NULL; b->orig_bio_bh_private = NULL; b->orig_bio_bh_end_io.bio = NULL; INIT_LIST_HEAD(&b->collision_resolving_node); INIT_LIST_HEAD(&b->all_blocks_node); INIT_LIST_HEAD(&b->ref_to_list); INIT_LIST_HEAD(&b->ref_from_list); b->submit_bio_bh_rw = 0; b->flush_gen = 0; } static struct btrfsic_block *btrfsic_block_alloc(void) { struct btrfsic_block *b; b = kzalloc(sizeof(*b), GFP_NOFS); if (NULL != b) btrfsic_block_init(b); return b; } static void btrfsic_block_free(struct btrfsic_block *b) { BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num)); kfree(b); } static void btrfsic_block_link_init(struct btrfsic_block_link *l) { l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER; l->ref_cnt = 1; INIT_LIST_HEAD(&l->node_ref_to); INIT_LIST_HEAD(&l->node_ref_from); INIT_LIST_HEAD(&l->collision_resolving_node); l->block_ref_to = NULL; l->block_ref_from = NULL; } static struct btrfsic_block_link *btrfsic_block_link_alloc(void) { struct btrfsic_block_link *l; l = kzalloc(sizeof(*l), GFP_NOFS); if (NULL != l) btrfsic_block_link_init(l); return l; } static void btrfsic_block_link_free(struct btrfsic_block_link *l) { BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num)); kfree(l); } static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds) { ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER; ds->bdev = NULL; ds->state = NULL; ds->name[0] = '\0'; INIT_LIST_HEAD(&ds->collision_resolving_node); ds->last_flush_gen = 0; btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush); ds->dummy_block_for_bio_bh_flush.is_iodone = 1; ds->dummy_block_for_bio_bh_flush.dev_state = ds; } static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void) { struct btrfsic_dev_state *ds; ds = kzalloc(sizeof(*ds), GFP_NOFS); if (NULL != ds) btrfsic_dev_state_init(ds); return ds; } static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds) { BUG_ON(!(NULL == ds || BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num)); kfree(ds); } static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h) { int i; for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++) INIT_LIST_HEAD(h->table + i); } static void btrfsic_block_hashtable_add(struct btrfsic_block *b, struct btrfsic_block_hashtable *h) { const unsigned int hashval = (((unsigned int)(b->dev_bytenr >> 16)) ^ ((unsigned int)((uintptr_t)b->dev_state->bdev))) & (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); list_add(&b->collision_resolving_node, h->table + hashval); } static void btrfsic_block_hashtable_remove(struct btrfsic_block *b) { list_del(&b->collision_resolving_node); } static struct btrfsic_block *btrfsic_block_hashtable_lookup( struct block_device *bdev, u64 dev_bytenr, struct btrfsic_block_hashtable *h) { const unsigned int hashval = (((unsigned int)(dev_bytenr >> 16)) ^ ((unsigned int)((uintptr_t)bdev))) & (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1); struct list_head *elem; list_for_each(elem, h->table + hashval) { struct btrfsic_block *const b = list_entry(elem, struct btrfsic_block, collision_resolving_node); if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr) return b; } return NULL; } static void btrfsic_block_link_hashtable_init( struct btrfsic_block_link_hashtable *h) { int i; for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++) INIT_LIST_HEAD(h->table + i); } static void btrfsic_block_link_hashtable_add( struct btrfsic_block_link *l, struct btrfsic_block_link_hashtable *h) { const unsigned int hashval = (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^ ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^ ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^ ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev))) & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); BUG_ON(NULL == l->block_ref_to); BUG_ON(NULL == l->block_ref_from); list_add(&l->collision_resolving_node, h->table + hashval); } static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l) { list_del(&l->collision_resolving_node); } static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup( struct block_device *bdev_ref_to, u64 dev_bytenr_ref_to, struct block_device *bdev_ref_from, u64 dev_bytenr_ref_from, struct btrfsic_block_link_hashtable *h) { const unsigned int hashval = (((unsigned int)(dev_bytenr_ref_to >> 16)) ^ ((unsigned int)(dev_bytenr_ref_from >> 16)) ^ ((unsigned int)((uintptr_t)bdev_ref_to)) ^ ((unsigned int)((uintptr_t)bdev_ref_from))) & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1); struct list_head *elem; list_for_each(elem, h->table + hashval) { struct btrfsic_block_link *const l = list_entry(elem, struct btrfsic_block_link, collision_resolving_node); BUG_ON(NULL == l->block_ref_to); BUG_ON(NULL == l->block_ref_from); if (l->block_ref_to->dev_state->bdev == bdev_ref_to && l->block_ref_to->dev_bytenr == dev_bytenr_ref_to && l->block_ref_from->dev_state->bdev == bdev_ref_from && l->block_ref_from->dev_bytenr == dev_bytenr_ref_from) return l; } return NULL; } static void btrfsic_dev_state_hashtable_init( struct btrfsic_dev_state_hashtable *h) { int i; for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++) INIT_LIST_HEAD(h->table + i); } static void btrfsic_dev_state_hashtable_add( struct btrfsic_dev_state *ds, struct btrfsic_dev_state_hashtable *h) { const unsigned int hashval = (((unsigned int)((uintptr_t)ds->bdev)) & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); list_add(&ds->collision_resolving_node, h->table + hashval); } static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds) { list_del(&ds->collision_resolving_node); } static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup( struct block_device *bdev, struct btrfsic_dev_state_hashtable *h) { const unsigned int hashval = (((unsigned int)((uintptr_t)bdev)) & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1)); struct list_head *elem; list_for_each(elem, h->table + hashval) { struct btrfsic_dev_state *const ds = list_entry(elem, struct btrfsic_dev_state, collision_resolving_node); if (ds->bdev == bdev) return ds; } return NULL; } static int btrfsic_process_superblock(struct btrfsic_state *state, struct btrfs_fs_devices *fs_devices) { int ret = 0; struct btrfs_super_block *selected_super; struct list_head *dev_head = &fs_devices->devices; struct btrfs_device *device; struct btrfsic_dev_state *selected_dev_state = NULL; int pass; BUG_ON(NULL == state); selected_super = kmalloc(sizeof(*selected_super), GFP_NOFS); if (NULL == selected_super) { printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); return -1; } list_for_each_entry(device, dev_head, dev_list) { int i; struct btrfsic_dev_state *dev_state; if (!device->bdev || !device->name) continue; dev_state = btrfsic_dev_state_lookup(device->bdev); BUG_ON(NULL == dev_state); for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { ret = btrfsic_process_superblock_dev_mirror( state, dev_state, device, i, &selected_dev_state, selected_super); if (0 != ret && 0 == i) { kfree(selected_super); return ret; } } } if (NULL == state->latest_superblock) { printk(KERN_INFO "btrfsic: no superblock found!\n"); kfree(selected_super); return -1; } state->csum_size = btrfs_super_csum_size(selected_super); for (pass = 0; pass < 3; pass++) { int num_copies; int mirror_num; u64 next_bytenr; switch (pass) { case 0: next_bytenr = btrfs_super_root(selected_super); if (state->print_mask & BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) printk(KERN_INFO "root@%llu\n", (unsigned long long)next_bytenr); break; case 1: next_bytenr = btrfs_super_chunk_root(selected_super); if (state->print_mask & BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) printk(KERN_INFO "chunk@%llu\n", (unsigned long long)next_bytenr); break; case 2: next_bytenr = btrfs_super_log_root(selected_super); if (0 == next_bytenr) continue; if (state->print_mask & BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) printk(KERN_INFO "log@%llu\n", (unsigned long long)next_bytenr); break; } num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree, next_bytenr, PAGE_SIZE); if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", (unsigned long long)next_bytenr, num_copies); for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { struct btrfsic_block *next_block; struct btrfsic_block_data_ctx tmp_next_block_ctx; struct btrfsic_block_link *l; struct btrfs_header *hdr; ret = btrfsic_map_block(state, next_bytenr, PAGE_SIZE, &tmp_next_block_ctx, mirror_num); if (ret) { printk(KERN_INFO "btrfsic:" " btrfsic_map_block(root @%llu," " mirror %d) failed!\n", (unsigned long long)next_bytenr, mirror_num); kfree(selected_super); return -1; } next_block = btrfsic_block_hashtable_lookup( tmp_next_block_ctx.dev->bdev, tmp_next_block_ctx.dev_bytenr, &state->block_hashtable); BUG_ON(NULL == next_block); l = btrfsic_block_link_hashtable_lookup( tmp_next_block_ctx.dev->bdev, tmp_next_block_ctx.dev_bytenr, state->latest_superblock->dev_state-> bdev, state->latest_superblock->dev_bytenr, &state->block_link_hashtable); BUG_ON(NULL == l); ret = btrfsic_read_block(state, &tmp_next_block_ctx); if (ret < (int)BTRFSIC_BLOCK_SIZE) { printk(KERN_INFO "btrfsic: read @logical %llu failed!\n", (unsigned long long) tmp_next_block_ctx.start); btrfsic_release_block_ctx(&tmp_next_block_ctx); kfree(selected_super); return -1; } hdr = (struct btrfs_header *)tmp_next_block_ctx.data; ret = btrfsic_process_metablock(state, next_block, &tmp_next_block_ctx, hdr, BTRFS_MAX_LEVEL + 3, 1); btrfsic_release_block_ctx(&tmp_next_block_ctx); } } kfree(selected_super); return ret; } static int btrfsic_process_superblock_dev_mirror( struct btrfsic_state *state, struct btrfsic_dev_state *dev_state, struct btrfs_device *device, int superblock_mirror_num, struct btrfsic_dev_state **selected_dev_state, struct btrfs_super_block *selected_super) { struct btrfs_super_block *super_tmp; u64 dev_bytenr; struct buffer_head *bh; struct btrfsic_block *superblock_tmp; int pass; struct block_device *const superblock_bdev = device->bdev; /* super block bytenr is always the unmapped device bytenr */ dev_bytenr = btrfs_sb_offset(superblock_mirror_num); bh = __bread(superblock_bdev, dev_bytenr / 4096, 4096); if (NULL == bh) return -1; super_tmp = (struct btrfs_super_block *) (bh->b_data + (dev_bytenr & 4095)); if (btrfs_super_bytenr(super_tmp) != dev_bytenr || strncmp((char *)(&(super_tmp->magic)), BTRFS_MAGIC, sizeof(super_tmp->magic)) || memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE)) { brelse(bh); return 0; } superblock_tmp = btrfsic_block_hashtable_lookup(superblock_bdev, dev_bytenr, &state->block_hashtable); if (NULL == superblock_tmp) { superblock_tmp = btrfsic_block_alloc(); if (NULL == superblock_tmp) { printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); brelse(bh); return -1; } /* for superblock, only the dev_bytenr makes sense */ superblock_tmp->dev_bytenr = dev_bytenr; superblock_tmp->dev_state = dev_state; superblock_tmp->logical_bytenr = dev_bytenr; superblock_tmp->generation = btrfs_super_generation(super_tmp); superblock_tmp->is_metadata = 1; superblock_tmp->is_superblock = 1; superblock_tmp->is_iodone = 1; superblock_tmp->never_written = 0; superblock_tmp->mirror_num = 1 + superblock_mirror_num; if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) printk(KERN_INFO "New initial S-block (bdev %p, %s)" " @%llu (%s/%llu/%d)\n", superblock_bdev, device->name, (unsigned long long)dev_bytenr, dev_state->name, (unsigned long long)dev_bytenr, superblock_mirror_num); list_add(&superblock_tmp->all_blocks_node, &state->all_blocks_list); btrfsic_block_hashtable_add(superblock_tmp, &state->block_hashtable); } /* select the one with the highest generation field */ if (btrfs_super_generation(super_tmp) > state->max_superblock_generation || 0 == state->max_superblock_generation) { memcpy(selected_super, super_tmp, sizeof(*selected_super)); *selected_dev_state = dev_state; state->max_superblock_generation = btrfs_super_generation(super_tmp); state->latest_superblock = superblock_tmp; } for (pass = 0; pass < 3; pass++) { u64 next_bytenr; int num_copies; int mirror_num; const char *additional_string = NULL; struct btrfs_disk_key tmp_disk_key; tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY; tmp_disk_key.offset = 0; switch (pass) { case 0: tmp_disk_key.objectid = cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID); additional_string = "initial root "; next_bytenr = btrfs_super_root(super_tmp); break; case 1: tmp_disk_key.objectid = cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID); additional_string = "initial chunk "; next_bytenr = btrfs_super_chunk_root(super_tmp); break; case 2: tmp_disk_key.objectid = cpu_to_le64(BTRFS_TREE_LOG_OBJECTID); additional_string = "initial log "; next_bytenr = btrfs_super_log_root(super_tmp); if (0 == next_bytenr) continue; break; } num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree, next_bytenr, PAGE_SIZE); if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", (unsigned long long)next_bytenr, num_copies); for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { struct btrfsic_block *next_block; struct btrfsic_block_data_ctx tmp_next_block_ctx; struct btrfsic_block_link *l; if (btrfsic_map_block(state, next_bytenr, PAGE_SIZE, &tmp_next_block_ctx, mirror_num)) { printk(KERN_INFO "btrfsic: btrfsic_map_block(" "bytenr @%llu, mirror %d) failed!\n", (unsigned long long)next_bytenr, mirror_num); brelse(bh); return -1; } next_block = btrfsic_block_lookup_or_add( state, &tmp_next_block_ctx, additional_string, 1, 1, 0, mirror_num, NULL); if (NULL == next_block) { btrfsic_release_block_ctx(&tmp_next_block_ctx); brelse(bh); return -1; } next_block->disk_key = tmp_disk_key; next_block->generation = BTRFSIC_GENERATION_UNKNOWN; l = btrfsic_block_link_lookup_or_add( state, &tmp_next_block_ctx, next_block, superblock_tmp, BTRFSIC_GENERATION_UNKNOWN); btrfsic_release_block_ctx(&tmp_next_block_ctx); if (NULL == l) { brelse(bh); return -1; } } } if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES) btrfsic_dump_tree_sub(state, superblock_tmp, 0); brelse(bh); return 0; } static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void) { struct btrfsic_stack_frame *sf; sf = kzalloc(sizeof(*sf), GFP_NOFS); if (NULL == sf) printk(KERN_INFO "btrfsic: alloc memory failed!\n"); else sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER; return sf; } static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf) { BUG_ON(!(NULL == sf || BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic)); kfree(sf); } static int btrfsic_process_metablock( struct btrfsic_state *state, struct btrfsic_block *const first_block, struct btrfsic_block_data_ctx *const first_block_ctx, struct btrfs_header *const first_hdr, int first_limit_nesting, int force_iodone_flag) { struct btrfsic_stack_frame initial_stack_frame = { 0 }; struct btrfsic_stack_frame *sf; struct btrfsic_stack_frame *next_stack; sf = &initial_stack_frame; sf->error = 0; sf->i = -1; sf->limit_nesting = first_limit_nesting; sf->block = first_block; sf->block_ctx = first_block_ctx; sf->next_block = NULL; sf->hdr = first_hdr; sf->prev = NULL; continue_with_new_stack_frame: sf->block->generation = le64_to_cpu(sf->hdr->generation); if (0 == sf->hdr->level) { struct btrfs_leaf *const leafhdr = (struct btrfs_leaf *)sf->hdr; if (-1 == sf->i) { sf->nr = le32_to_cpu(leafhdr->header.nritems); if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "leaf %llu items %d generation %llu" " owner %llu\n", (unsigned long long) sf->block_ctx->start, sf->nr, (unsigned long long) le64_to_cpu(leafhdr->header.generation), (unsigned long long) le64_to_cpu(leafhdr->header.owner)); } continue_with_current_leaf_stack_frame: if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { sf->i++; sf->num_copies = 0; } if (sf->i < sf->nr) { struct btrfs_item *disk_item = leafhdr->items + sf->i; struct btrfs_disk_key *disk_key = &disk_item->key; u8 type; const u32 item_offset = le32_to_cpu(disk_item->offset); type = disk_key->type; if (BTRFS_ROOT_ITEM_KEY == type) { const struct btrfs_root_item *const root_item = (struct btrfs_root_item *) (sf->block_ctx->data + offsetof(struct btrfs_leaf, items) + item_offset); const u64 next_bytenr = le64_to_cpu(root_item->bytenr); sf->error = btrfsic_create_link_to_next_block( state, sf->block, sf->block_ctx, next_bytenr, sf->limit_nesting, &sf->next_block_ctx, &sf->next_block, force_iodone_flag, &sf->num_copies, &sf->mirror_num, disk_key, le64_to_cpu(root_item-> generation)); if (sf->error) goto one_stack_frame_backwards; if (NULL != sf->next_block) { struct btrfs_header *const next_hdr = (struct btrfs_header *) sf->next_block_ctx.data; next_stack = btrfsic_stack_frame_alloc(); if (NULL == next_stack) { btrfsic_release_block_ctx( &sf-> next_block_ctx); goto one_stack_frame_backwards; } next_stack->i = -1; next_stack->block = sf->next_block; next_stack->block_ctx = &sf->next_block_ctx; next_stack->next_block = NULL; next_stack->hdr = next_hdr; next_stack->limit_nesting = sf->limit_nesting - 1; next_stack->prev = sf; sf = next_stack; goto continue_with_new_stack_frame; } } else if (BTRFS_EXTENT_DATA_KEY == type && state->include_extent_data) { sf->error = btrfsic_handle_extent_data( state, sf->block, sf->block_ctx, item_offset, force_iodone_flag); if (sf->error) goto one_stack_frame_backwards; } goto continue_with_current_leaf_stack_frame; } } else { struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr; if (-1 == sf->i) { sf->nr = le32_to_cpu(nodehdr->header.nritems); if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "node %llu level %d items %d" " generation %llu owner %llu\n", (unsigned long long) sf->block_ctx->start, nodehdr->header.level, sf->nr, (unsigned long long) le64_to_cpu(nodehdr->header.generation), (unsigned long long) le64_to_cpu(nodehdr->header.owner)); } continue_with_current_node_stack_frame: if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) { sf->i++; sf->num_copies = 0; } if (sf->i < sf->nr) { struct btrfs_key_ptr *disk_key_ptr = nodehdr->ptrs + sf->i; const u64 next_bytenr = le64_to_cpu(disk_key_ptr->blockptr); sf->error = btrfsic_create_link_to_next_block( state, sf->block, sf->block_ctx, next_bytenr, sf->limit_nesting, &sf->next_block_ctx, &sf->next_block, force_iodone_flag, &sf->num_copies, &sf->mirror_num, &disk_key_ptr->key, le64_to_cpu(disk_key_ptr->generation)); if (sf->error) goto one_stack_frame_backwards; if (NULL != sf->next_block) { struct btrfs_header *const next_hdr = (struct btrfs_header *) sf->next_block_ctx.data; next_stack = btrfsic_stack_frame_alloc(); if (NULL == next_stack) goto one_stack_frame_backwards; next_stack->i = -1; next_stack->block = sf->next_block; next_stack->block_ctx = &sf->next_block_ctx; next_stack->next_block = NULL; next_stack->hdr = next_hdr; next_stack->limit_nesting = sf->limit_nesting - 1; next_stack->prev = sf; sf = next_stack; goto continue_with_new_stack_frame; } goto continue_with_current_node_stack_frame; } } one_stack_frame_backwards: if (NULL != sf->prev) { struct btrfsic_stack_frame *const prev = sf->prev; /* the one for the initial block is freed in the caller */ btrfsic_release_block_ctx(sf->block_ctx); if (sf->error) { prev->error = sf->error; btrfsic_stack_frame_free(sf); sf = prev; goto one_stack_frame_backwards; } btrfsic_stack_frame_free(sf); sf = prev; goto continue_with_new_stack_frame; } else { BUG_ON(&initial_stack_frame != sf); } return sf->error; } static int btrfsic_create_link_to_next_block( struct btrfsic_state *state, struct btrfsic_block *block, struct btrfsic_block_data_ctx *block_ctx, u64 next_bytenr, int limit_nesting, struct btrfsic_block_data_ctx *next_block_ctx, struct btrfsic_block **next_blockp, int force_iodone_flag, int *num_copiesp, int *mirror_nump, struct btrfs_disk_key *disk_key, u64 parent_generation) { struct btrfsic_block *next_block = NULL; int ret; struct btrfsic_block_link *l; int did_alloc_block_link; int block_was_created; *next_blockp = NULL; if (0 == *num_copiesp) { *num_copiesp = btrfs_num_copies(&state->root->fs_info->mapping_tree, next_bytenr, PAGE_SIZE); if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", (unsigned long long)next_bytenr, *num_copiesp); *mirror_nump = 1; } if (*mirror_nump > *num_copiesp) return 0; if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "btrfsic_create_link_to_next_block(mirror_num=%d)\n", *mirror_nump); ret = btrfsic_map_block(state, next_bytenr, BTRFSIC_BLOCK_SIZE, next_block_ctx, *mirror_nump); if (ret) { printk(KERN_INFO "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n", (unsigned long long)next_bytenr, *mirror_nump); btrfsic_release_block_ctx(next_block_ctx); *next_blockp = NULL; return -1; } next_block = btrfsic_block_lookup_or_add(state, next_block_ctx, "referenced ", 1, force_iodone_flag, !force_iodone_flag, *mirror_nump, &block_was_created); if (NULL == next_block) { btrfsic_release_block_ctx(next_block_ctx); *next_blockp = NULL; return -1; } if (block_was_created) { l = NULL; next_block->generation = BTRFSIC_GENERATION_UNKNOWN; } else { if (next_block->logical_bytenr != next_bytenr && !(!next_block->is_metadata && 0 == next_block->logical_bytenr)) { printk(KERN_INFO "Referenced block @%llu (%s/%llu/%d)" " found in hash table, %c," " bytenr mismatch (!= stored %llu).\n", (unsigned long long)next_bytenr, next_block_ctx->dev->name, (unsigned long long)next_block_ctx->dev_bytenr, *mirror_nump, btrfsic_get_block_type(state, next_block), (unsigned long long)next_block->logical_bytenr); } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "Referenced block @%llu (%s/%llu/%d)" " found in hash table, %c.\n", (unsigned long long)next_bytenr, next_block_ctx->dev->name, (unsigned long long)next_block_ctx->dev_bytenr, *mirror_nump, btrfsic_get_block_type(state, next_block)); next_block->logical_bytenr = next_bytenr; next_block->mirror_num = *mirror_nump; l = btrfsic_block_link_hashtable_lookup( next_block_ctx->dev->bdev, next_block_ctx->dev_bytenr, block_ctx->dev->bdev, block_ctx->dev_bytenr, &state->block_link_hashtable); } next_block->disk_key = *disk_key; if (NULL == l) { l = btrfsic_block_link_alloc(); if (NULL == l) { printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); btrfsic_release_block_ctx(next_block_ctx); *next_blockp = NULL; return -1; } did_alloc_block_link = 1; l->block_ref_to = next_block; l->block_ref_from = block; l->ref_cnt = 1; l->parent_generation = parent_generation; if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) btrfsic_print_add_link(state, l); list_add(&l->node_ref_to, &block->ref_to_list); list_add(&l->node_ref_from, &next_block->ref_from_list); btrfsic_block_link_hashtable_add(l, &state->block_link_hashtable); } else { did_alloc_block_link = 0; if (0 == limit_nesting) { l->ref_cnt++; l->parent_generation = parent_generation; if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) btrfsic_print_add_link(state, l); } } if (limit_nesting > 0 && did_alloc_block_link) { ret = btrfsic_read_block(state, next_block_ctx); if (ret < (int)BTRFSIC_BLOCK_SIZE) { printk(KERN_INFO "btrfsic: read block @logical %llu failed!\n", (unsigned long long)next_bytenr); btrfsic_release_block_ctx(next_block_ctx); *next_blockp = NULL; return -1; } *next_blockp = next_block; } else { *next_blockp = NULL; } (*mirror_nump)++; return 0; } static int btrfsic_handle_extent_data( struct btrfsic_state *state, struct btrfsic_block *block, struct btrfsic_block_data_ctx *block_ctx, u32 item_offset, int force_iodone_flag) { int ret; struct btrfs_file_extent_item *file_extent_item = (struct btrfs_file_extent_item *)(block_ctx->data + offsetof(struct btrfs_leaf, items) + item_offset); u64 next_bytenr = le64_to_cpu(file_extent_item->disk_bytenr) + le64_to_cpu(file_extent_item->offset); u64 num_bytes = le64_to_cpu(file_extent_item->num_bytes); u64 generation = le64_to_cpu(file_extent_item->generation); struct btrfsic_block_link *l; if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu," " offset = %llu, num_bytes = %llu\n", file_extent_item->type, (unsigned long long) le64_to_cpu(file_extent_item->disk_bytenr), (unsigned long long) le64_to_cpu(file_extent_item->offset), (unsigned long long) le64_to_cpu(file_extent_item->num_bytes)); if (BTRFS_FILE_EXTENT_REG != file_extent_item->type || ((u64)0) == le64_to_cpu(file_extent_item->disk_bytenr)) return 0; while (num_bytes > 0) { u32 chunk_len; int num_copies; int mirror_num; if (num_bytes > BTRFSIC_BLOCK_SIZE) chunk_len = BTRFSIC_BLOCK_SIZE; else chunk_len = num_bytes; num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree, next_bytenr, PAGE_SIZE); if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", (unsigned long long)next_bytenr, num_copies); for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { struct btrfsic_block_data_ctx next_block_ctx; struct btrfsic_block *next_block; int block_was_created; if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "btrfsic_handle_extent_data(" "mirror_num=%d)\n", mirror_num); if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE) printk(KERN_INFO "\tdisk_bytenr = %llu, num_bytes %u\n", (unsigned long long)next_bytenr, chunk_len); ret = btrfsic_map_block(state, next_bytenr, chunk_len, &next_block_ctx, mirror_num); if (ret) { printk(KERN_INFO "btrfsic: btrfsic_map_block(@%llu," " mirror=%d) failed!\n", (unsigned long long)next_bytenr, mirror_num); return -1; } next_block = btrfsic_block_lookup_or_add( state, &next_block_ctx, "referenced ", 0, force_iodone_flag, !force_iodone_flag, mirror_num, &block_was_created); if (NULL == next_block) { printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); btrfsic_release_block_ctx(&next_block_ctx); return -1; } if (!block_was_created) { if (next_block->logical_bytenr != next_bytenr && !(!next_block->is_metadata && 0 == next_block->logical_bytenr)) { printk(KERN_INFO "Referenced block" " @%llu (%s/%llu/%d)" " found in hash table, D," " bytenr mismatch" " (!= stored %llu).\n", (unsigned long long)next_bytenr, next_block_ctx.dev->name, (unsigned long long) next_block_ctx.dev_bytenr, mirror_num, (unsigned long long) next_block->logical_bytenr); } next_block->logical_bytenr = next_bytenr; next_block->mirror_num = mirror_num; } l = btrfsic_block_link_lookup_or_add(state, &next_block_ctx, next_block, block, generation); btrfsic_release_block_ctx(&next_block_ctx); if (NULL == l) return -1; } next_bytenr += chunk_len; num_bytes -= chunk_len; } return 0; } static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len, struct btrfsic_block_data_ctx *block_ctx_out, int mirror_num) { int ret; u64 length; struct btrfs_bio *multi = NULL; struct btrfs_device *device; length = len; ret = btrfs_map_block(&state->root->fs_info->mapping_tree, READ, bytenr, &length, &multi, mirror_num); device = multi->stripes[0].dev; block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev); block_ctx_out->dev_bytenr = multi->stripes[0].physical; block_ctx_out->start = bytenr; block_ctx_out->len = len; block_ctx_out->data = NULL; block_ctx_out->bh = NULL; if (0 == ret) kfree(multi); if (NULL == block_ctx_out->dev) { ret = -ENXIO; printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n"); } return ret; } static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr, u32 len, struct block_device *bdev, struct btrfsic_block_data_ctx *block_ctx_out) { block_ctx_out->dev = btrfsic_dev_state_lookup(bdev); block_ctx_out->dev_bytenr = bytenr; block_ctx_out->start = bytenr; block_ctx_out->len = len; block_ctx_out->data = NULL; block_ctx_out->bh = NULL; if (NULL != block_ctx_out->dev) { return 0; } else { printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n"); return -ENXIO; } } static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx) { if (NULL != block_ctx->bh) { brelse(block_ctx->bh); block_ctx->bh = NULL; } } static int btrfsic_read_block(struct btrfsic_state *state, struct btrfsic_block_data_ctx *block_ctx) { block_ctx->bh = NULL; if (block_ctx->dev_bytenr & 4095) { printk(KERN_INFO "btrfsic: read_block() with unaligned bytenr %llu\n", (unsigned long long)block_ctx->dev_bytenr); return -1; } if (block_ctx->len > 4096) { printk(KERN_INFO "btrfsic: read_block() with too huge size %d\n", block_ctx->len); return -1; } block_ctx->bh = __bread(block_ctx->dev->bdev, block_ctx->dev_bytenr >> 12, 4096); if (NULL == block_ctx->bh) return -1; block_ctx->data = block_ctx->bh->b_data; return block_ctx->len; } static void btrfsic_dump_database(struct btrfsic_state *state) { struct list_head *elem_all; BUG_ON(NULL == state); printk(KERN_INFO "all_blocks_list:\n"); list_for_each(elem_all, &state->all_blocks_list) { const struct btrfsic_block *const b_all = list_entry(elem_all, struct btrfsic_block, all_blocks_node); struct list_head *elem_ref_to; struct list_head *elem_ref_from; printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n", btrfsic_get_block_type(state, b_all), (unsigned long long)b_all->logical_bytenr, b_all->dev_state->name, (unsigned long long)b_all->dev_bytenr, b_all->mirror_num); list_for_each(elem_ref_to, &b_all->ref_to_list) { const struct btrfsic_block_link *const l = list_entry(elem_ref_to, struct btrfsic_block_link, node_ref_to); printk(KERN_INFO " %c @%llu (%s/%llu/%d)" " refers %u* to" " %c @%llu (%s/%llu/%d)\n", btrfsic_get_block_type(state, b_all), (unsigned long long)b_all->logical_bytenr, b_all->dev_state->name, (unsigned long long)b_all->dev_bytenr, b_all->mirror_num, l->ref_cnt, btrfsic_get_block_type(state, l->block_ref_to), (unsigned long long) l->block_ref_to->logical_bytenr, l->block_ref_to->dev_state->name, (unsigned long long)l->block_ref_to->dev_bytenr, l->block_ref_to->mirror_num); } list_for_each(elem_ref_from, &b_all->ref_from_list) { const struct btrfsic_block_link *const l = list_entry(elem_ref_from, struct btrfsic_block_link, node_ref_from); printk(KERN_INFO " %c @%llu (%s/%llu/%d)" " is ref %u* from" " %c @%llu (%s/%llu/%d)\n", btrfsic_get_block_type(state, b_all), (unsigned long long)b_all->logical_bytenr, b_all->dev_state->name, (unsigned long long)b_all->dev_bytenr, b_all->mirror_num, l->ref_cnt, btrfsic_get_block_type(state, l->block_ref_from), (unsigned long long) l->block_ref_from->logical_bytenr, l->block_ref_from->dev_state->name, (unsigned long long) l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num); } printk(KERN_INFO "\n"); } } /* * Test whether the disk block contains a tree block (leaf or node) * (note that this test fails for the super block) */ static int btrfsic_test_for_metadata(struct btrfsic_state *state, const u8 *data, unsigned int size) { struct btrfs_header *h; u8 csum[BTRFS_CSUM_SIZE]; u32 crc = ~(u32)0; int fail = 0; int crc_fail = 0; h = (struct btrfs_header *)data; if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE)) fail++; crc = crc32c(crc, data + BTRFS_CSUM_SIZE, PAGE_SIZE - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, csum); if (memcmp(csum, h->csum, state->csum_size)) crc_fail++; return fail || crc_fail; } static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state, u64 dev_bytenr, u8 *mapped_data, unsigned int len, struct bio *bio, int *bio_is_patched, struct buffer_head *bh, int submit_bio_bh_rw) { int is_metadata; struct btrfsic_block *block; struct btrfsic_block_data_ctx block_ctx; int ret; struct btrfsic_state *state = dev_state->state; struct block_device *bdev = dev_state->bdev; WARN_ON(len > PAGE_SIZE); is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_data, len)); if (NULL != bio_is_patched) *bio_is_patched = 0; block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr, &state->block_hashtable); if (NULL != block) { u64 bytenr = 0; struct list_head *elem_ref_to; struct list_head *tmp_ref_to; if (block->is_superblock) { bytenr = le64_to_cpu(((struct btrfs_super_block *) mapped_data)->bytenr); is_metadata = 1; if (state->print_mask & BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) { printk(KERN_INFO "[before new superblock is written]:\n"); btrfsic_dump_tree_sub(state, block, 0); } } if (is_metadata) { if (!block->is_superblock) { bytenr = le64_to_cpu(((struct btrfs_header *) mapped_data)->bytenr); btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state, dev_bytenr, mapped_data); } if (block->logical_bytenr != bytenr) { printk(KERN_INFO "Written block @%llu (%s/%llu/%d)" " found in hash table, %c," " bytenr mismatch" " (!= stored %llu).\n", (unsigned long long)bytenr, dev_state->name, (unsigned long long)dev_bytenr, block->mirror_num, btrfsic_get_block_type(state, block), (unsigned long long) block->logical_bytenr); block->logical_bytenr = bytenr; } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "Written block @%llu (%s/%llu/%d)" " found in hash table, %c.\n", (unsigned long long)bytenr, dev_state->name, (unsigned long long)dev_bytenr, block->mirror_num, btrfsic_get_block_type(state, block)); } else { bytenr = block->logical_bytenr; if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "Written block @%llu (%s/%llu/%d)" " found in hash table, %c.\n", (unsigned long long)bytenr, dev_state->name, (unsigned long long)dev_bytenr, block->mirror_num, btrfsic_get_block_type(state, block)); } if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "ref_to_list: %cE, ref_from_list: %cE\n", list_empty(&block->ref_to_list) ? ' ' : '!', list_empty(&block->ref_from_list) ? ' ' : '!'); if (btrfsic_is_block_ref_by_superblock(state, block, 0)) { printk(KERN_INFO "btrfs: attempt to overwrite %c-block" " @%llu (%s/%llu/%d), old(gen=%llu," " objectid=%llu, type=%d, offset=%llu)," " new(gen=%llu)," " which is referenced by most recent superblock" " (superblockgen=%llu)!\n", btrfsic_get_block_type(state, block), (unsigned long long)bytenr, dev_state->name, (unsigned long long)dev_bytenr, block->mirror_num, (unsigned long long)block->generation, (unsigned long long) le64_to_cpu(block->disk_key.objectid), block->disk_key.type, (unsigned long long) le64_to_cpu(block->disk_key.offset), (unsigned long long) le64_to_cpu(((struct btrfs_header *) mapped_data)->generation), (unsigned long long) state->max_superblock_generation); btrfsic_dump_tree(state); } if (!block->is_iodone && !block->never_written) { printk(KERN_INFO "btrfs: attempt to overwrite %c-block" " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu," " which is not yet iodone!\n", btrfsic_get_block_type(state, block), (unsigned long long)bytenr, dev_state->name, (unsigned long long)dev_bytenr, block->mirror_num, (unsigned long long)block->generation, (unsigned long long) le64_to_cpu(((struct btrfs_header *) mapped_data)->generation)); /* it would not be safe to go on */ btrfsic_dump_tree(state); return; } /* * Clear all references of this block. Do not free * the block itself even if is not referenced anymore * because it still carries valueable information * like whether it was ever written and IO completed. */ list_for_each_safe(elem_ref_to, tmp_ref_to, &block->ref_to_list) { struct btrfsic_block_link *const l = list_entry(elem_ref_to, struct btrfsic_block_link, node_ref_to); if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) btrfsic_print_rem_link(state, l); l->ref_cnt--; if (0 == l->ref_cnt) { list_del(&l->node_ref_to); list_del(&l->node_ref_from); btrfsic_block_link_hashtable_remove(l); btrfsic_block_link_free(l); } } if (block->is_superblock) ret = btrfsic_map_superblock(state, bytenr, len, bdev, &block_ctx); else ret = btrfsic_map_block(state, bytenr, len, &block_ctx, 0); if (ret) { printk(KERN_INFO "btrfsic: btrfsic_map_block(root @%llu)" " failed!\n", (unsigned long long)bytenr); return; } block_ctx.data = mapped_data; /* the following is required in case of writes to mirrors, * use the same that was used for the lookup */ block_ctx.dev = dev_state; block_ctx.dev_bytenr = dev_bytenr; if (is_metadata || state->include_extent_data) { block->never_written = 0; block->iodone_w_error = 0; if (NULL != bio) { block->is_iodone = 0; BUG_ON(NULL == bio_is_patched); if (!*bio_is_patched) { block->orig_bio_bh_private = bio->bi_private; block->orig_bio_bh_end_io.bio = bio->bi_end_io; block->next_in_same_bio = NULL; bio->bi_private = block; bio->bi_end_io = btrfsic_bio_end_io; *bio_is_patched = 1; } else { struct btrfsic_block *chained_block = (struct btrfsic_block *) bio->bi_private; BUG_ON(NULL == chained_block); block->orig_bio_bh_private = chained_block->orig_bio_bh_private; block->orig_bio_bh_end_io.bio = chained_block->orig_bio_bh_end_io. bio; block->next_in_same_bio = chained_block; bio->bi_private = block; } } else if (NULL != bh) { block->is_iodone = 0; block->orig_bio_bh_private = bh->b_private; block->orig_bio_bh_end_io.bh = bh->b_end_io; block->next_in_same_bio = NULL; bh->b_private = block; bh->b_end_io = btrfsic_bh_end_io; } else { block->is_iodone = 1; block->orig_bio_bh_private = NULL; block->orig_bio_bh_end_io.bio = NULL; block->next_in_same_bio = NULL; } } block->flush_gen = dev_state->last_flush_gen + 1; block->submit_bio_bh_rw = submit_bio_bh_rw; if (is_metadata) { block->logical_bytenr = bytenr; block->is_metadata = 1; if (block->is_superblock) { ret = btrfsic_process_written_superblock( state, block, (struct btrfs_super_block *) mapped_data); if (state->print_mask & BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) { printk(KERN_INFO "[after new superblock is written]:\n"); btrfsic_dump_tree_sub(state, block, 0); } } else { block->mirror_num = 0; /* unknown */ ret = btrfsic_process_metablock( state, block, &block_ctx, (struct btrfs_header *) block_ctx.data, 0, 0); } if (ret) printk(KERN_INFO "btrfsic: btrfsic_process_metablock" "(root @%llu) failed!\n", (unsigned long long)dev_bytenr); } else { block->is_metadata = 0; block->mirror_num = 0; /* unknown */ block->generation = BTRFSIC_GENERATION_UNKNOWN; if (!state->include_extent_data && list_empty(&block->ref_from_list)) { /* * disk block is overwritten with extent * data (not meta data) and we are configured * to not include extent data: take the * chance and free the block's memory */ btrfsic_block_hashtable_remove(block); list_del(&block->all_blocks_node); btrfsic_block_free(block); } } btrfsic_release_block_ctx(&block_ctx); } else { /* block has not been found in hash table */ u64 bytenr; if (!is_metadata) { if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "Written block (%s/%llu/?)" " !found in hash table, D.\n", dev_state->name, (unsigned long long)dev_bytenr); if (!state->include_extent_data) return; /* ignore that written D block */ /* this is getting ugly for the * include_extent_data case... */ bytenr = 0; /* unknown */ block_ctx.start = bytenr; block_ctx.len = len; block_ctx.bh = NULL; } else { bytenr = le64_to_cpu(((struct btrfs_header *) mapped_data)->bytenr); btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state, dev_bytenr, mapped_data); if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "Written block @%llu (%s/%llu/?)" " !found in hash table, M.\n", (unsigned long long)bytenr, dev_state->name, (unsigned long long)dev_bytenr); ret = btrfsic_map_block(state, bytenr, len, &block_ctx, 0); if (ret) { printk(KERN_INFO "btrfsic: btrfsic_map_block(root @%llu)" " failed!\n", (unsigned long long)dev_bytenr); return; } } block_ctx.data = mapped_data; /* the following is required in case of writes to mirrors, * use the same that was used for the lookup */ block_ctx.dev = dev_state; block_ctx.dev_bytenr = dev_bytenr; block = btrfsic_block_alloc(); if (NULL == block) { printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); btrfsic_release_block_ctx(&block_ctx); return; } block->dev_state = dev_state; block->dev_bytenr = dev_bytenr; block->logical_bytenr = bytenr; block->is_metadata = is_metadata; block->never_written = 0; block->iodone_w_error = 0; block->mirror_num = 0; /* unknown */ block->flush_gen = dev_state->last_flush_gen + 1; block->submit_bio_bh_rw = submit_bio_bh_rw; if (NULL != bio) { block->is_iodone = 0; BUG_ON(NULL == bio_is_patched); if (!*bio_is_patched) { block->orig_bio_bh_private = bio->bi_private; block->orig_bio_bh_end_io.bio = bio->bi_end_io; block->next_in_same_bio = NULL; bio->bi_private = block; bio->bi_end_io = btrfsic_bio_end_io; *bio_is_patched = 1; } else { struct btrfsic_block *chained_block = (struct btrfsic_block *) bio->bi_private; BUG_ON(NULL == chained_block); block->orig_bio_bh_private = chained_block->orig_bio_bh_private; block->orig_bio_bh_end_io.bio = chained_block->orig_bio_bh_end_io.bio; block->next_in_same_bio = chained_block; bio->bi_private = block; } } else if (NULL != bh) { block->is_iodone = 0; block->orig_bio_bh_private = bh->b_private; block->orig_bio_bh_end_io.bh = bh->b_end_io; block->next_in_same_bio = NULL; bh->b_private = block; bh->b_end_io = btrfsic_bh_end_io; } else { block->is_iodone = 1; block->orig_bio_bh_private = NULL; block->orig_bio_bh_end_io.bio = NULL; block->next_in_same_bio = NULL; } if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "New written %c-block @%llu (%s/%llu/%d)\n", is_metadata ? 'M' : 'D', (unsigned long long)block->logical_bytenr, block->dev_state->name, (unsigned long long)block->dev_bytenr, block->mirror_num); list_add(&block->all_blocks_node, &state->all_blocks_list); btrfsic_block_hashtable_add(block, &state->block_hashtable); if (is_metadata) { ret = btrfsic_process_metablock(state, block, &block_ctx, (struct btrfs_header *) block_ctx.data, 0, 0); if (ret) printk(KERN_INFO "btrfsic: process_metablock(root @%llu)" " failed!\n", (unsigned long long)dev_bytenr); } btrfsic_release_block_ctx(&block_ctx); } } static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status) { struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private; int iodone_w_error; /* mutex is not held! This is not save if IO is not yet completed * on umount */ iodone_w_error = 0; if (bio_error_status) iodone_w_error = 1; BUG_ON(NULL == block); bp->bi_private = block->orig_bio_bh_private; bp->bi_end_io = block->orig_bio_bh_end_io.bio; do { struct btrfsic_block *next_block; struct btrfsic_dev_state *const dev_state = block->dev_state; if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) printk(KERN_INFO "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n", bio_error_status, btrfsic_get_block_type(dev_state->state, block), (unsigned long long)block->logical_bytenr, dev_state->name, (unsigned long long)block->dev_bytenr, block->mirror_num); next_block = block->next_in_same_bio; block->iodone_w_error = iodone_w_error; if (block->submit_bio_bh_rw & REQ_FLUSH) { dev_state->last_flush_gen++; if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) printk(KERN_INFO "bio_end_io() new %s flush_gen=%llu\n", dev_state->name, (unsigned long long) dev_state->last_flush_gen); } if (block->submit_bio_bh_rw & REQ_FUA) block->flush_gen = 0; /* FUA completed means block is * on disk */ block->is_iodone = 1; /* for FLUSH, this releases the block */ block = next_block; } while (NULL != block); bp->bi_end_io(bp, bio_error_status); } static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate) { struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private; int iodone_w_error = !uptodate; struct btrfsic_dev_state *dev_state; BUG_ON(NULL == block); dev_state = block->dev_state; if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) printk(KERN_INFO "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n", iodone_w_error, btrfsic_get_block_type(dev_state->state, block), (unsigned long long)block->logical_bytenr, block->dev_state->name, (unsigned long long)block->dev_bytenr, block->mirror_num); block->iodone_w_error = iodone_w_error; if (block->submit_bio_bh_rw & REQ_FLUSH) { dev_state->last_flush_gen++; if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH)) printk(KERN_INFO "bh_end_io() new %s flush_gen=%llu\n", dev_state->name, (unsigned long long)dev_state->last_flush_gen); } if (block->submit_bio_bh_rw & REQ_FUA) block->flush_gen = 0; /* FUA completed means block is on disk */ bh->b_private = block->orig_bio_bh_private; bh->b_end_io = block->orig_bio_bh_end_io.bh; block->is_iodone = 1; /* for FLUSH, this releases the block */ bh->b_end_io(bh, uptodate); } static int btrfsic_process_written_superblock( struct btrfsic_state *state, struct btrfsic_block *const superblock, struct btrfs_super_block *const super_hdr) { int pass; superblock->generation = btrfs_super_generation(super_hdr); if (!(superblock->generation > state->max_superblock_generation || 0 == state->max_superblock_generation)) { if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) printk(KERN_INFO "btrfsic: superblock @%llu (%s/%llu/%d)" " with old gen %llu <= %llu\n", (unsigned long long)superblock->logical_bytenr, superblock->dev_state->name, (unsigned long long)superblock->dev_bytenr, superblock->mirror_num, (unsigned long long) btrfs_super_generation(super_hdr), (unsigned long long) state->max_superblock_generation); } else { if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE) printk(KERN_INFO "btrfsic: got new superblock @%llu (%s/%llu/%d)" " with new gen %llu > %llu\n", (unsigned long long)superblock->logical_bytenr, superblock->dev_state->name, (unsigned long long)superblock->dev_bytenr, superblock->mirror_num, (unsigned long long) btrfs_super_generation(super_hdr), (unsigned long long) state->max_superblock_generation); state->max_superblock_generation = btrfs_super_generation(super_hdr); state->latest_superblock = superblock; } for (pass = 0; pass < 3; pass++) { int ret; u64 next_bytenr; struct btrfsic_block *next_block; struct btrfsic_block_data_ctx tmp_next_block_ctx; struct btrfsic_block_link *l; int num_copies; int mirror_num; const char *additional_string = NULL; struct btrfs_disk_key tmp_disk_key; tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY; tmp_disk_key.offset = 0; switch (pass) { case 0: tmp_disk_key.objectid = cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID); additional_string = "root "; next_bytenr = btrfs_super_root(super_hdr); if (state->print_mask & BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) printk(KERN_INFO "root@%llu\n", (unsigned long long)next_bytenr); break; case 1: tmp_disk_key.objectid = cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID); additional_string = "chunk "; next_bytenr = btrfs_super_chunk_root(super_hdr); if (state->print_mask & BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) printk(KERN_INFO "chunk@%llu\n", (unsigned long long)next_bytenr); break; case 2: tmp_disk_key.objectid = cpu_to_le64(BTRFS_TREE_LOG_OBJECTID); additional_string = "log "; next_bytenr = btrfs_super_log_root(super_hdr); if (0 == next_bytenr) continue; if (state->print_mask & BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION) printk(KERN_INFO "log@%llu\n", (unsigned long long)next_bytenr); break; } num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree, next_bytenr, PAGE_SIZE); if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES) printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n", (unsigned long long)next_bytenr, num_copies); for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { int was_created; if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "btrfsic_process_written_superblock(" "mirror_num=%d)\n", mirror_num); ret = btrfsic_map_block(state, next_bytenr, PAGE_SIZE, &tmp_next_block_ctx, mirror_num); if (ret) { printk(KERN_INFO "btrfsic: btrfsic_map_block(@%llu," " mirror=%d) failed!\n", (unsigned long long)next_bytenr, mirror_num); return -1; } next_block = btrfsic_block_lookup_or_add( state, &tmp_next_block_ctx, additional_string, 1, 0, 1, mirror_num, &was_created); if (NULL == next_block) { printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); btrfsic_release_block_ctx(&tmp_next_block_ctx); return -1; } next_block->disk_key = tmp_disk_key; if (was_created) next_block->generation = BTRFSIC_GENERATION_UNKNOWN; l = btrfsic_block_link_lookup_or_add( state, &tmp_next_block_ctx, next_block, superblock, BTRFSIC_GENERATION_UNKNOWN); btrfsic_release_block_ctx(&tmp_next_block_ctx); if (NULL == l) return -1; } } if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) { WARN_ON(1); btrfsic_dump_tree(state); } return 0; } static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state, struct btrfsic_block *const block, int recursion_level) { struct list_head *elem_ref_to; int ret = 0; if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { /* * Note that this situation can happen and does not * indicate an error in regular cases. It happens * when disk blocks are freed and later reused. * The check-integrity module is not aware of any * block free operations, it just recognizes block * write operations. Therefore it keeps the linkage * information for a block until a block is * rewritten. This can temporarily cause incorrect * and even circular linkage informations. This * causes no harm unless such blocks are referenced * by the most recent super block. */ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "btrfsic: abort cyclic linkage (case 1).\n"); return ret; } /* * This algorithm is recursive because the amount of used stack * space is very small and the max recursion depth is limited. */ list_for_each(elem_ref_to, &block->ref_to_list) { const struct btrfsic_block_link *const l = list_entry(elem_ref_to, struct btrfsic_block_link, node_ref_to); if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "rl=%d, %c @%llu (%s/%llu/%d)" " %u* refers to %c @%llu (%s/%llu/%d)\n", recursion_level, btrfsic_get_block_type(state, block), (unsigned long long)block->logical_bytenr, block->dev_state->name, (unsigned long long)block->dev_bytenr, block->mirror_num, l->ref_cnt, btrfsic_get_block_type(state, l->block_ref_to), (unsigned long long) l->block_ref_to->logical_bytenr, l->block_ref_to->dev_state->name, (unsigned long long)l->block_ref_to->dev_bytenr, l->block_ref_to->mirror_num); if (l->block_ref_to->never_written) { printk(KERN_INFO "btrfs: attempt to write superblock" " which references block %c @%llu (%s/%llu/%d)" " which is never written!\n", btrfsic_get_block_type(state, l->block_ref_to), (unsigned long long) l->block_ref_to->logical_bytenr, l->block_ref_to->dev_state->name, (unsigned long long)l->block_ref_to->dev_bytenr, l->block_ref_to->mirror_num); ret = -1; } else if (!l->block_ref_to->is_iodone) { printk(KERN_INFO "btrfs: attempt to write superblock" " which references block %c @%llu (%s/%llu/%d)" " which is not yet iodone!\n", btrfsic_get_block_type(state, l->block_ref_to), (unsigned long long) l->block_ref_to->logical_bytenr, l->block_ref_to->dev_state->name, (unsigned long long)l->block_ref_to->dev_bytenr, l->block_ref_to->mirror_num); ret = -1; } else if (l->parent_generation != l->block_ref_to->generation && BTRFSIC_GENERATION_UNKNOWN != l->parent_generation && BTRFSIC_GENERATION_UNKNOWN != l->block_ref_to->generation) { printk(KERN_INFO "btrfs: attempt to write superblock" " which references block %c @%llu (%s/%llu/%d)" " with generation %llu !=" " parent generation %llu!\n", btrfsic_get_block_type(state, l->block_ref_to), (unsigned long long) l->block_ref_to->logical_bytenr, l->block_ref_to->dev_state->name, (unsigned long long)l->block_ref_to->dev_bytenr, l->block_ref_to->mirror_num, (unsigned long long)l->block_ref_to->generation, (unsigned long long)l->parent_generation); ret = -1; } else if (l->block_ref_to->flush_gen > l->block_ref_to->dev_state->last_flush_gen) { printk(KERN_INFO "btrfs: attempt to write superblock" " which references block %c @%llu (%s/%llu/%d)" " which is not flushed out of disk's write cache" " (block flush_gen=%llu," " dev->flush_gen=%llu)!\n", btrfsic_get_block_type(state, l->block_ref_to), (unsigned long long) l->block_ref_to->logical_bytenr, l->block_ref_to->dev_state->name, (unsigned long long)l->block_ref_to->dev_bytenr, l->block_ref_to->mirror_num, (unsigned long long)block->flush_gen, (unsigned long long) l->block_ref_to->dev_state->last_flush_gen); ret = -1; } else if (-1 == btrfsic_check_all_ref_blocks(state, l->block_ref_to, recursion_level + 1)) { ret = -1; } } return ret; } static int btrfsic_is_block_ref_by_superblock( const struct btrfsic_state *state, const struct btrfsic_block *block, int recursion_level) { struct list_head *elem_ref_from; if (recursion_level >= 3 + BTRFS_MAX_LEVEL) { /* refer to comment at "abort cyclic linkage (case 1)" */ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "btrfsic: abort cyclic linkage (case 2).\n"); return 0; } /* * This algorithm is recursive because the amount of used stack space * is very small and the max recursion depth is limited. */ list_for_each(elem_ref_from, &block->ref_from_list) { const struct btrfsic_block_link *const l = list_entry(elem_ref_from, struct btrfsic_block_link, node_ref_from); if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "rl=%d, %c @%llu (%s/%llu/%d)" " is ref %u* from %c @%llu (%s/%llu/%d)\n", recursion_level, btrfsic_get_block_type(state, block), (unsigned long long)block->logical_bytenr, block->dev_state->name, (unsigned long long)block->dev_bytenr, block->mirror_num, l->ref_cnt, btrfsic_get_block_type(state, l->block_ref_from), (unsigned long long) l->block_ref_from->logical_bytenr, l->block_ref_from->dev_state->name, (unsigned long long) l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num); if (l->block_ref_from->is_superblock && state->latest_superblock->dev_bytenr == l->block_ref_from->dev_bytenr && state->latest_superblock->dev_state->bdev == l->block_ref_from->dev_state->bdev) return 1; else if (btrfsic_is_block_ref_by_superblock(state, l->block_ref_from, recursion_level + 1)) return 1; } return 0; } static void btrfsic_print_add_link(const struct btrfsic_state *state, const struct btrfsic_block_link *l) { printk(KERN_INFO "Add %u* link from %c @%llu (%s/%llu/%d)" " to %c @%llu (%s/%llu/%d).\n", l->ref_cnt, btrfsic_get_block_type(state, l->block_ref_from), (unsigned long long)l->block_ref_from->logical_bytenr, l->block_ref_from->dev_state->name, (unsigned long long)l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, btrfsic_get_block_type(state, l->block_ref_to), (unsigned long long)l->block_ref_to->logical_bytenr, l->block_ref_to->dev_state->name, (unsigned long long)l->block_ref_to->dev_bytenr, l->block_ref_to->mirror_num); } static void btrfsic_print_rem_link(const struct btrfsic_state *state, const struct btrfsic_block_link *l) { printk(KERN_INFO "Rem %u* link from %c @%llu (%s/%llu/%d)" " to %c @%llu (%s/%llu/%d).\n", l->ref_cnt, btrfsic_get_block_type(state, l->block_ref_from), (unsigned long long)l->block_ref_from->logical_bytenr, l->block_ref_from->dev_state->name, (unsigned long long)l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num, btrfsic_get_block_type(state, l->block_ref_to), (unsigned long long)l->block_ref_to->logical_bytenr, l->block_ref_to->dev_state->name, (unsigned long long)l->block_ref_to->dev_bytenr, l->block_ref_to->mirror_num); } static char btrfsic_get_block_type(const struct btrfsic_state *state, const struct btrfsic_block *block) { if (block->is_superblock && state->latest_superblock->dev_bytenr == block->dev_bytenr && state->latest_superblock->dev_state->bdev == block->dev_state->bdev) return 'S'; else if (block->is_superblock) return 's'; else if (block->is_metadata) return 'M'; else return 'D'; } static void btrfsic_dump_tree(const struct btrfsic_state *state) { btrfsic_dump_tree_sub(state, state->latest_superblock, 0); } static void btrfsic_dump_tree_sub(const struct btrfsic_state *state, const struct btrfsic_block *block, int indent_level) { struct list_head *elem_ref_to; int indent_add; static char buf[80]; int cursor_position; /* * Should better fill an on-stack buffer with a complete line and * dump it at once when it is time to print a newline character. */ /* * This algorithm is recursive because the amount of used stack space * is very small and the max recursion depth is limited. */ indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)", btrfsic_get_block_type(state, block), (unsigned long long)block->logical_bytenr, block->dev_state->name, (unsigned long long)block->dev_bytenr, block->mirror_num); if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { printk("[...]\n"); return; } printk(buf); indent_level += indent_add; if (list_empty(&block->ref_to_list)) { printk("\n"); return; } if (block->mirror_num > 1 && !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) { printk(" [...]\n"); return; } cursor_position = indent_level; list_for_each(elem_ref_to, &block->ref_to_list) { const struct btrfsic_block_link *const l = list_entry(elem_ref_to, struct btrfsic_block_link, node_ref_to); while (cursor_position < indent_level) { printk(" "); cursor_position++; } if (l->ref_cnt > 1) indent_add = sprintf(buf, " %d*--> ", l->ref_cnt); else indent_add = sprintf(buf, " --> "); if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) { printk("[...]\n"); cursor_position = 0; continue; } printk(buf); btrfsic_dump_tree_sub(state, l->block_ref_to, indent_level + indent_add); cursor_position = 0; } } static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add( struct btrfsic_state *state, struct btrfsic_block_data_ctx *next_block_ctx, struct btrfsic_block *next_block, struct btrfsic_block *from_block, u64 parent_generation) { struct btrfsic_block_link *l; l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev, next_block_ctx->dev_bytenr, from_block->dev_state->bdev, from_block->dev_bytenr, &state->block_link_hashtable); if (NULL == l) { l = btrfsic_block_link_alloc(); if (NULL == l) { printk(KERN_INFO "btrfsic: error, kmalloc" " failed!\n"); return NULL; } l->block_ref_to = next_block; l->block_ref_from = from_block; l->ref_cnt = 1; l->parent_generation = parent_generation; if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) btrfsic_print_add_link(state, l); list_add(&l->node_ref_to, &from_block->ref_to_list); list_add(&l->node_ref_from, &next_block->ref_from_list); btrfsic_block_link_hashtable_add(l, &state->block_link_hashtable); } else { l->ref_cnt++; l->parent_generation = parent_generation; if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) btrfsic_print_add_link(state, l); } return l; } static struct btrfsic_block *btrfsic_block_lookup_or_add( struct btrfsic_state *state, struct btrfsic_block_data_ctx *block_ctx, const char *additional_string, int is_metadata, int is_iodone, int never_written, int mirror_num, int *was_created) { struct btrfsic_block *block; block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev, block_ctx->dev_bytenr, &state->block_hashtable); if (NULL == block) { struct btrfsic_dev_state *dev_state; block = btrfsic_block_alloc(); if (NULL == block) { printk(KERN_INFO "btrfsic: error, kmalloc failed!\n"); return NULL; } dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev); if (NULL == dev_state) { printk(KERN_INFO "btrfsic: error, lookup dev_state failed!\n"); btrfsic_block_free(block); return NULL; } block->dev_state = dev_state; block->dev_bytenr = block_ctx->dev_bytenr; block->logical_bytenr = block_ctx->start; block->is_metadata = is_metadata; block->is_iodone = is_iodone; block->never_written = never_written; block->mirror_num = mirror_num; if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) printk(KERN_INFO "New %s%c-block @%llu (%s/%llu/%d)\n", additional_string, btrfsic_get_block_type(state, block), (unsigned long long)block->logical_bytenr, dev_state->name, (unsigned long long)block->dev_bytenr, mirror_num); list_add(&block->all_blocks_node, &state->all_blocks_list); btrfsic_block_hashtable_add(block, &state->block_hashtable); if (NULL != was_created) *was_created = 1; } else { if (NULL != was_created) *was_created = 0; } return block; } static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state, u64 bytenr, struct btrfsic_dev_state *dev_state, u64 dev_bytenr, char *data) { int num_copies; int mirror_num; int ret; struct btrfsic_block_data_ctx block_ctx; int match = 0; num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree, bytenr, PAGE_SIZE); for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { ret = btrfsic_map_block(state, bytenr, PAGE_SIZE, &block_ctx, mirror_num); if (ret) { printk(KERN_INFO "btrfsic:" " btrfsic_map_block(logical @%llu," " mirror %d) failed!\n", (unsigned long long)bytenr, mirror_num); continue; } if (dev_state->bdev == block_ctx.dev->bdev && dev_bytenr == block_ctx.dev_bytenr) { match++; btrfsic_release_block_ctx(&block_ctx); break; } btrfsic_release_block_ctx(&block_ctx); } if (!match) { printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio," " buffer->log_bytenr=%llu, submit_bio(bdev=%s," " phys_bytenr=%llu)!\n", (unsigned long long)bytenr, dev_state->name, (unsigned long long)dev_bytenr); for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) { ret = btrfsic_map_block(state, bytenr, PAGE_SIZE, &block_ctx, mirror_num); if (ret) continue; printk(KERN_INFO "Read logical bytenr @%llu maps to" " (%s/%llu/%d)\n", (unsigned long long)bytenr, block_ctx.dev->name, (unsigned long long)block_ctx.dev_bytenr, mirror_num); } WARN_ON(1); } } static struct btrfsic_dev_state *btrfsic_dev_state_lookup( struct block_device *bdev) { struct btrfsic_dev_state *ds; ds = btrfsic_dev_state_hashtable_lookup(bdev, &btrfsic_dev_state_hashtable); return ds; } int btrfsic_submit_bh(int rw, struct buffer_head *bh) { struct btrfsic_dev_state *dev_state; if (!btrfsic_is_initialized) return submit_bh(rw, bh); mutex_lock(&btrfsic_mutex); /* since btrfsic_submit_bh() might also be called before * btrfsic_mount(), this might return NULL */ dev_state = btrfsic_dev_state_lookup(bh->b_bdev); /* Only called to write the superblock (incl. FLUSH/FUA) */ if (NULL != dev_state && (rw & WRITE) && bh->b_size > 0) { u64 dev_bytenr; dev_bytenr = 4096 * bh->b_blocknr; if (dev_state->state->print_mask & BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) printk(KERN_INFO "submit_bh(rw=0x%x, blocknr=%lu (bytenr %llu)," " size=%lu, data=%p, bdev=%p)\n", rw, (unsigned long)bh->b_blocknr, (unsigned long long)dev_bytenr, (unsigned long)bh->b_size, bh->b_data, bh->b_bdev); btrfsic_process_written_block(dev_state, dev_bytenr, bh->b_data, bh->b_size, NULL, NULL, bh, rw); } else if (NULL != dev_state && (rw & REQ_FLUSH)) { if (dev_state->state->print_mask & BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) printk(KERN_INFO "submit_bh(rw=0x%x) FLUSH, bdev=%p)\n", rw, bh->b_bdev); if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { if ((dev_state->state->print_mask & (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | BTRFSIC_PRINT_MASK_VERBOSE))) printk(KERN_INFO "btrfsic_submit_bh(%s) with FLUSH" " but dummy block already in use" " (ignored)!\n", dev_state->name); } else { struct btrfsic_block *const block = &dev_state->dummy_block_for_bio_bh_flush; block->is_iodone = 0; block->never_written = 0; block->iodone_w_error = 0; block->flush_gen = dev_state->last_flush_gen + 1; block->submit_bio_bh_rw = rw; block->orig_bio_bh_private = bh->b_private; block->orig_bio_bh_end_io.bh = bh->b_end_io; block->next_in_same_bio = NULL; bh->b_private = block; bh->b_end_io = btrfsic_bh_end_io; } } mutex_unlock(&btrfsic_mutex); return submit_bh(rw, bh); } void btrfsic_submit_bio(int rw, struct bio *bio) { struct btrfsic_dev_state *dev_state; if (!btrfsic_is_initialized) { submit_bio(rw, bio); return; } mutex_lock(&btrfsic_mutex); /* since btrfsic_submit_bio() is also called before * btrfsic_mount(), this might return NULL */ dev_state = btrfsic_dev_state_lookup(bio->bi_bdev); if (NULL != dev_state && (rw & WRITE) && NULL != bio->bi_io_vec) { unsigned int i; u64 dev_bytenr; int bio_is_patched; dev_bytenr = 512 * bio->bi_sector; bio_is_patched = 0; if (dev_state->state->print_mask & BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) printk(KERN_INFO "submit_bio(rw=0x%x, bi_vcnt=%u," " bi_sector=%lu (bytenr %llu), bi_bdev=%p)\n", rw, bio->bi_vcnt, (unsigned long)bio->bi_sector, (unsigned long long)dev_bytenr, bio->bi_bdev); for (i = 0; i < bio->bi_vcnt; i++) { u8 *mapped_data; mapped_data = kmap(bio->bi_io_vec[i].bv_page); if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | BTRFSIC_PRINT_MASK_VERBOSE) == (dev_state->state->print_mask & (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | BTRFSIC_PRINT_MASK_VERBOSE))) printk(KERN_INFO "#%u: page=%p, mapped=%p, len=%u," " offset=%u\n", i, bio->bi_io_vec[i].bv_page, mapped_data, bio->bi_io_vec[i].bv_len, bio->bi_io_vec[i].bv_offset); btrfsic_process_written_block(dev_state, dev_bytenr, mapped_data, bio->bi_io_vec[i].bv_len, bio, &bio_is_patched, NULL, rw); kunmap(bio->bi_io_vec[i].bv_page); dev_bytenr += bio->bi_io_vec[i].bv_len; } } else if (NULL != dev_state && (rw & REQ_FLUSH)) { if (dev_state->state->print_mask & BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH) printk(KERN_INFO "submit_bio(rw=0x%x) FLUSH, bdev=%p)\n", rw, bio->bi_bdev); if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) { if ((dev_state->state->print_mask & (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH | BTRFSIC_PRINT_MASK_VERBOSE))) printk(KERN_INFO "btrfsic_submit_bio(%s) with FLUSH" " but dummy block already in use" " (ignored)!\n", dev_state->name); } else { struct btrfsic_block *const block = &dev_state->dummy_block_for_bio_bh_flush; block->is_iodone = 0; block->never_written = 0; block->iodone_w_error = 0; block->flush_gen = dev_state->last_flush_gen + 1; block->submit_bio_bh_rw = rw; block->orig_bio_bh_private = bio->bi_private; block->orig_bio_bh_end_io.bio = bio->bi_end_io; block->next_in_same_bio = NULL; bio->bi_private = block; bio->bi_end_io = btrfsic_bio_end_io; } } mutex_unlock(&btrfsic_mutex); submit_bio(rw, bio); } int btrfsic_mount(struct btrfs_root *root, struct btrfs_fs_devices *fs_devices, int including_extent_data, u32 print_mask) { int ret; struct btrfsic_state *state; struct list_head *dev_head = &fs_devices->devices; struct btrfs_device *device; state = kzalloc(sizeof(*state), GFP_NOFS); if (NULL == state) { printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n"); return -1; } if (!btrfsic_is_initialized) { mutex_init(&btrfsic_mutex); btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable); btrfsic_is_initialized = 1; } mutex_lock(&btrfsic_mutex); state->root = root; state->print_mask = print_mask; state->include_extent_data = including_extent_data; state->csum_size = 0; INIT_LIST_HEAD(&state->all_blocks_list); btrfsic_block_hashtable_init(&state->block_hashtable); btrfsic_block_link_hashtable_init(&state->block_link_hashtable); state->max_superblock_generation = 0; state->latest_superblock = NULL; list_for_each_entry(device, dev_head, dev_list) { struct btrfsic_dev_state *ds; char *p; if (!device->bdev || !device->name) continue; ds = btrfsic_dev_state_alloc(); if (NULL == ds) { printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n"); mutex_unlock(&btrfsic_mutex); return -1; } ds->bdev = device->bdev; ds->state = state; bdevname(ds->bdev, ds->name); ds->name[BDEVNAME_SIZE - 1] = '\0'; for (p = ds->name; *p != '\0'; p++); while (p > ds->name && *p != '/') p--; if (*p == '/') p++; strlcpy(ds->name, p, sizeof(ds->name)); btrfsic_dev_state_hashtable_add(ds, &btrfsic_dev_state_hashtable); } ret = btrfsic_process_superblock(state, fs_devices); if (0 != ret) { mutex_unlock(&btrfsic_mutex); btrfsic_unmount(root, fs_devices); return ret; } if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE) btrfsic_dump_database(state); if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE) btrfsic_dump_tree(state); mutex_unlock(&btrfsic_mutex); return 0; } void btrfsic_unmount(struct btrfs_root *root, struct btrfs_fs_devices *fs_devices) { struct list_head *elem_all; struct list_head *tmp_all; struct btrfsic_state *state; struct list_head *dev_head = &fs_devices->devices; struct btrfs_device *device; if (!btrfsic_is_initialized) return; mutex_lock(&btrfsic_mutex); state = NULL; list_for_each_entry(device, dev_head, dev_list) { struct btrfsic_dev_state *ds; if (!device->bdev || !device->name) continue; ds = btrfsic_dev_state_hashtable_lookup( device->bdev, &btrfsic_dev_state_hashtable); if (NULL != ds) { state = ds->state; btrfsic_dev_state_hashtable_remove(ds); btrfsic_dev_state_free(ds); } } if (NULL == state) { printk(KERN_INFO "btrfsic: error, cannot find state information" " on umount!\n"); mutex_unlock(&btrfsic_mutex); return; } /* * Don't care about keeping the lists' state up to date, * just free all memory that was allocated dynamically. * Free the blocks and the block_links. */ list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) { struct btrfsic_block *const b_all = list_entry(elem_all, struct btrfsic_block, all_blocks_node); struct list_head *elem_ref_to; struct list_head *tmp_ref_to; list_for_each_safe(elem_ref_to, tmp_ref_to, &b_all->ref_to_list) { struct btrfsic_block_link *const l = list_entry(elem_ref_to, struct btrfsic_block_link, node_ref_to); if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) btrfsic_print_rem_link(state, l); l->ref_cnt--; if (0 == l->ref_cnt) btrfsic_block_link_free(l); } if (b_all->is_iodone) btrfsic_block_free(b_all); else printk(KERN_INFO "btrfs: attempt to free %c-block" " @%llu (%s/%llu/%d) on umount which is" " not yet iodone!\n", btrfsic_get_block_type(state, b_all), (unsigned long long)b_all->logical_bytenr, b_all->dev_state->name, (unsigned long long)b_all->dev_bytenr, b_all->mirror_num); } mutex_unlock(&btrfsic_mutex); kfree(state); }