/* * Support for SATA devices on Serial Attached SCSI (SAS) controllers * * Copyright (C) 2006 IBM Corporation * * Written by: Darrick J. Wong , IBM Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA */ #include #include #include "sas_internal.h" #include #include #include #include #include #include #include "../scsi_sas_internal.h" #include "../scsi_transport_api.h" #include static enum ata_completion_errors sas_to_ata_err(struct task_status_struct *ts) { /* Cheesy attempt to translate SAS errors into ATA. Hah! */ /* transport error */ if (ts->resp == SAS_TASK_UNDELIVERED) return AC_ERR_ATA_BUS; /* ts->resp == SAS_TASK_COMPLETE */ /* task delivered, what happened afterwards? */ switch (ts->stat) { case SAS_DEV_NO_RESPONSE: return AC_ERR_TIMEOUT; case SAS_INTERRUPTED: case SAS_PHY_DOWN: case SAS_NAK_R_ERR: return AC_ERR_ATA_BUS; case SAS_DATA_UNDERRUN: /* * Some programs that use the taskfile interface * (smartctl in particular) can cause underrun * problems. Ignore these errors, perhaps at our * peril. */ return 0; case SAS_DATA_OVERRUN: case SAS_QUEUE_FULL: case SAS_DEVICE_UNKNOWN: case SAS_SG_ERR: return AC_ERR_INVALID; case SAM_CHECK_COND: case SAS_OPEN_TO: case SAS_OPEN_REJECT: SAS_DPRINTK("%s: Saw error %d. What to do?\n", __FUNCTION__, ts->stat); return AC_ERR_OTHER; case SAS_ABORTED_TASK: return AC_ERR_DEV; case SAS_PROTO_RESPONSE: /* This means the ending_fis has the error * value; return 0 here to collect it */ return 0; default: return 0; } } static void sas_ata_task_done(struct sas_task *task) { struct ata_queued_cmd *qc = task->uldd_task; struct domain_device *dev; struct task_status_struct *stat = &task->task_status; struct ata_task_resp *resp = (struct ata_task_resp *)stat->buf; struct sas_ha_struct *sas_ha; enum ata_completion_errors ac; unsigned long flags; if (!qc) goto qc_already_gone; dev = qc->ap->private_data; sas_ha = dev->port->ha; spin_lock_irqsave(dev->sata_dev.ap->lock, flags); if (stat->stat == SAS_PROTO_RESPONSE || stat->stat == SAM_GOOD) { ata_tf_from_fis(resp->ending_fis, &dev->sata_dev.tf); qc->err_mask |= ac_err_mask(dev->sata_dev.tf.command); dev->sata_dev.sstatus = resp->sstatus; dev->sata_dev.serror = resp->serror; dev->sata_dev.scontrol = resp->scontrol; } else if (stat->stat != SAM_STAT_GOOD) { ac = sas_to_ata_err(stat); if (ac) { SAS_DPRINTK("%s: SAS error %x\n", __FUNCTION__, stat->stat); /* We saw a SAS error. Send a vague error. */ qc->err_mask = ac; dev->sata_dev.tf.feature = 0x04; /* status err */ dev->sata_dev.tf.command = ATA_ERR; } } qc->lldd_task = NULL; if (qc->scsicmd) ASSIGN_SAS_TASK(qc->scsicmd, NULL); ata_qc_complete(qc); spin_unlock_irqrestore(dev->sata_dev.ap->lock, flags); /* * If the sas_task has an ata qc, a scsi_cmnd and the aborted * flag is set, then we must have come in via the libsas EH * functions. When we exit this function, we need to put the * scsi_cmnd on the list of finished errors. The ata_qc_complete * call cleans up the libata side of things but we're protected * from the scsi_cmnd going away because the scsi_cmnd is owned * by the EH, making libata's call to scsi_done a NOP. */ spin_lock_irqsave(&task->task_state_lock, flags); if (qc->scsicmd && task->task_state_flags & SAS_TASK_STATE_ABORTED) scsi_eh_finish_cmd(qc->scsicmd, &sas_ha->eh_done_q); spin_unlock_irqrestore(&task->task_state_lock, flags); qc_already_gone: list_del_init(&task->list); sas_free_task(task); } static unsigned int sas_ata_qc_issue(struct ata_queued_cmd *qc) { int res; struct sas_task *task; struct domain_device *dev = qc->ap->private_data; struct sas_ha_struct *sas_ha = dev->port->ha; struct Scsi_Host *host = sas_ha->core.shost; struct sas_internal *i = to_sas_internal(host->transportt); struct scatterlist *sg; unsigned int xfer = 0; unsigned int si; task = sas_alloc_task(GFP_ATOMIC); if (!task) return AC_ERR_SYSTEM; task->dev = dev; task->task_proto = SAS_PROTOCOL_STP; task->task_done = sas_ata_task_done; if (qc->tf.command == ATA_CMD_FPDMA_WRITE || qc->tf.command == ATA_CMD_FPDMA_READ) { /* Need to zero out the tag libata assigned us */ qc->tf.nsect = 0; } ata_tf_to_fis(&qc->tf, 1, 0, (u8*)&task->ata_task.fis); task->uldd_task = qc; if (ata_is_atapi(qc->tf.protocol)) { memcpy(task->ata_task.atapi_packet, qc->cdb, qc->dev->cdb_len); task->total_xfer_len = qc->nbytes; task->num_scatter = qc->n_elem; } else { for_each_sg(qc->sg, sg, qc->n_elem, si) xfer += sg->length; task->total_xfer_len = xfer; task->num_scatter = si; } task->data_dir = qc->dma_dir; task->scatter = qc->sg; task->ata_task.retry_count = 1; task->task_state_flags = SAS_TASK_STATE_PENDING; qc->lldd_task = task; switch (qc->tf.protocol) { case ATA_PROT_NCQ: task->ata_task.use_ncq = 1; /* fall through */ case ATAPI_PROT_DMA: case ATA_PROT_DMA: task->ata_task.dma_xfer = 1; break; } if (qc->scsicmd) ASSIGN_SAS_TASK(qc->scsicmd, task); if (sas_ha->lldd_max_execute_num < 2) res = i->dft->lldd_execute_task(task, 1, GFP_ATOMIC); else res = sas_queue_up(task); /* Examine */ if (res) { SAS_DPRINTK("lldd_execute_task returned: %d\n", res); if (qc->scsicmd) ASSIGN_SAS_TASK(qc->scsicmd, NULL); sas_free_task(task); return AC_ERR_SYSTEM; } return 0; } static bool sas_ata_qc_fill_rtf(struct ata_queued_cmd *qc) { struct domain_device *dev = qc->ap->private_data; memcpy(&qc->result_tf, &dev->sata_dev.tf, sizeof(qc->result_tf)); return true; } static u8 sas_ata_check_status(struct ata_port *ap) { struct domain_device *dev = ap->private_data; return dev->sata_dev.tf.command; } static void sas_ata_phy_reset(struct ata_port *ap) { struct domain_device *dev = ap->private_data; struct sas_internal *i = to_sas_internal(dev->port->ha->core.shost->transportt); int res = TMF_RESP_FUNC_FAILED; if (i->dft->lldd_I_T_nexus_reset) res = i->dft->lldd_I_T_nexus_reset(dev); if (res != TMF_RESP_FUNC_COMPLETE) SAS_DPRINTK("%s: Unable to reset I T nexus?\n", __FUNCTION__); switch (dev->sata_dev.command_set) { case ATA_COMMAND_SET: SAS_DPRINTK("%s: Found ATA device.\n", __FUNCTION__); ap->link.device[0].class = ATA_DEV_ATA; break; case ATAPI_COMMAND_SET: SAS_DPRINTK("%s: Found ATAPI device.\n", __FUNCTION__); ap->link.device[0].class = ATA_DEV_ATAPI; break; default: SAS_DPRINTK("%s: Unknown SATA command set: %d.\n", __FUNCTION__, dev->sata_dev.command_set); ap->link.device[0].class = ATA_DEV_UNKNOWN; break; } ap->cbl = ATA_CBL_SATA; } static void sas_ata_post_internal(struct ata_queued_cmd *qc) { if (qc->flags & ATA_QCFLAG_FAILED) qc->err_mask |= AC_ERR_OTHER; if (qc->err_mask) { /* * Find the sas_task and kill it. By this point, * libata has decided to kill the qc, so we needn't * bother with sas_ata_task_done. But we still * ought to abort the task. */ struct sas_task *task = qc->lldd_task; unsigned long flags; qc->lldd_task = NULL; if (task) { /* Should this be a AT(API) device reset? */ spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&task->task_state_lock, flags); task->uldd_task = NULL; __sas_task_abort(task); } } } static int sas_ata_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val) { struct domain_device *dev = ap->private_data; SAS_DPRINTK("STUB %s\n", __FUNCTION__); switch (sc_reg_in) { case SCR_STATUS: dev->sata_dev.sstatus = val; break; case SCR_CONTROL: dev->sata_dev.scontrol = val; break; case SCR_ERROR: dev->sata_dev.serror = val; break; case SCR_ACTIVE: dev->sata_dev.ap->link.sactive = val; break; default: return -EINVAL; } return 0; } static int sas_ata_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val) { struct domain_device *dev = ap->private_data; SAS_DPRINTK("STUB %s\n", __FUNCTION__); switch (sc_reg_in) { case SCR_STATUS: *val = dev->sata_dev.sstatus; return 0; case SCR_CONTROL: *val = dev->sata_dev.scontrol; return 0; case SCR_ERROR: *val = dev->sata_dev.serror; return 0; case SCR_ACTIVE: *val = dev->sata_dev.ap->link.sactive; return 0; default: return -EINVAL; } } static struct ata_port_operations sas_sata_ops = { .sff_check_status = sas_ata_check_status, .sff_check_altstatus = sas_ata_check_status, .sff_dev_select = ata_noop_dev_select, .phy_reset = sas_ata_phy_reset, .post_internal_cmd = sas_ata_post_internal, .qc_prep = ata_noop_qc_prep, .qc_issue = sas_ata_qc_issue, .qc_fill_rtf = sas_ata_qc_fill_rtf, .port_start = ata_sas_port_start, .port_stop = ata_sas_port_stop, .scr_read = sas_ata_scr_read, .scr_write = sas_ata_scr_write }; static struct ata_port_info sata_port_info = { .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | ATA_FLAG_PIO_DMA | ATA_FLAG_NCQ, .pio_mask = 0x1f, /* PIO0-4 */ .mwdma_mask = 0x07, /* MWDMA0-2 */ .udma_mask = ATA_UDMA6, .port_ops = &sas_sata_ops }; int sas_ata_init_host_and_port(struct domain_device *found_dev, struct scsi_target *starget) { struct Scsi_Host *shost = dev_to_shost(&starget->dev); struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); struct ata_port *ap; ata_host_init(&found_dev->sata_dev.ata_host, ha->dev, sata_port_info.flags, &sas_sata_ops); ap = ata_sas_port_alloc(&found_dev->sata_dev.ata_host, &sata_port_info, shost); if (!ap) { SAS_DPRINTK("ata_sas_port_alloc failed.\n"); return -ENODEV; } ap->private_data = found_dev; ap->cbl = ATA_CBL_SATA; ap->scsi_host = shost; found_dev->sata_dev.ap = ap; return 0; } void sas_ata_task_abort(struct sas_task *task) { struct ata_queued_cmd *qc = task->uldd_task; struct completion *waiting; /* Bounce SCSI-initiated commands to the SCSI EH */ if (qc->scsicmd) { scsi_req_abort_cmd(qc->scsicmd); scsi_schedule_eh(qc->scsicmd->device->host); return; } /* Internal command, fake a timeout and complete. */ qc->flags &= ~ATA_QCFLAG_ACTIVE; qc->flags |= ATA_QCFLAG_FAILED; qc->err_mask |= AC_ERR_TIMEOUT; waiting = qc->private_data; complete(waiting); } static void sas_task_timedout(unsigned long _task) { struct sas_task *task = (void *) _task; unsigned long flags; spin_lock_irqsave(&task->task_state_lock, flags); if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) task->task_state_flags |= SAS_TASK_STATE_ABORTED; spin_unlock_irqrestore(&task->task_state_lock, flags); complete(&task->completion); } static void sas_disc_task_done(struct sas_task *task) { if (!del_timer(&task->timer)) return; complete(&task->completion); } #define SAS_DEV_TIMEOUT 10 /** * sas_execute_task -- Basic task processing for discovery * @task: the task to be executed * @buffer: pointer to buffer to do I/O * @size: size of @buffer * @dma_dir: DMA direction. DMA_xxx */ static int sas_execute_task(struct sas_task *task, void *buffer, int size, enum dma_data_direction dma_dir) { int res = 0; struct scatterlist *scatter = NULL; struct task_status_struct *ts = &task->task_status; int num_scatter = 0; int retries = 0; struct sas_internal *i = to_sas_internal(task->dev->port->ha->core.shost->transportt); if (dma_dir != DMA_NONE) { scatter = kzalloc(sizeof(*scatter), GFP_KERNEL); if (!scatter) goto out; sg_init_one(scatter, buffer, size); num_scatter = 1; } task->task_proto = task->dev->tproto; task->scatter = scatter; task->num_scatter = num_scatter; task->total_xfer_len = size; task->data_dir = dma_dir; task->task_done = sas_disc_task_done; if (dma_dir != DMA_NONE && sas_protocol_ata(task->task_proto)) { task->num_scatter = dma_map_sg(task->dev->port->ha->dev, task->scatter, task->num_scatter, task->data_dir); } for (retries = 0; retries < 5; retries++) { task->task_state_flags = SAS_TASK_STATE_PENDING; init_completion(&task->completion); task->timer.data = (unsigned long) task; task->timer.function = sas_task_timedout; task->timer.expires = jiffies + SAS_DEV_TIMEOUT*HZ; add_timer(&task->timer); res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); if (res) { del_timer(&task->timer); SAS_DPRINTK("executing SAS discovery task failed:%d\n", res); goto ex_err; } wait_for_completion(&task->completion); res = -ECOMM; if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { int res2; SAS_DPRINTK("task aborted, flags:0x%x\n", task->task_state_flags); res2 = i->dft->lldd_abort_task(task); SAS_DPRINTK("came back from abort task\n"); if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { if (res2 == TMF_RESP_FUNC_COMPLETE) continue; /* Retry the task */ else goto ex_err; } } if (task->task_status.stat == SAM_BUSY || task->task_status.stat == SAM_TASK_SET_FULL || task->task_status.stat == SAS_QUEUE_FULL) { SAS_DPRINTK("task: q busy, sleeping...\n"); schedule_timeout_interruptible(HZ); } else if (task->task_status.stat == SAM_CHECK_COND) { struct scsi_sense_hdr shdr; if (!scsi_normalize_sense(ts->buf, ts->buf_valid_size, &shdr)) { SAS_DPRINTK("couldn't normalize sense\n"); continue; } if ((shdr.sense_key == 6 && shdr.asc == 0x29) || (shdr.sense_key == 2 && shdr.asc == 4 && shdr.ascq == 1)) { SAS_DPRINTK("device %016llx LUN: %016llx " "powering up or not ready yet, " "sleeping...\n", SAS_ADDR(task->dev->sas_addr), SAS_ADDR(task->ssp_task.LUN)); schedule_timeout_interruptible(5*HZ); } else if (shdr.sense_key == 1) { res = 0; break; } else if (shdr.sense_key == 5) { break; } else { SAS_DPRINTK("dev %016llx LUN: %016llx " "sense key:0x%x ASC:0x%x ASCQ:0x%x" "\n", SAS_ADDR(task->dev->sas_addr), SAS_ADDR(task->ssp_task.LUN), shdr.sense_key, shdr.asc, shdr.ascq); } } else if (task->task_status.resp != SAS_TASK_COMPLETE || task->task_status.stat != SAM_GOOD) { SAS_DPRINTK("task finished with resp:0x%x, " "stat:0x%x\n", task->task_status.resp, task->task_status.stat); goto ex_err; } else { res = 0; break; } } ex_err: if (dma_dir != DMA_NONE) { if (sas_protocol_ata(task->task_proto)) dma_unmap_sg(task->dev->port->ha->dev, task->scatter, task->num_scatter, task->data_dir); kfree(scatter); } out: return res; } /* ---------- SATA ---------- */ static void sas_get_ata_command_set(struct domain_device *dev) { struct dev_to_host_fis *fis = (struct dev_to_host_fis *) dev->frame_rcvd; if ((fis->sector_count == 1 && /* ATA */ fis->lbal == 1 && fis->lbam == 0 && fis->lbah == 0 && fis->device == 0) || (fis->sector_count == 0 && /* CE-ATA (mATA) */ fis->lbal == 0 && fis->lbam == 0xCE && fis->lbah == 0xAA && (fis->device & ~0x10) == 0)) dev->sata_dev.command_set = ATA_COMMAND_SET; else if ((fis->interrupt_reason == 1 && /* ATAPI */ fis->lbal == 1 && fis->byte_count_low == 0x14 && fis->byte_count_high == 0xEB && (fis->device & ~0x10) == 0)) dev->sata_dev.command_set = ATAPI_COMMAND_SET; else if ((fis->sector_count == 1 && /* SEMB */ fis->lbal == 1 && fis->lbam == 0x3C && fis->lbah == 0xC3 && fis->device == 0) || (fis->interrupt_reason == 1 && /* SATA PM */ fis->lbal == 1 && fis->byte_count_low == 0x69 && fis->byte_count_high == 0x96 && (fis->device & ~0x10) == 0)) /* Treat it as a superset? */ dev->sata_dev.command_set = ATAPI_COMMAND_SET; } /** * sas_issue_ata_cmd -- Basic SATA command processing for discovery * @dev: the device to send the command to * @command: the command register * @features: the features register * @buffer: pointer to buffer to do I/O * @size: size of @buffer * @dma_dir: DMA direction. DMA_xxx */ static int sas_issue_ata_cmd(struct domain_device *dev, u8 command, u8 features, void *buffer, int size, enum dma_data_direction dma_dir) { int res = 0; struct sas_task *task; struct dev_to_host_fis *d2h_fis = (struct dev_to_host_fis *) &dev->frame_rcvd[0]; res = -ENOMEM; task = sas_alloc_task(GFP_KERNEL); if (!task) goto out; task->dev = dev; task->ata_task.fis.fis_type = 0x27; task->ata_task.fis.command = command; task->ata_task.fis.features = features; task->ata_task.fis.device = d2h_fis->device; task->ata_task.retry_count = 1; res = sas_execute_task(task, buffer, size, dma_dir); sas_free_task(task); out: return res; } #define ATA_IDENTIFY_DEV 0xEC #define ATA_IDENTIFY_PACKET_DEV 0xA1 #define ATA_SET_FEATURES 0xEF #define ATA_FEATURE_PUP_STBY_SPIN_UP 0x07 /** * sas_discover_sata_dev -- discover a STP/SATA device (SATA_DEV) * @dev: STP/SATA device of interest (ATA/ATAPI) * * The LLDD has already been notified of this device, so that we can * send FISes to it. Here we try to get IDENTIFY DEVICE or IDENTIFY * PACKET DEVICE, if ATAPI device, so that the LLDD can fine-tune its * performance for this device. */ static int sas_discover_sata_dev(struct domain_device *dev) { int res; __le16 *identify_x; u8 command; identify_x = kzalloc(512, GFP_KERNEL); if (!identify_x) return -ENOMEM; if (dev->sata_dev.command_set == ATA_COMMAND_SET) { dev->sata_dev.identify_device = identify_x; command = ATA_IDENTIFY_DEV; } else { dev->sata_dev.identify_packet_device = identify_x; command = ATA_IDENTIFY_PACKET_DEV; } res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512, DMA_FROM_DEVICE); if (res) goto out_err; /* lives on the media? */ if (le16_to_cpu(identify_x[0]) & 4) { /* incomplete response */ SAS_DPRINTK("sending SET FEATURE/PUP_STBY_SPIN_UP to " "dev %llx\n", SAS_ADDR(dev->sas_addr)); if (!le16_to_cpu(identify_x[83] & (1<<6))) goto cont1; res = sas_issue_ata_cmd(dev, ATA_SET_FEATURES, ATA_FEATURE_PUP_STBY_SPIN_UP, NULL, 0, DMA_NONE); if (res) goto cont1; schedule_timeout_interruptible(5*HZ); /* More time? */ res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512, DMA_FROM_DEVICE); if (res) goto out_err; } cont1: /* XXX Hint: register this SATA device with SATL. When this returns, dev->sata_dev->lu is alive and present. sas_satl_register_dev(dev); */ sas_fill_in_rphy(dev, dev->rphy); return 0; out_err: dev->sata_dev.identify_packet_device = NULL; dev->sata_dev.identify_device = NULL; kfree(identify_x); return res; } static int sas_discover_sata_pm(struct domain_device *dev) { return -ENODEV; } /** * sas_discover_sata -- discover an STP/SATA domain device * @dev: pointer to struct domain_device of interest * * First we notify the LLDD of this device, so we can send frames to * it. Then depending on the type of device we call the appropriate * discover functions. Once device discover is done, we notify the * LLDD so that it can fine-tune its parameters for the device, by * removing it and then adding it. That is, the second time around, * the driver would have certain fields, that it is looking at, set. * Finally we initialize the kobj so that the device can be added to * the system at registration time. Devices directly attached to a HA * port, have no parents. All other devices do, and should have their * "parent" pointer set appropriately before calling this function. */ int sas_discover_sata(struct domain_device *dev) { int res; sas_get_ata_command_set(dev); res = sas_notify_lldd_dev_found(dev); if (res) return res; switch (dev->dev_type) { case SATA_DEV: res = sas_discover_sata_dev(dev); break; case SATA_PM: res = sas_discover_sata_pm(dev); break; default: break; } sas_notify_lldd_dev_gone(dev); if (!res) { sas_notify_lldd_dev_found(dev); res = sas_rphy_add(dev->rphy); } return res; }