#include #include #include #include #include #include #include #include #include #include #include #include #include static int notsc __initdata = 0; unsigned int cpu_khz; /* TSC clocks / usec, not used here */ EXPORT_SYMBOL(cpu_khz); unsigned int tsc_khz; EXPORT_SYMBOL(tsc_khz); /* Accelerators for sched_clock() * convert from cycles(64bits) => nanoseconds (64bits) * basic equation: * ns = cycles / (freq / ns_per_sec) * ns = cycles * (ns_per_sec / freq) * ns = cycles * (10^9 / (cpu_khz * 10^3)) * ns = cycles * (10^6 / cpu_khz) * * Then we use scaling math (suggested by george@mvista.com) to get: * ns = cycles * (10^6 * SC / cpu_khz) / SC * ns = cycles * cyc2ns_scale / SC * * And since SC is a constant power of two, we can convert the div * into a shift. * * We can use khz divisor instead of mhz to keep a better precision, since * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. * (mathieu.desnoyers@polymtl.ca) * * -johnstul@us.ibm.com "math is hard, lets go shopping!" */ DEFINE_PER_CPU(unsigned long, cyc2ns); static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) { unsigned long flags, prev_scale, *scale; unsigned long long tsc_now, ns_now; local_irq_save(flags); sched_clock_idle_sleep_event(); scale = &per_cpu(cyc2ns, cpu); rdtscll(tsc_now); ns_now = __cycles_2_ns(tsc_now); prev_scale = *scale; if (cpu_khz) *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; sched_clock_idle_wakeup_event(0); local_irq_restore(flags); } unsigned long long native_sched_clock(void) { unsigned long a = 0; /* Could do CPU core sync here. Opteron can execute rdtsc speculatively, * which means it is not completely exact and may not be monotonous * between CPUs. But the errors should be too small to matter for * scheduling purposes. */ rdtscll(a); return cycles_2_ns(a); } /* We need to define a real function for sched_clock, to override the weak default version */ #ifdef CONFIG_PARAVIRT unsigned long long sched_clock(void) { return paravirt_sched_clock(); } #else unsigned long long sched_clock(void) __attribute__((alias("native_sched_clock"))); #endif static int tsc_unstable; int check_tsc_unstable(void) { return tsc_unstable; } EXPORT_SYMBOL_GPL(check_tsc_unstable); #ifdef CONFIG_CPU_FREQ /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency * changes. * * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's * not that important because current Opteron setups do not support * scaling on SMP anyroads. * * Should fix up last_tsc too. Currently gettimeofday in the * first tick after the change will be slightly wrong. */ static unsigned int ref_freq; static unsigned long loops_per_jiffy_ref; static unsigned long tsc_khz_ref; static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; unsigned long *lpj, dummy; if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) return 0; lpj = &dummy; if (!(freq->flags & CPUFREQ_CONST_LOOPS)) #ifdef CONFIG_SMP lpj = &cpu_data(freq->cpu).loops_per_jiffy; #else lpj = &boot_cpu_data.loops_per_jiffy; #endif if (!ref_freq) { ref_freq = freq->old; loops_per_jiffy_ref = *lpj; tsc_khz_ref = tsc_khz; } if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || (val == CPUFREQ_RESUMECHANGE)) { *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); if (!(freq->flags & CPUFREQ_CONST_LOOPS)) mark_tsc_unstable("cpufreq changes"); } preempt_disable(); set_cyc2ns_scale(tsc_khz_ref, smp_processor_id()); preempt_enable(); return 0; } static struct notifier_block time_cpufreq_notifier_block = { .notifier_call = time_cpufreq_notifier }; static int __init cpufreq_tsc(void) { cpufreq_register_notifier(&time_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); return 0; } core_initcall(cpufreq_tsc); #endif #define MAX_RETRIES 5 #define SMI_TRESHOLD 50000 /* * Read TSC and the reference counters. Take care of SMI disturbance */ static unsigned long __init tsc_read_refs(unsigned long *pm, unsigned long *hpet) { unsigned long t1, t2; int i; for (i = 0; i < MAX_RETRIES; i++) { t1 = get_cycles(); if (hpet) *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; else *pm = acpi_pm_read_early(); t2 = get_cycles(); if ((t2 - t1) < SMI_TRESHOLD) return t2; } return ULONG_MAX; } /** * tsc_calibrate - calibrate the tsc on boot */ void __init tsc_calibrate(void) { unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2; int hpet = is_hpet_enabled(), cpu; local_irq_save(flags); tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL); outb((inb(0x61) & ~0x02) | 0x01, 0x61); outb(0xb0, 0x43); outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42); outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42); tr1 = get_cycles(); while ((inb(0x61) & 0x20) == 0); tr2 = get_cycles(); tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL); local_irq_restore(flags); /* * Preset the result with the raw and inaccurate PIT * calibration value */ tsc_khz = (tr2 - tr1) / 50; /* hpet or pmtimer available ? */ if (!hpet && !pm1 && !pm2) { printk(KERN_INFO "TSC calibrated against PIT\n"); return; } /* Check, whether the sampling was disturbed by an SMI */ if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) { printk(KERN_WARNING "TSC calibration disturbed by SMI, " "using PIT calibration result\n"); return; } tsc2 = (tsc2 - tsc1) * 1000000L; if (hpet) { printk(KERN_INFO "TSC calibrated against HPET\n"); if (hpet2 < hpet1) hpet2 += 0x100000000; hpet2 -= hpet1; tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000; } else { printk(KERN_INFO "TSC calibrated against PM_TIMER\n"); if (pm2 < pm1) pm2 += ACPI_PM_OVRRUN; pm2 -= pm1; tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC; } tsc_khz = tsc2 / tsc1; for_each_possible_cpu(cpu) set_cyc2ns_scale(tsc_khz, cpu); } /* * Make an educated guess if the TSC is trustworthy and synchronized * over all CPUs. */ __cpuinit int unsynchronized_tsc(void) { if (tsc_unstable) return 1; #ifdef CONFIG_SMP if (apic_is_clustered_box()) return 1; #endif if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) return 0; /* Assume multi socket systems are not synchronized */ return num_present_cpus() > 1; } int __init notsc_setup(char *s) { notsc = 1; return 1; } __setup("notsc", notsc_setup); static struct clocksource clocksource_tsc; /* * We compare the TSC to the cycle_last value in the clocksource * structure to avoid a nasty time-warp. This can be observed in a * very small window right after one CPU updated cycle_last under * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which * is smaller than the cycle_last reference value due to a TSC which * is slighty behind. This delta is nowhere else observable, but in * that case it results in a forward time jump in the range of hours * due to the unsigned delta calculation of the time keeping core * code, which is necessary to support wrapping clocksources like pm * timer. */ static cycle_t read_tsc(void) { cycle_t ret = (cycle_t)get_cycles(); return ret >= clocksource_tsc.cycle_last ? ret : clocksource_tsc.cycle_last; } static cycle_t __vsyscall_fn vread_tsc(void) { cycle_t ret = (cycle_t)vget_cycles(); return ret >= __vsyscall_gtod_data.clock.cycle_last ? ret : __vsyscall_gtod_data.clock.cycle_last; } static struct clocksource clocksource_tsc = { .name = "tsc", .rating = 300, .read = read_tsc, .mask = CLOCKSOURCE_MASK(64), .shift = 22, .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_MUST_VERIFY, .vread = vread_tsc, }; void mark_tsc_unstable(char *reason) { if (!tsc_unstable) { tsc_unstable = 1; printk("Marking TSC unstable due to %s\n", reason); /* Change only the rating, when not registered */ if (clocksource_tsc.mult) clocksource_change_rating(&clocksource_tsc, 0); else clocksource_tsc.rating = 0; } } EXPORT_SYMBOL_GPL(mark_tsc_unstable); void __init init_tsc_clocksource(void) { if (!notsc) { clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, clocksource_tsc.shift); if (check_tsc_unstable()) clocksource_tsc.rating = 0; clocksource_register(&clocksource_tsc); } }