/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright IBM Corp. 2007 * * Authors: Hollis Blanchard * Christian Ehrhardt */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "timing.h" #include "../mm/mmu_decl.h" #define CREATE_TRACE_POINTS #include "trace.h" int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) { return !!(v->arch.pending_exceptions) || v->requests; } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { return 1; } #ifndef CONFIG_KVM_BOOK3S_64_HV /* * Common checks before entering the guest world. Call with interrupts * disabled. * * returns !0 if a signal is pending and check_signal is true */ int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) { int r = 0; WARN_ON_ONCE(!irqs_disabled()); while (true) { if (need_resched()) { local_irq_enable(); cond_resched(); local_irq_disable(); continue; } if (signal_pending(current)) { r = 1; break; } smp_mb(); if (vcpu->requests) { /* Make sure we process requests preemptable */ local_irq_enable(); trace_kvm_check_requests(vcpu); kvmppc_core_check_requests(vcpu); local_irq_disable(); continue; } if (kvmppc_core_prepare_to_enter(vcpu)) { /* interrupts got enabled in between, so we are back at square 1 */ continue; } if (vcpu->mode == EXITING_GUEST_MODE) { r = 1; break; } #ifdef CONFIG_PPC64 /* lazy EE magic */ hard_irq_disable(); if (lazy_irq_pending()) { /* Got an interrupt in between, try again */ local_irq_enable(); local_irq_disable(); kvm_guest_exit(); continue; } trace_hardirqs_on(); #endif kvm_guest_enter(); /* Going into guest context! Yay! */ vcpu->mode = IN_GUEST_MODE; smp_wmb(); break; } return r; } #endif /* CONFIG_KVM_BOOK3S_64_HV */ int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) { int nr = kvmppc_get_gpr(vcpu, 11); int r; unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); unsigned long r2 = 0; if (!(vcpu->arch.shared->msr & MSR_SF)) { /* 32 bit mode */ param1 &= 0xffffffff; param2 &= 0xffffffff; param3 &= 0xffffffff; param4 &= 0xffffffff; } switch (nr) { case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): { vcpu->arch.magic_page_pa = param1; vcpu->arch.magic_page_ea = param2; r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; r = EV_SUCCESS; break; } case KVM_HCALL_TOKEN(KVM_HC_FEATURES): r = EV_SUCCESS; #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) /* XXX Missing magic page on 44x */ r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); #endif /* Second return value is in r4 */ break; case EV_HCALL_TOKEN(EV_IDLE): r = EV_SUCCESS; kvm_vcpu_block(vcpu); clear_bit(KVM_REQ_UNHALT, &vcpu->requests); break; default: r = EV_UNIMPLEMENTED; break; } kvmppc_set_gpr(vcpu, 4, r2); return r; } int kvmppc_sanity_check(struct kvm_vcpu *vcpu) { int r = false; /* We have to know what CPU to virtualize */ if (!vcpu->arch.pvr) goto out; /* PAPR only works with book3s_64 */ if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) goto out; #ifdef CONFIG_KVM_BOOK3S_64_HV /* HV KVM can only do PAPR mode for now */ if (!vcpu->arch.papr_enabled) goto out; #endif #ifdef CONFIG_KVM_BOOKE_HV if (!cpu_has_feature(CPU_FTR_EMB_HV)) goto out; #endif r = true; out: vcpu->arch.sane = r; return r ? 0 : -EINVAL; } int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) { enum emulation_result er; int r; er = kvmppc_emulate_instruction(run, vcpu); switch (er) { case EMULATE_DONE: /* Future optimization: only reload non-volatiles if they were * actually modified. */ r = RESUME_GUEST_NV; break; case EMULATE_DO_MMIO: run->exit_reason = KVM_EXIT_MMIO; /* We must reload nonvolatiles because "update" load/store * instructions modify register state. */ /* Future optimization: only reload non-volatiles if they were * actually modified. */ r = RESUME_HOST_NV; break; case EMULATE_FAIL: /* XXX Deliver Program interrupt to guest. */ printk(KERN_EMERG "%s: emulation failed (%08x)\n", __func__, kvmppc_get_last_inst(vcpu)); r = RESUME_HOST; break; default: BUG(); } return r; } int kvm_arch_hardware_enable(void *garbage) { return 0; } void kvm_arch_hardware_disable(void *garbage) { } int kvm_arch_hardware_setup(void) { return 0; } void kvm_arch_hardware_unsetup(void) { } void kvm_arch_check_processor_compat(void *rtn) { *(int *)rtn = kvmppc_core_check_processor_compat(); } int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { if (type) return -EINVAL; return kvmppc_core_init_vm(kvm); } void kvm_arch_destroy_vm(struct kvm *kvm) { unsigned int i; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) kvm_arch_vcpu_free(vcpu); mutex_lock(&kvm->lock); for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) kvm->vcpus[i] = NULL; atomic_set(&kvm->online_vcpus, 0); kvmppc_core_destroy_vm(kvm); mutex_unlock(&kvm->lock); } void kvm_arch_sync_events(struct kvm *kvm) { } int kvm_dev_ioctl_check_extension(long ext) { int r; switch (ext) { #ifdef CONFIG_BOOKE case KVM_CAP_PPC_BOOKE_SREGS: #else case KVM_CAP_PPC_SEGSTATE: case KVM_CAP_PPC_HIOR: case KVM_CAP_PPC_PAPR: #endif case KVM_CAP_PPC_UNSET_IRQ: case KVM_CAP_PPC_IRQ_LEVEL: case KVM_CAP_ENABLE_CAP: case KVM_CAP_ONE_REG: r = 1; break; #ifndef CONFIG_KVM_BOOK3S_64_HV case KVM_CAP_PPC_PAIRED_SINGLES: case KVM_CAP_PPC_OSI: case KVM_CAP_PPC_GET_PVINFO: #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) case KVM_CAP_SW_TLB: #endif r = 1; break; case KVM_CAP_COALESCED_MMIO: r = KVM_COALESCED_MMIO_PAGE_OFFSET; break; #endif #ifdef CONFIG_PPC_BOOK3S_64 case KVM_CAP_SPAPR_TCE: case KVM_CAP_PPC_ALLOC_HTAB: r = 1; break; #endif /* CONFIG_PPC_BOOK3S_64 */ #ifdef CONFIG_KVM_BOOK3S_64_HV case KVM_CAP_PPC_SMT: r = threads_per_core; break; case KVM_CAP_PPC_RMA: r = 1; /* PPC970 requires an RMA */ if (cpu_has_feature(CPU_FTR_ARCH_201)) r = 2; break; #endif case KVM_CAP_SYNC_MMU: #ifdef CONFIG_KVM_BOOK3S_64_HV r = cpu_has_feature(CPU_FTR_ARCH_206) ? 1 : 0; #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) r = 1; #else r = 0; #endif break; case KVM_CAP_NR_VCPUS: /* * Recommending a number of CPUs is somewhat arbitrary; we * return the number of present CPUs for -HV (since a host * will have secondary threads "offline"), and for other KVM * implementations just count online CPUs. */ #ifdef CONFIG_KVM_BOOK3S_64_HV r = num_present_cpus(); #else r = num_online_cpus(); #endif break; case KVM_CAP_MAX_VCPUS: r = KVM_MAX_VCPUS; break; #ifdef CONFIG_PPC_BOOK3S_64 case KVM_CAP_PPC_GET_SMMU_INFO: r = 1; break; #endif default: r = 0; break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -EINVAL; } void kvm_arch_free_memslot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { if (!dont || free->arch.rmap != dont->arch.rmap) { vfree(free->arch.rmap); free->arch.rmap = NULL; } } int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) { slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); if (!slot->arch.rmap) return -ENOMEM; return 0; } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_memory_slot old, struct kvm_userspace_memory_region *mem, int user_alloc) { return kvmppc_core_prepare_memory_region(kvm, mem); } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { kvmppc_core_commit_memory_region(kvm, mem); } void kvm_arch_flush_shadow_all(struct kvm *kvm) { } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvm_vcpu *vcpu; vcpu = kvmppc_core_vcpu_create(kvm, id); if (!IS_ERR(vcpu)) { vcpu->arch.wqp = &vcpu->wq; kvmppc_create_vcpu_debugfs(vcpu, id); } return vcpu; } void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { /* Make sure we're not using the vcpu anymore */ hrtimer_cancel(&vcpu->arch.dec_timer); tasklet_kill(&vcpu->arch.tasklet); kvmppc_remove_vcpu_debugfs(vcpu); kvmppc_core_vcpu_free(vcpu); } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { kvm_arch_vcpu_free(vcpu); } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return kvmppc_core_pending_dec(vcpu); } /* * low level hrtimer wake routine. Because this runs in hardirq context * we schedule a tasklet to do the real work. */ enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) { struct kvm_vcpu *vcpu; vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); tasklet_schedule(&vcpu->arch.tasklet); return HRTIMER_NORESTART; } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); tasklet_init(&vcpu->arch.tasklet, kvmppc_decrementer_func, (ulong)vcpu); vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; vcpu->arch.dec_expires = ~(u64)0; #ifdef CONFIG_KVM_EXIT_TIMING mutex_init(&vcpu->arch.exit_timing_lock); #endif return 0; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { kvmppc_mmu_destroy(vcpu); } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { #ifdef CONFIG_BOOKE /* * vrsave (formerly usprg0) isn't used by Linux, but may * be used by the guest. * * On non-booke this is associated with Altivec and * is handled by code in book3s.c. */ mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); #endif kvmppc_core_vcpu_load(vcpu, cpu); vcpu->cpu = smp_processor_id(); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { kvmppc_core_vcpu_put(vcpu); #ifdef CONFIG_BOOKE vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); #endif vcpu->cpu = -1; } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { return -EINVAL; } static void kvmppc_complete_dcr_load(struct kvm_vcpu *vcpu, struct kvm_run *run) { kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, run->dcr.data); } static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run) { u64 uninitialized_var(gpr); if (run->mmio.len > sizeof(gpr)) { printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); return; } if (vcpu->arch.mmio_is_bigendian) { switch (run->mmio.len) { case 8: gpr = *(u64 *)run->mmio.data; break; case 4: gpr = *(u32 *)run->mmio.data; break; case 2: gpr = *(u16 *)run->mmio.data; break; case 1: gpr = *(u8 *)run->mmio.data; break; } } else { /* Convert BE data from userland back to LE. */ switch (run->mmio.len) { case 4: gpr = ld_le32((u32 *)run->mmio.data); break; case 2: gpr = ld_le16((u16 *)run->mmio.data); break; case 1: gpr = *(u8 *)run->mmio.data; break; } } if (vcpu->arch.mmio_sign_extend) { switch (run->mmio.len) { #ifdef CONFIG_PPC64 case 4: gpr = (s64)(s32)gpr; break; #endif case 2: gpr = (s64)(s16)gpr; break; case 1: gpr = (s64)(s8)gpr; break; } } kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { case KVM_MMIO_REG_GPR: kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); break; case KVM_MMIO_REG_FPR: vcpu->arch.fpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; break; #ifdef CONFIG_PPC_BOOK3S case KVM_MMIO_REG_QPR: vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; break; case KVM_MMIO_REG_FQPR: vcpu->arch.fpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; break; #endif default: BUG(); } } int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_bigendian) { if (bytes > sizeof(run->mmio.data)) { printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, run->mmio.len); } run->mmio.phys_addr = vcpu->arch.paddr_accessed; run->mmio.len = bytes; run->mmio.is_write = 0; vcpu->arch.io_gpr = rt; vcpu->arch.mmio_is_bigendian = is_bigendian; vcpu->mmio_needed = 1; vcpu->mmio_is_write = 0; vcpu->arch.mmio_sign_extend = 0; return EMULATE_DO_MMIO; } /* Same as above, but sign extends */ int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_bigendian) { int r; r = kvmppc_handle_load(run, vcpu, rt, bytes, is_bigendian); vcpu->arch.mmio_sign_extend = 1; return r; } int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, u64 val, unsigned int bytes, int is_bigendian) { void *data = run->mmio.data; if (bytes > sizeof(run->mmio.data)) { printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, run->mmio.len); } run->mmio.phys_addr = vcpu->arch.paddr_accessed; run->mmio.len = bytes; run->mmio.is_write = 1; vcpu->mmio_needed = 1; vcpu->mmio_is_write = 1; /* Store the value at the lowest bytes in 'data'. */ if (is_bigendian) { switch (bytes) { case 8: *(u64 *)data = val; break; case 4: *(u32 *)data = val; break; case 2: *(u16 *)data = val; break; case 1: *(u8 *)data = val; break; } } else { /* Store LE value into 'data'. */ switch (bytes) { case 4: st_le32(data, val); break; case 2: st_le16(data, val); break; case 1: *(u8 *)data = val; break; } } return EMULATE_DO_MMIO; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) { int r; sigset_t sigsaved; if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); if (vcpu->mmio_needed) { if (!vcpu->mmio_is_write) kvmppc_complete_mmio_load(vcpu, run); vcpu->mmio_needed = 0; } else if (vcpu->arch.dcr_needed) { if (!vcpu->arch.dcr_is_write) kvmppc_complete_dcr_load(vcpu, run); vcpu->arch.dcr_needed = 0; } else if (vcpu->arch.osi_needed) { u64 *gprs = run->osi.gprs; int i; for (i = 0; i < 32; i++) kvmppc_set_gpr(vcpu, i, gprs[i]); vcpu->arch.osi_needed = 0; } else if (vcpu->arch.hcall_needed) { int i; kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); for (i = 0; i < 9; ++i) kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); vcpu->arch.hcall_needed = 0; } r = kvmppc_vcpu_run(run, vcpu); if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); return r; } int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { if (irq->irq == KVM_INTERRUPT_UNSET) { kvmppc_core_dequeue_external(vcpu, irq); return 0; } kvmppc_core_queue_external(vcpu, irq); kvm_vcpu_kick(vcpu); return 0; } static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, struct kvm_enable_cap *cap) { int r; if (cap->flags) return -EINVAL; switch (cap->cap) { case KVM_CAP_PPC_OSI: r = 0; vcpu->arch.osi_enabled = true; break; case KVM_CAP_PPC_PAPR: r = 0; vcpu->arch.papr_enabled = true; break; #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) case KVM_CAP_SW_TLB: { struct kvm_config_tlb cfg; void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; r = -EFAULT; if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) break; r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); break; } #endif default: r = -EINVAL; break; } if (!r) r = kvmppc_sanity_check(vcpu); return r; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, argp, sizeof(irq))) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); goto out; } case KVM_ENABLE_CAP: { struct kvm_enable_cap cap; r = -EFAULT; if (copy_from_user(&cap, argp, sizeof(cap))) goto out; r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); break; } case KVM_SET_ONE_REG: case KVM_GET_ONE_REG: { struct kvm_one_reg reg; r = -EFAULT; if (copy_from_user(®, argp, sizeof(reg))) goto out; if (ioctl == KVM_SET_ONE_REG) r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); else r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); break; } #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) case KVM_DIRTY_TLB: { struct kvm_dirty_tlb dirty; r = -EFAULT; if (copy_from_user(&dirty, argp, sizeof(dirty))) goto out; r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); break; } #endif default: r = -EINVAL; } out: return r; } int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) { u32 inst_nop = 0x60000000; #ifdef CONFIG_KVM_BOOKE_HV u32 inst_sc1 = 0x44000022; pvinfo->hcall[0] = inst_sc1; pvinfo->hcall[1] = inst_nop; pvinfo->hcall[2] = inst_nop; pvinfo->hcall[3] = inst_nop; #else u32 inst_lis = 0x3c000000; u32 inst_ori = 0x60000000; u32 inst_sc = 0x44000002; u32 inst_imm_mask = 0xffff; /* * The hypercall to get into KVM from within guest context is as * follows: * * lis r0, r0, KVM_SC_MAGIC_R0@h * ori r0, KVM_SC_MAGIC_R0@l * sc * nop */ pvinfo->hcall[0] = inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask); pvinfo->hcall[1] = inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask); pvinfo->hcall[2] = inst_sc; pvinfo->hcall[3] = inst_nop; #endif pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; return 0; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_PPC_GET_PVINFO: { struct kvm_ppc_pvinfo pvinfo; memset(&pvinfo, 0, sizeof(pvinfo)); r = kvm_vm_ioctl_get_pvinfo(&pvinfo); if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { r = -EFAULT; goto out; } break; } #ifdef CONFIG_PPC_BOOK3S_64 case KVM_CREATE_SPAPR_TCE: { struct kvm_create_spapr_tce create_tce; struct kvm *kvm = filp->private_data; r = -EFAULT; if (copy_from_user(&create_tce, argp, sizeof(create_tce))) goto out; r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce); goto out; } #endif /* CONFIG_PPC_BOOK3S_64 */ #ifdef CONFIG_KVM_BOOK3S_64_HV case KVM_ALLOCATE_RMA: { struct kvm *kvm = filp->private_data; struct kvm_allocate_rma rma; r = kvm_vm_ioctl_allocate_rma(kvm, &rma); if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma))) r = -EFAULT; break; } case KVM_PPC_ALLOCATE_HTAB: { struct kvm *kvm = filp->private_data; u32 htab_order; r = -EFAULT; if (get_user(htab_order, (u32 __user *)argp)) break; r = kvmppc_alloc_reset_hpt(kvm, &htab_order); if (r) break; r = -EFAULT; if (put_user(htab_order, (u32 __user *)argp)) break; r = 0; break; } #endif /* CONFIG_KVM_BOOK3S_64_HV */ #ifdef CONFIG_PPC_BOOK3S_64 case KVM_PPC_GET_SMMU_INFO: { struct kvm *kvm = filp->private_data; struct kvm_ppc_smmu_info info; memset(&info, 0, sizeof(info)); r = kvm_vm_ioctl_get_smmu_info(kvm, &info); if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) r = -EFAULT; break; } #endif /* CONFIG_PPC_BOOK3S_64 */ default: r = -ENOTTY; } out: return r; } static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; static unsigned long nr_lpids; long kvmppc_alloc_lpid(void) { long lpid; do { lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); if (lpid >= nr_lpids) { pr_err("%s: No LPIDs free\n", __func__); return -ENOMEM; } } while (test_and_set_bit(lpid, lpid_inuse)); return lpid; } void kvmppc_claim_lpid(long lpid) { set_bit(lpid, lpid_inuse); } void kvmppc_free_lpid(long lpid) { clear_bit(lpid, lpid_inuse); } void kvmppc_init_lpid(unsigned long nr_lpids_param) { nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); memset(lpid_inuse, 0, sizeof(lpid_inuse)); } int kvm_arch_init(void *opaque) { return 0; } void kvm_arch_exit(void) { }