/* * linux/arch/arm/mach-integrator/core.c * * Copyright (C) 2000-2003 Deep Blue Solutions Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, as * published by the Free Software Foundation. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/device.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/termios.h> #include <linux/amba/bus.h> #include <linux/amba/serial.h> #include <asm/hardware.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/hardware/arm_timer.h> #include <asm/arch/cm.h> #include <asm/system.h> #include <asm/leds.h> #include <asm/mach/time.h> #include "common.h" static struct amba_pl010_data integrator_uart_data; static struct amba_device rtc_device = { .dev = { .bus_id = "mb:15", }, .res = { .start = INTEGRATOR_RTC_BASE, .end = INTEGRATOR_RTC_BASE + SZ_4K - 1, .flags = IORESOURCE_MEM, }, .irq = { IRQ_RTCINT, NO_IRQ }, .periphid = 0x00041030, }; static struct amba_device uart0_device = { .dev = { .bus_id = "mb:16", .platform_data = &integrator_uart_data, }, .res = { .start = INTEGRATOR_UART0_BASE, .end = INTEGRATOR_UART0_BASE + SZ_4K - 1, .flags = IORESOURCE_MEM, }, .irq = { IRQ_UARTINT0, NO_IRQ }, .periphid = 0x0041010, }; static struct amba_device uart1_device = { .dev = { .bus_id = "mb:17", .platform_data = &integrator_uart_data, }, .res = { .start = INTEGRATOR_UART1_BASE, .end = INTEGRATOR_UART1_BASE + SZ_4K - 1, .flags = IORESOURCE_MEM, }, .irq = { IRQ_UARTINT1, NO_IRQ }, .periphid = 0x0041010, }; static struct amba_device kmi0_device = { .dev = { .bus_id = "mb:18", }, .res = { .start = KMI0_BASE, .end = KMI0_BASE + SZ_4K - 1, .flags = IORESOURCE_MEM, }, .irq = { IRQ_KMIINT0, NO_IRQ }, .periphid = 0x00041050, }; static struct amba_device kmi1_device = { .dev = { .bus_id = "mb:19", }, .res = { .start = KMI1_BASE, .end = KMI1_BASE + SZ_4K - 1, .flags = IORESOURCE_MEM, }, .irq = { IRQ_KMIINT1, NO_IRQ }, .periphid = 0x00041050, }; static struct amba_device *amba_devs[] __initdata = { &rtc_device, &uart0_device, &uart1_device, &kmi0_device, &kmi1_device, }; static int __init integrator_init(void) { int i; for (i = 0; i < ARRAY_SIZE(amba_devs); i++) { struct amba_device *d = amba_devs[i]; amba_device_register(d, &iomem_resource); } return 0; } arch_initcall(integrator_init); /* * On the Integrator platform, the port RTS and DTR are provided by * bits in the following SC_CTRLS register bits: * RTS DTR * UART0 7 6 * UART1 5 4 */ #define SC_CTRLC (IO_ADDRESS(INTEGRATOR_SC_BASE) + INTEGRATOR_SC_CTRLC_OFFSET) #define SC_CTRLS (IO_ADDRESS(INTEGRATOR_SC_BASE) + INTEGRATOR_SC_CTRLS_OFFSET) static void integrator_uart_set_mctrl(struct amba_device *dev, void __iomem *base, unsigned int mctrl) { unsigned int ctrls = 0, ctrlc = 0, rts_mask, dtr_mask; if (dev == &uart0_device) { rts_mask = 1 << 4; dtr_mask = 1 << 5; } else { rts_mask = 1 << 6; dtr_mask = 1 << 7; } if (mctrl & TIOCM_RTS) ctrlc |= rts_mask; else ctrls |= rts_mask; if (mctrl & TIOCM_DTR) ctrlc |= dtr_mask; else ctrls |= dtr_mask; __raw_writel(ctrls, SC_CTRLS); __raw_writel(ctrlc, SC_CTRLC); } static struct amba_pl010_data integrator_uart_data = { .set_mctrl = integrator_uart_set_mctrl, }; #define CM_CTRL IO_ADDRESS(INTEGRATOR_HDR_BASE) + INTEGRATOR_HDR_CTRL_OFFSET static DEFINE_SPINLOCK(cm_lock); /** * cm_control - update the CM_CTRL register. * @mask: bits to change * @set: bits to set */ void cm_control(u32 mask, u32 set) { unsigned long flags; u32 val; spin_lock_irqsave(&cm_lock, flags); val = readl(CM_CTRL) & ~mask; writel(val | set, CM_CTRL); spin_unlock_irqrestore(&cm_lock, flags); } EXPORT_SYMBOL(cm_control); /* * Where is the timer (VA)? */ #define TIMER0_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000000) #define TIMER1_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000100) #define TIMER2_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000200) #define VA_IC_BASE IO_ADDRESS(INTEGRATOR_IC_BASE) /* * How long is the timer interval? */ #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10) #if TIMER_INTERVAL >= 0x100000 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC) #elif TIMER_INTERVAL >= 0x10000 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC) #else #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC) #endif static unsigned long timer_reload; /* * Returns number of ms since last clock interrupt. Note that interrupts * will have been disabled by do_gettimeoffset() */ unsigned long integrator_gettimeoffset(void) { unsigned long ticks1, ticks2, status; /* * Get the current number of ticks. Note that there is a race * condition between us reading the timer and checking for * an interrupt. We get around this by ensuring that the * counter has not reloaded between our two reads. */ ticks2 = readl(TIMER1_VA_BASE + TIMER_VALUE) & 0xffff; do { ticks1 = ticks2; status = __raw_readl(VA_IC_BASE + IRQ_RAW_STATUS); ticks2 = readl(TIMER1_VA_BASE + TIMER_VALUE) & 0xffff; } while (ticks2 > ticks1); /* * Number of ticks since last interrupt. */ ticks1 = timer_reload - ticks2; /* * Interrupt pending? If so, we've reloaded once already. */ if (status & (1 << IRQ_TIMERINT1)) ticks1 += timer_reload; /* * Convert the ticks to usecs */ return TICKS2USECS(ticks1); } /* * IRQ handler for the timer */ static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { write_seqlock(&xtime_lock); /* * clear the interrupt */ writel(1, TIMER1_VA_BASE + TIMER_INTCLR); /* * the clock tick routines are only processed on the * primary CPU */ if (hard_smp_processor_id() == 0) { timer_tick(regs); #ifdef CONFIG_SMP smp_send_timer(); #endif } #ifdef CONFIG_SMP /* * this is the ARM equivalent of the APIC timer interrupt */ update_process_times(user_mode(regs)); #endif /* CONFIG_SMP */ write_sequnlock(&xtime_lock); return IRQ_HANDLED; } static struct irqaction integrator_timer_irq = { .name = "Integrator Timer Tick", .flags = IRQF_DISABLED | IRQF_TIMER, .handler = integrator_timer_interrupt, }; /* * Set up timer interrupt, and return the current time in seconds. */ void __init integrator_time_init(unsigned long reload, unsigned int ctrl) { unsigned int timer_ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC; timer_reload = reload; timer_ctrl |= ctrl; if (timer_reload > 0x100000) { timer_reload >>= 8; timer_ctrl |= TIMER_CTRL_DIV256; } else if (timer_reload > 0x010000) { timer_reload >>= 4; timer_ctrl |= TIMER_CTRL_DIV16; } /* * Initialise to a known state (all timers off) */ writel(0, TIMER0_VA_BASE + TIMER_CTRL); writel(0, TIMER1_VA_BASE + TIMER_CTRL); writel(0, TIMER2_VA_BASE + TIMER_CTRL); writel(timer_reload, TIMER1_VA_BASE + TIMER_LOAD); writel(timer_reload, TIMER1_VA_BASE + TIMER_VALUE); writel(timer_ctrl, TIMER1_VA_BASE + TIMER_CTRL); /* * Make irqs happen for the system timer */ setup_irq(IRQ_TIMERINT1, &integrator_timer_irq); }