/* * OMAP2 McSPI controller driver * * Copyright (C) 2005, 2006 Nokia Corporation * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and * Juha Yrjölä <juha.yrjola@nokia.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/spi/spi.h> #include <mach/dma.h> #include <mach/clock.h> #define OMAP2_MCSPI_MAX_FREQ 48000000 #define OMAP2_MCSPI_REVISION 0x00 #define OMAP2_MCSPI_SYSCONFIG 0x10 #define OMAP2_MCSPI_SYSSTATUS 0x14 #define OMAP2_MCSPI_IRQSTATUS 0x18 #define OMAP2_MCSPI_IRQENABLE 0x1c #define OMAP2_MCSPI_WAKEUPENABLE 0x20 #define OMAP2_MCSPI_SYST 0x24 #define OMAP2_MCSPI_MODULCTRL 0x28 /* per-channel banks, 0x14 bytes each, first is: */ #define OMAP2_MCSPI_CHCONF0 0x2c #define OMAP2_MCSPI_CHSTAT0 0x30 #define OMAP2_MCSPI_CHCTRL0 0x34 #define OMAP2_MCSPI_TX0 0x38 #define OMAP2_MCSPI_RX0 0x3c /* per-register bitmasks: */ #define OMAP2_MCSPI_SYSCONFIG_AUTOIDLE (1 << 0) #define OMAP2_MCSPI_SYSCONFIG_SOFTRESET (1 << 1) #define OMAP2_MCSPI_SYSSTATUS_RESETDONE (1 << 0) #define OMAP2_MCSPI_MODULCTRL_SINGLE (1 << 0) #define OMAP2_MCSPI_MODULCTRL_MS (1 << 2) #define OMAP2_MCSPI_MODULCTRL_STEST (1 << 3) #define OMAP2_MCSPI_CHCONF_PHA (1 << 0) #define OMAP2_MCSPI_CHCONF_POL (1 << 1) #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) #define OMAP2_MCSPI_CHCONF_EPOL (1 << 6) #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY (0x01 << 12) #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY (0x02 << 12) #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) #define OMAP2_MCSPI_CHCONF_DMAW (1 << 14) #define OMAP2_MCSPI_CHCONF_DMAR (1 << 15) #define OMAP2_MCSPI_CHCONF_DPE0 (1 << 16) #define OMAP2_MCSPI_CHCONF_DPE1 (1 << 17) #define OMAP2_MCSPI_CHCONF_IS (1 << 18) #define OMAP2_MCSPI_CHCONF_TURBO (1 << 19) #define OMAP2_MCSPI_CHCONF_FORCE (1 << 20) #define OMAP2_MCSPI_CHSTAT_RXS (1 << 0) #define OMAP2_MCSPI_CHSTAT_TXS (1 << 1) #define OMAP2_MCSPI_CHSTAT_EOT (1 << 2) #define OMAP2_MCSPI_CHCTRL_EN (1 << 0) /* We have 2 DMA channels per CS, one for RX and one for TX */ struct omap2_mcspi_dma { int dma_tx_channel; int dma_rx_channel; int dma_tx_sync_dev; int dma_rx_sync_dev; struct completion dma_tx_completion; struct completion dma_rx_completion; }; /* use PIO for small transfers, avoiding DMA setup/teardown overhead and * cache operations; better heuristics consider wordsize and bitrate. */ #define DMA_MIN_BYTES 8 struct omap2_mcspi { struct work_struct work; /* lock protects queue and registers */ spinlock_t lock; struct list_head msg_queue; struct spi_master *master; struct clk *ick; struct clk *fck; /* Virtual base address of the controller */ void __iomem *base; unsigned long phys; /* SPI1 has 4 channels, while SPI2 has 2 */ struct omap2_mcspi_dma *dma_channels; }; struct omap2_mcspi_cs { void __iomem *base; unsigned long phys; int word_len; }; static struct workqueue_struct *omap2_mcspi_wq; #define MOD_REG_BIT(val, mask, set) do { \ if (set) \ val |= mask; \ else \ val &= ~mask; \ } while (0) static inline void mcspi_write_reg(struct spi_master *master, int idx, u32 val) { struct omap2_mcspi *mcspi = spi_master_get_devdata(master); __raw_writel(val, mcspi->base + idx); } static inline u32 mcspi_read_reg(struct spi_master *master, int idx) { struct omap2_mcspi *mcspi = spi_master_get_devdata(master); return __raw_readl(mcspi->base + idx); } static inline void mcspi_write_cs_reg(const struct spi_device *spi, int idx, u32 val) { struct omap2_mcspi_cs *cs = spi->controller_state; __raw_writel(val, cs->base + idx); } static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) { struct omap2_mcspi_cs *cs = spi->controller_state; return __raw_readl(cs->base + idx); } static void omap2_mcspi_set_dma_req(const struct spi_device *spi, int is_read, int enable) { u32 l, rw; l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); if (is_read) /* 1 is read, 0 write */ rw = OMAP2_MCSPI_CHCONF_DMAR; else rw = OMAP2_MCSPI_CHCONF_DMAW; MOD_REG_BIT(l, rw, enable); mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); } static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) { u32 l; l = enable ? OMAP2_MCSPI_CHCTRL_EN : 0; mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, l); } static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active) { u32 l; l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); MOD_REG_BIT(l, OMAP2_MCSPI_CHCONF_FORCE, cs_active); mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); } static void omap2_mcspi_set_master_mode(struct spi_master *master) { u32 l; /* setup when switching from (reset default) slave mode * to single-channel master mode */ l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL); MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_STEST, 0); MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_MS, 0); MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_SINGLE, 1); mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l); } static unsigned omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) { struct omap2_mcspi *mcspi; struct omap2_mcspi_cs *cs = spi->controller_state; struct omap2_mcspi_dma *mcspi_dma; unsigned int count, c; unsigned long base, tx_reg, rx_reg; int word_len, data_type, element_count; u8 * rx; const u8 * tx; mcspi = spi_master_get_devdata(spi->master); mcspi_dma = &mcspi->dma_channels[spi->chip_select]; count = xfer->len; c = count; word_len = cs->word_len; base = cs->phys; tx_reg = base + OMAP2_MCSPI_TX0; rx_reg = base + OMAP2_MCSPI_RX0; rx = xfer->rx_buf; tx = xfer->tx_buf; if (word_len <= 8) { data_type = OMAP_DMA_DATA_TYPE_S8; element_count = count; } else if (word_len <= 16) { data_type = OMAP_DMA_DATA_TYPE_S16; element_count = count >> 1; } else /* word_len <= 32 */ { data_type = OMAP_DMA_DATA_TYPE_S32; element_count = count >> 2; } if (tx != NULL) { omap_set_dma_transfer_params(mcspi_dma->dma_tx_channel, data_type, element_count, 1, OMAP_DMA_SYNC_ELEMENT, mcspi_dma->dma_tx_sync_dev, 0); omap_set_dma_dest_params(mcspi_dma->dma_tx_channel, 0, OMAP_DMA_AMODE_CONSTANT, tx_reg, 0, 0); omap_set_dma_src_params(mcspi_dma->dma_tx_channel, 0, OMAP_DMA_AMODE_POST_INC, xfer->tx_dma, 0, 0); } if (rx != NULL) { omap_set_dma_transfer_params(mcspi_dma->dma_rx_channel, data_type, element_count, 1, OMAP_DMA_SYNC_ELEMENT, mcspi_dma->dma_rx_sync_dev, 1); omap_set_dma_src_params(mcspi_dma->dma_rx_channel, 0, OMAP_DMA_AMODE_CONSTANT, rx_reg, 0, 0); omap_set_dma_dest_params(mcspi_dma->dma_rx_channel, 0, OMAP_DMA_AMODE_POST_INC, xfer->rx_dma, 0, 0); } if (tx != NULL) { omap_start_dma(mcspi_dma->dma_tx_channel); omap2_mcspi_set_dma_req(spi, 0, 1); } if (rx != NULL) { omap_start_dma(mcspi_dma->dma_rx_channel); omap2_mcspi_set_dma_req(spi, 1, 1); } if (tx != NULL) { wait_for_completion(&mcspi_dma->dma_tx_completion); dma_unmap_single(NULL, xfer->tx_dma, count, DMA_TO_DEVICE); } if (rx != NULL) { wait_for_completion(&mcspi_dma->dma_rx_completion); dma_unmap_single(NULL, xfer->rx_dma, count, DMA_FROM_DEVICE); } return count; } static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit) { unsigned long timeout; timeout = jiffies + msecs_to_jiffies(1000); while (!(__raw_readl(reg) & bit)) { if (time_after(jiffies, timeout)) return -1; cpu_relax(); } return 0; } static unsigned omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) { struct omap2_mcspi *mcspi; struct omap2_mcspi_cs *cs = spi->controller_state; unsigned int count, c; u32 l; void __iomem *base = cs->base; void __iomem *tx_reg; void __iomem *rx_reg; void __iomem *chstat_reg; int word_len; mcspi = spi_master_get_devdata(spi->master); count = xfer->len; c = count; word_len = cs->word_len; l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); l &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; /* We store the pre-calculated register addresses on stack to speed * up the transfer loop. */ tx_reg = base + OMAP2_MCSPI_TX0; rx_reg = base + OMAP2_MCSPI_RX0; chstat_reg = base + OMAP2_MCSPI_CHSTAT0; if (word_len <= 8) { u8 *rx; const u8 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; do { c -= 1; if (tx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_TXS) < 0) { dev_err(&spi->dev, "TXS timed out\n"); goto out; } #ifdef VERBOSE dev_dbg(&spi->dev, "write-%d %02x\n", word_len, *tx); #endif __raw_writel(*tx++, tx_reg); } if (rx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS) < 0) { dev_err(&spi->dev, "RXS timed out\n"); goto out; } /* prevent last RX_ONLY read from triggering * more word i/o: switch to rx+tx */ if (c == 0 && tx == NULL) mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); *rx++ = __raw_readl(rx_reg); #ifdef VERBOSE dev_dbg(&spi->dev, "read-%d %02x\n", word_len, *(rx - 1)); #endif } } while (c); } else if (word_len <= 16) { u16 *rx; const u16 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; do { c -= 2; if (tx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_TXS) < 0) { dev_err(&spi->dev, "TXS timed out\n"); goto out; } #ifdef VERBOSE dev_dbg(&spi->dev, "write-%d %04x\n", word_len, *tx); #endif __raw_writel(*tx++, tx_reg); } if (rx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS) < 0) { dev_err(&spi->dev, "RXS timed out\n"); goto out; } /* prevent last RX_ONLY read from triggering * more word i/o: switch to rx+tx */ if (c == 0 && tx == NULL) mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); *rx++ = __raw_readl(rx_reg); #ifdef VERBOSE dev_dbg(&spi->dev, "read-%d %04x\n", word_len, *(rx - 1)); #endif } } while (c); } else if (word_len <= 32) { u32 *rx; const u32 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; do { c -= 4; if (tx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_TXS) < 0) { dev_err(&spi->dev, "TXS timed out\n"); goto out; } #ifdef VERBOSE dev_dbg(&spi->dev, "write-%d %04x\n", word_len, *tx); #endif __raw_writel(*tx++, tx_reg); } if (rx != NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS) < 0) { dev_err(&spi->dev, "RXS timed out\n"); goto out; } /* prevent last RX_ONLY read from triggering * more word i/o: switch to rx+tx */ if (c == 0 && tx == NULL) mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); *rx++ = __raw_readl(rx_reg); #ifdef VERBOSE dev_dbg(&spi->dev, "read-%d %04x\n", word_len, *(rx - 1)); #endif } } while (c); } /* for TX_ONLY mode, be sure all words have shifted out */ if (xfer->rx_buf == NULL) { if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_TXS) < 0) { dev_err(&spi->dev, "TXS timed out\n"); } else if (mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_EOT) < 0) dev_err(&spi->dev, "EOT timed out\n"); } out: return count - c; } /* called only when no transfer is active to this device */ static int omap2_mcspi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct omap2_mcspi_cs *cs = spi->controller_state; struct omap2_mcspi *mcspi; u32 l = 0, div = 0; u8 word_len = spi->bits_per_word; mcspi = spi_master_get_devdata(spi->master); if (t != NULL && t->bits_per_word) word_len = t->bits_per_word; cs->word_len = word_len; if (spi->max_speed_hz) { while (div <= 15 && (OMAP2_MCSPI_MAX_FREQ / (1 << div)) > spi->max_speed_hz) div++; } else div = 15; l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS * REVISIT: this controller could support SPI_3WIRE mode. */ l &= ~(OMAP2_MCSPI_CHCONF_IS|OMAP2_MCSPI_CHCONF_DPE1); l |= OMAP2_MCSPI_CHCONF_DPE0; /* wordlength */ l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; l |= (word_len - 1) << 7; /* set chipselect polarity; manage with FORCE */ if (!(spi->mode & SPI_CS_HIGH)) l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */ else l &= ~OMAP2_MCSPI_CHCONF_EPOL; /* set clock divisor */ l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; l |= div << 2; /* set SPI mode 0..3 */ if (spi->mode & SPI_CPOL) l |= OMAP2_MCSPI_CHCONF_POL; else l &= ~OMAP2_MCSPI_CHCONF_POL; if (spi->mode & SPI_CPHA) l |= OMAP2_MCSPI_CHCONF_PHA; else l &= ~OMAP2_MCSPI_CHCONF_PHA; mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n", OMAP2_MCSPI_MAX_FREQ / (1 << div), (spi->mode & SPI_CPHA) ? "trailing" : "leading", (spi->mode & SPI_CPOL) ? "inverted" : "normal"); return 0; } static void omap2_mcspi_dma_rx_callback(int lch, u16 ch_status, void *data) { struct spi_device *spi = data; struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *mcspi_dma; mcspi = spi_master_get_devdata(spi->master); mcspi_dma = &(mcspi->dma_channels[spi->chip_select]); complete(&mcspi_dma->dma_rx_completion); /* We must disable the DMA RX request */ omap2_mcspi_set_dma_req(spi, 1, 0); } static void omap2_mcspi_dma_tx_callback(int lch, u16 ch_status, void *data) { struct spi_device *spi = data; struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *mcspi_dma; mcspi = spi_master_get_devdata(spi->master); mcspi_dma = &(mcspi->dma_channels[spi->chip_select]); complete(&mcspi_dma->dma_tx_completion); /* We must disable the DMA TX request */ omap2_mcspi_set_dma_req(spi, 0, 0); } static int omap2_mcspi_request_dma(struct spi_device *spi) { struct spi_master *master = spi->master; struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *mcspi_dma; mcspi = spi_master_get_devdata(master); mcspi_dma = mcspi->dma_channels + spi->chip_select; if (omap_request_dma(mcspi_dma->dma_rx_sync_dev, "McSPI RX", omap2_mcspi_dma_rx_callback, spi, &mcspi_dma->dma_rx_channel)) { dev_err(&spi->dev, "no RX DMA channel for McSPI\n"); return -EAGAIN; } if (omap_request_dma(mcspi_dma->dma_tx_sync_dev, "McSPI TX", omap2_mcspi_dma_tx_callback, spi, &mcspi_dma->dma_tx_channel)) { omap_free_dma(mcspi_dma->dma_rx_channel); mcspi_dma->dma_rx_channel = -1; dev_err(&spi->dev, "no TX DMA channel for McSPI\n"); return -EAGAIN; } init_completion(&mcspi_dma->dma_rx_completion); init_completion(&mcspi_dma->dma_tx_completion); return 0; } /* the spi->mode bits understood by this driver: */ #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH) static int omap2_mcspi_setup(struct spi_device *spi) { int ret; struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *mcspi_dma; struct omap2_mcspi_cs *cs = spi->controller_state; if (spi->mode & ~MODEBITS) { dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n", spi->mode & ~MODEBITS); return -EINVAL; } if (spi->bits_per_word == 0) spi->bits_per_word = 8; else if (spi->bits_per_word < 4 || spi->bits_per_word > 32) { dev_dbg(&spi->dev, "setup: unsupported %d bit words\n", spi->bits_per_word); return -EINVAL; } mcspi = spi_master_get_devdata(spi->master); mcspi_dma = &mcspi->dma_channels[spi->chip_select]; if (!cs) { cs = kzalloc(sizeof *cs, GFP_KERNEL); if (!cs) return -ENOMEM; cs->base = mcspi->base + spi->chip_select * 0x14; cs->phys = mcspi->phys + spi->chip_select * 0x14; spi->controller_state = cs; } if (mcspi_dma->dma_rx_channel == -1 || mcspi_dma->dma_tx_channel == -1) { ret = omap2_mcspi_request_dma(spi); if (ret < 0) return ret; } clk_enable(mcspi->ick); clk_enable(mcspi->fck); ret = omap2_mcspi_setup_transfer(spi, NULL); clk_disable(mcspi->fck); clk_disable(mcspi->ick); return ret; } static void omap2_mcspi_cleanup(struct spi_device *spi) { struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *mcspi_dma; mcspi = spi_master_get_devdata(spi->master); mcspi_dma = &mcspi->dma_channels[spi->chip_select]; kfree(spi->controller_state); if (mcspi_dma->dma_rx_channel != -1) { omap_free_dma(mcspi_dma->dma_rx_channel); mcspi_dma->dma_rx_channel = -1; } if (mcspi_dma->dma_tx_channel != -1) { omap_free_dma(mcspi_dma->dma_tx_channel); mcspi_dma->dma_tx_channel = -1; } } static void omap2_mcspi_work(struct work_struct *work) { struct omap2_mcspi *mcspi; mcspi = container_of(work, struct omap2_mcspi, work); spin_lock_irq(&mcspi->lock); clk_enable(mcspi->ick); clk_enable(mcspi->fck); /* We only enable one channel at a time -- the one whose message is * at the head of the queue -- although this controller would gladly * arbitrate among multiple channels. This corresponds to "single * channel" master mode. As a side effect, we need to manage the * chipselect with the FORCE bit ... CS != channel enable. */ while (!list_empty(&mcspi->msg_queue)) { struct spi_message *m; struct spi_device *spi; struct spi_transfer *t = NULL; int cs_active = 0; struct omap2_mcspi_cs *cs; int par_override = 0; int status = 0; u32 chconf; m = container_of(mcspi->msg_queue.next, struct spi_message, queue); list_del_init(&m->queue); spin_unlock_irq(&mcspi->lock); spi = m->spi; cs = spi->controller_state; omap2_mcspi_set_enable(spi, 1); list_for_each_entry(t, &m->transfers, transfer_list) { if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) { status = -EINVAL; break; } if (par_override || t->speed_hz || t->bits_per_word) { par_override = 1; status = omap2_mcspi_setup_transfer(spi, t); if (status < 0) break; if (!t->speed_hz && !t->bits_per_word) par_override = 0; } if (!cs_active) { omap2_mcspi_force_cs(spi, 1); cs_active = 1; } chconf = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; if (t->tx_buf == NULL) chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; else if (t->rx_buf == NULL) chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, chconf); if (t->len) { unsigned count; /* RX_ONLY mode needs dummy data in TX reg */ if (t->tx_buf == NULL) __raw_writel(0, cs->base + OMAP2_MCSPI_TX0); if (m->is_dma_mapped || t->len >= DMA_MIN_BYTES) count = omap2_mcspi_txrx_dma(spi, t); else count = omap2_mcspi_txrx_pio(spi, t); m->actual_length += count; if (count != t->len) { status = -EIO; break; } } if (t->delay_usecs) udelay(t->delay_usecs); /* ignore the "leave it on after last xfer" hint */ if (t->cs_change) { omap2_mcspi_force_cs(spi, 0); cs_active = 0; } } /* Restore defaults if they were overriden */ if (par_override) { par_override = 0; status = omap2_mcspi_setup_transfer(spi, NULL); } if (cs_active) omap2_mcspi_force_cs(spi, 0); omap2_mcspi_set_enable(spi, 0); m->status = status; m->complete(m->context); spin_lock_irq(&mcspi->lock); } clk_disable(mcspi->fck); clk_disable(mcspi->ick); spin_unlock_irq(&mcspi->lock); } static int omap2_mcspi_transfer(struct spi_device *spi, struct spi_message *m) { struct omap2_mcspi *mcspi; unsigned long flags; struct spi_transfer *t; m->actual_length = 0; m->status = 0; /* reject invalid messages and transfers */ if (list_empty(&m->transfers) || !m->complete) return -EINVAL; list_for_each_entry(t, &m->transfers, transfer_list) { const void *tx_buf = t->tx_buf; void *rx_buf = t->rx_buf; unsigned len = t->len; if (t->speed_hz > OMAP2_MCSPI_MAX_FREQ || (len && !(rx_buf || tx_buf)) || (t->bits_per_word && ( t->bits_per_word < 4 || t->bits_per_word > 32))) { dev_dbg(&spi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n", t->speed_hz, len, tx_buf ? "tx" : "", rx_buf ? "rx" : "", t->bits_per_word); return -EINVAL; } if (t->speed_hz && t->speed_hz < OMAP2_MCSPI_MAX_FREQ/(1<<16)) { dev_dbg(&spi->dev, "%d Hz max exceeds %d\n", t->speed_hz, OMAP2_MCSPI_MAX_FREQ/(1<<16)); return -EINVAL; } if (m->is_dma_mapped || len < DMA_MIN_BYTES) continue; /* Do DMA mapping "early" for better error reporting and * dcache use. Note that if dma_unmap_single() ever starts * to do real work on ARM, we'd need to clean up mappings * for previous transfers on *ALL* exits of this loop... */ if (tx_buf != NULL) { t->tx_dma = dma_map_single(&spi->dev, (void *) tx_buf, len, DMA_TO_DEVICE); if (dma_mapping_error(&spi->dev, t->tx_dma)) { dev_dbg(&spi->dev, "dma %cX %d bytes error\n", 'T', len); return -EINVAL; } } if (rx_buf != NULL) { t->rx_dma = dma_map_single(&spi->dev, rx_buf, t->len, DMA_FROM_DEVICE); if (dma_mapping_error(&spi->dev, t->rx_dma)) { dev_dbg(&spi->dev, "dma %cX %d bytes error\n", 'R', len); if (tx_buf != NULL) dma_unmap_single(NULL, t->tx_dma, len, DMA_TO_DEVICE); return -EINVAL; } } } mcspi = spi_master_get_devdata(spi->master); spin_lock_irqsave(&mcspi->lock, flags); list_add_tail(&m->queue, &mcspi->msg_queue); queue_work(omap2_mcspi_wq, &mcspi->work); spin_unlock_irqrestore(&mcspi->lock, flags); return 0; } static int __init omap2_mcspi_reset(struct omap2_mcspi *mcspi) { struct spi_master *master = mcspi->master; u32 tmp; clk_enable(mcspi->ick); clk_enable(mcspi->fck); mcspi_write_reg(master, OMAP2_MCSPI_SYSCONFIG, OMAP2_MCSPI_SYSCONFIG_SOFTRESET); do { tmp = mcspi_read_reg(master, OMAP2_MCSPI_SYSSTATUS); } while (!(tmp & OMAP2_MCSPI_SYSSTATUS_RESETDONE)); mcspi_write_reg(master, OMAP2_MCSPI_SYSCONFIG, /* (3 << 8) | (2 << 3) | */ OMAP2_MCSPI_SYSCONFIG_AUTOIDLE); omap2_mcspi_set_master_mode(master); clk_disable(mcspi->fck); clk_disable(mcspi->ick); return 0; } static u8 __initdata spi1_rxdma_id [] = { OMAP24XX_DMA_SPI1_RX0, OMAP24XX_DMA_SPI1_RX1, OMAP24XX_DMA_SPI1_RX2, OMAP24XX_DMA_SPI1_RX3, }; static u8 __initdata spi1_txdma_id [] = { OMAP24XX_DMA_SPI1_TX0, OMAP24XX_DMA_SPI1_TX1, OMAP24XX_DMA_SPI1_TX2, OMAP24XX_DMA_SPI1_TX3, }; static u8 __initdata spi2_rxdma_id[] = { OMAP24XX_DMA_SPI2_RX0, OMAP24XX_DMA_SPI2_RX1, }; static u8 __initdata spi2_txdma_id[] = { OMAP24XX_DMA_SPI2_TX0, OMAP24XX_DMA_SPI2_TX1, }; #if defined(CONFIG_ARCH_OMAP2430) || defined(CONFIG_ARCH_OMAP34XX) static u8 __initdata spi3_rxdma_id[] = { OMAP24XX_DMA_SPI3_RX0, OMAP24XX_DMA_SPI3_RX1, }; static u8 __initdata spi3_txdma_id[] = { OMAP24XX_DMA_SPI3_TX0, OMAP24XX_DMA_SPI3_TX1, }; #endif #ifdef CONFIG_ARCH_OMAP3 static u8 __initdata spi4_rxdma_id[] = { OMAP34XX_DMA_SPI4_RX0, }; static u8 __initdata spi4_txdma_id[] = { OMAP34XX_DMA_SPI4_TX0, }; #endif static int __init omap2_mcspi_probe(struct platform_device *pdev) { struct spi_master *master; struct omap2_mcspi *mcspi; struct resource *r; int status = 0, i; const u8 *rxdma_id, *txdma_id; unsigned num_chipselect; switch (pdev->id) { case 1: rxdma_id = spi1_rxdma_id; txdma_id = spi1_txdma_id; num_chipselect = 4; break; case 2: rxdma_id = spi2_rxdma_id; txdma_id = spi2_txdma_id; num_chipselect = 2; break; #if defined(CONFIG_ARCH_OMAP2430) || defined(CONFIG_ARCH_OMAP3) case 3: rxdma_id = spi3_rxdma_id; txdma_id = spi3_txdma_id; num_chipselect = 2; break; #endif #ifdef CONFIG_ARCH_OMAP3 case 4: rxdma_id = spi4_rxdma_id; txdma_id = spi4_txdma_id; num_chipselect = 1; break; #endif default: return -EINVAL; } master = spi_alloc_master(&pdev->dev, sizeof *mcspi); if (master == NULL) { dev_dbg(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } if (pdev->id != -1) master->bus_num = pdev->id; master->setup = omap2_mcspi_setup; master->transfer = omap2_mcspi_transfer; master->cleanup = omap2_mcspi_cleanup; master->num_chipselect = num_chipselect; dev_set_drvdata(&pdev->dev, master); mcspi = spi_master_get_devdata(master); mcspi->master = master; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { status = -ENODEV; goto err1; } if (!request_mem_region(r->start, (r->end - r->start) + 1, dev_name(&pdev->dev))) { status = -EBUSY; goto err1; } mcspi->phys = r->start; mcspi->base = ioremap(r->start, r->end - r->start + 1); if (!mcspi->base) { dev_dbg(&pdev->dev, "can't ioremap MCSPI\n"); status = -ENOMEM; goto err1aa; } INIT_WORK(&mcspi->work, omap2_mcspi_work); spin_lock_init(&mcspi->lock); INIT_LIST_HEAD(&mcspi->msg_queue); mcspi->ick = clk_get(&pdev->dev, "ick"); if (IS_ERR(mcspi->ick)) { dev_dbg(&pdev->dev, "can't get mcspi_ick\n"); status = PTR_ERR(mcspi->ick); goto err1a; } mcspi->fck = clk_get(&pdev->dev, "fck"); if (IS_ERR(mcspi->fck)) { dev_dbg(&pdev->dev, "can't get mcspi_fck\n"); status = PTR_ERR(mcspi->fck); goto err2; } mcspi->dma_channels = kcalloc(master->num_chipselect, sizeof(struct omap2_mcspi_dma), GFP_KERNEL); if (mcspi->dma_channels == NULL) goto err3; for (i = 0; i < num_chipselect; i++) { mcspi->dma_channels[i].dma_rx_channel = -1; mcspi->dma_channels[i].dma_rx_sync_dev = rxdma_id[i]; mcspi->dma_channels[i].dma_tx_channel = -1; mcspi->dma_channels[i].dma_tx_sync_dev = txdma_id[i]; } if (omap2_mcspi_reset(mcspi) < 0) goto err4; status = spi_register_master(master); if (status < 0) goto err4; return status; err4: kfree(mcspi->dma_channels); err3: clk_put(mcspi->fck); err2: clk_put(mcspi->ick); err1a: iounmap(mcspi->base); err1aa: release_mem_region(r->start, (r->end - r->start) + 1); err1: spi_master_put(master); return status; } static int __exit omap2_mcspi_remove(struct platform_device *pdev) { struct spi_master *master; struct omap2_mcspi *mcspi; struct omap2_mcspi_dma *dma_channels; struct resource *r; void __iomem *base; master = dev_get_drvdata(&pdev->dev); mcspi = spi_master_get_devdata(master); dma_channels = mcspi->dma_channels; clk_put(mcspi->fck); clk_put(mcspi->ick); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(r->start, (r->end - r->start) + 1); base = mcspi->base; spi_unregister_master(master); iounmap(base); kfree(dma_channels); return 0; } /* work with hotplug and coldplug */ MODULE_ALIAS("platform:omap2_mcspi"); static struct platform_driver omap2_mcspi_driver = { .driver = { .name = "omap2_mcspi", .owner = THIS_MODULE, }, .remove = __exit_p(omap2_mcspi_remove), }; static int __init omap2_mcspi_init(void) { omap2_mcspi_wq = create_singlethread_workqueue( omap2_mcspi_driver.driver.name); if (omap2_mcspi_wq == NULL) return -1; return platform_driver_probe(&omap2_mcspi_driver, omap2_mcspi_probe); } subsys_initcall(omap2_mcspi_init); static void __exit omap2_mcspi_exit(void) { platform_driver_unregister(&omap2_mcspi_driver); destroy_workqueue(omap2_mcspi_wq); } module_exit(omap2_mcspi_exit); MODULE_LICENSE("GPL");