/* * linux/fs/ext3/xattr.c * * Copyright (C) 2001-2003 Andreas Gruenbacher, * * Fix by Harrison Xing . * Ext3 code with a lot of help from Eric Jarman . * Extended attributes for symlinks and special files added per * suggestion of Luka Renko . * xattr consolidation Copyright (c) 2004 James Morris , * Red Hat Inc. * ea-in-inode support by Alex Tomas aka bzzz * and Andreas Gruenbacher . */ /* * Extended attributes are stored directly in inodes (on file systems with * inodes bigger than 128 bytes) and on additional disk blocks. The i_file_acl * field contains the block number if an inode uses an additional block. All * attributes must fit in the inode and one additional block. Blocks that * contain the identical set of attributes may be shared among several inodes. * Identical blocks are detected by keeping a cache of blocks that have * recently been accessed. * * The attributes in inodes and on blocks have a different header; the entries * are stored in the same format: * * +------------------+ * | header | * | entry 1 | | * | entry 2 | | growing downwards * | entry 3 | v * | four null bytes | * | . . . | * | value 1 | ^ * | value 3 | | growing upwards * | value 2 | | * +------------------+ * * The header is followed by multiple entry descriptors. In disk blocks, the * entry descriptors are kept sorted. In inodes, they are unsorted. The * attribute values are aligned to the end of the block in no specific order. * * Locking strategy * ---------------- * EXT3_I(inode)->i_file_acl is protected by EXT3_I(inode)->xattr_sem. * EA blocks are only changed if they are exclusive to an inode, so * holding xattr_sem also means that nothing but the EA block's reference * count can change. Multiple writers to the same block are synchronized * by the buffer lock. */ #include #include #include #include #include #include #include #include #include "xattr.h" #include "acl.h" #define BHDR(bh) ((struct ext3_xattr_header *)((bh)->b_data)) #define ENTRY(ptr) ((struct ext3_xattr_entry *)(ptr)) #define BFIRST(bh) ENTRY(BHDR(bh)+1) #define IS_LAST_ENTRY(entry) (*(__u32 *)(entry) == 0) #define IHDR(inode, raw_inode) \ ((struct ext3_xattr_ibody_header *) \ ((void *)raw_inode + \ EXT3_GOOD_OLD_INODE_SIZE + \ EXT3_I(inode)->i_extra_isize)) #define IFIRST(hdr) ((struct ext3_xattr_entry *)((hdr)+1)) #ifdef EXT3_XATTR_DEBUG # define ea_idebug(inode, f...) do { \ printk(KERN_DEBUG "inode %s:%ld: ", \ inode->i_sb->s_id, inode->i_ino); \ printk(f); \ printk("\n"); \ } while (0) # define ea_bdebug(bh, f...) do { \ char b[BDEVNAME_SIZE]; \ printk(KERN_DEBUG "block %s:%lu: ", \ bdevname(bh->b_bdev, b), \ (unsigned long) bh->b_blocknr); \ printk(f); \ printk("\n"); \ } while (0) #else # define ea_idebug(f...) # define ea_bdebug(f...) #endif static void ext3_xattr_cache_insert(struct buffer_head *); static struct buffer_head *ext3_xattr_cache_find(struct inode *, struct ext3_xattr_header *, struct mb_cache_entry **); static void ext3_xattr_rehash(struct ext3_xattr_header *, struct ext3_xattr_entry *); static struct mb_cache *ext3_xattr_cache; static struct xattr_handler *ext3_xattr_handler_map[] = { [EXT3_XATTR_INDEX_USER] = &ext3_xattr_user_handler, #ifdef CONFIG_EXT3_FS_POSIX_ACL [EXT3_XATTR_INDEX_POSIX_ACL_ACCESS] = &ext3_xattr_acl_access_handler, [EXT3_XATTR_INDEX_POSIX_ACL_DEFAULT] = &ext3_xattr_acl_default_handler, #endif [EXT3_XATTR_INDEX_TRUSTED] = &ext3_xattr_trusted_handler, #ifdef CONFIG_EXT3_FS_SECURITY [EXT3_XATTR_INDEX_SECURITY] = &ext3_xattr_security_handler, #endif }; struct xattr_handler *ext3_xattr_handlers[] = { &ext3_xattr_user_handler, &ext3_xattr_trusted_handler, #ifdef CONFIG_EXT3_FS_POSIX_ACL &ext3_xattr_acl_access_handler, &ext3_xattr_acl_default_handler, #endif #ifdef CONFIG_EXT3_FS_SECURITY &ext3_xattr_security_handler, #endif NULL }; static inline struct xattr_handler * ext3_xattr_handler(int name_index) { struct xattr_handler *handler = NULL; if (name_index > 0 && name_index < ARRAY_SIZE(ext3_xattr_handler_map)) handler = ext3_xattr_handler_map[name_index]; return handler; } /* * Inode operation listxattr() * * dentry->d_inode->i_mutex: don't care */ ssize_t ext3_listxattr(struct dentry *dentry, char *buffer, size_t size) { return ext3_xattr_list(dentry->d_inode, buffer, size); } static int ext3_xattr_check_names(struct ext3_xattr_entry *entry, void *end) { while (!IS_LAST_ENTRY(entry)) { struct ext3_xattr_entry *next = EXT3_XATTR_NEXT(entry); if ((void *)next >= end) return -EIO; entry = next; } return 0; } static inline int ext3_xattr_check_block(struct buffer_head *bh) { int error; if (BHDR(bh)->h_magic != cpu_to_le32(EXT3_XATTR_MAGIC) || BHDR(bh)->h_blocks != cpu_to_le32(1)) return -EIO; error = ext3_xattr_check_names(BFIRST(bh), bh->b_data + bh->b_size); return error; } static inline int ext3_xattr_check_entry(struct ext3_xattr_entry *entry, size_t size) { size_t value_size = le32_to_cpu(entry->e_value_size); if (entry->e_value_block != 0 || value_size > size || le16_to_cpu(entry->e_value_offs) + value_size > size) return -EIO; return 0; } static int ext3_xattr_find_entry(struct ext3_xattr_entry **pentry, int name_index, const char *name, size_t size, int sorted) { struct ext3_xattr_entry *entry; size_t name_len; int cmp = 1; if (name == NULL) return -EINVAL; name_len = strlen(name); entry = *pentry; for (; !IS_LAST_ENTRY(entry); entry = EXT3_XATTR_NEXT(entry)) { cmp = name_index - entry->e_name_index; if (!cmp) cmp = name_len - entry->e_name_len; if (!cmp) cmp = memcmp(name, entry->e_name, name_len); if (cmp <= 0 && (sorted || cmp == 0)) break; } *pentry = entry; if (!cmp && ext3_xattr_check_entry(entry, size)) return -EIO; return cmp ? -ENODATA : 0; } static int ext3_xattr_block_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size) { struct buffer_head *bh = NULL; struct ext3_xattr_entry *entry; size_t size; int error; ea_idebug(inode, "name=%d.%s, buffer=%p, buffer_size=%ld", name_index, name, buffer, (long)buffer_size); error = -ENODATA; if (!EXT3_I(inode)->i_file_acl) goto cleanup; ea_idebug(inode, "reading block %u", EXT3_I(inode)->i_file_acl); bh = sb_bread(inode->i_sb, EXT3_I(inode)->i_file_acl); if (!bh) goto cleanup; ea_bdebug(bh, "b_count=%d, refcount=%d", atomic_read(&(bh->b_count)), le32_to_cpu(BHDR(bh)->h_refcount)); if (ext3_xattr_check_block(bh)) { bad_block: ext3_error(inode->i_sb, __FUNCTION__, "inode %ld: bad block %u", inode->i_ino, EXT3_I(inode)->i_file_acl); error = -EIO; goto cleanup; } ext3_xattr_cache_insert(bh); entry = BFIRST(bh); error = ext3_xattr_find_entry(&entry, name_index, name, bh->b_size, 1); if (error == -EIO) goto bad_block; if (error) goto cleanup; size = le32_to_cpu(entry->e_value_size); if (buffer) { error = -ERANGE; if (size > buffer_size) goto cleanup; memcpy(buffer, bh->b_data + le16_to_cpu(entry->e_value_offs), size); } error = size; cleanup: brelse(bh); return error; } static int ext3_xattr_ibody_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size) { struct ext3_xattr_ibody_header *header; struct ext3_xattr_entry *entry; struct ext3_inode *raw_inode; struct ext3_iloc iloc; size_t size; void *end; int error; if (!(EXT3_I(inode)->i_state & EXT3_STATE_XATTR)) return -ENODATA; error = ext3_get_inode_loc(inode, &iloc); if (error) return error; raw_inode = ext3_raw_inode(&iloc); header = IHDR(inode, raw_inode); entry = IFIRST(header); end = (void *)raw_inode + EXT3_SB(inode->i_sb)->s_inode_size; error = ext3_xattr_check_names(entry, end); if (error) goto cleanup; error = ext3_xattr_find_entry(&entry, name_index, name, end - (void *)entry, 0); if (error) goto cleanup; size = le32_to_cpu(entry->e_value_size); if (buffer) { error = -ERANGE; if (size > buffer_size) goto cleanup; memcpy(buffer, (void *)IFIRST(header) + le16_to_cpu(entry->e_value_offs), size); } error = size; cleanup: brelse(iloc.bh); return error; } /* * ext3_xattr_get() * * Copy an extended attribute into the buffer * provided, or compute the buffer size required. * Buffer is NULL to compute the size of the buffer required. * * Returns a negative error number on failure, or the number of bytes * used / required on success. */ int ext3_xattr_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size) { int error; down_read(&EXT3_I(inode)->xattr_sem); error = ext3_xattr_ibody_get(inode, name_index, name, buffer, buffer_size); if (error == -ENODATA) error = ext3_xattr_block_get(inode, name_index, name, buffer, buffer_size); up_read(&EXT3_I(inode)->xattr_sem); return error; } static int ext3_xattr_list_entries(struct inode *inode, struct ext3_xattr_entry *entry, char *buffer, size_t buffer_size) { size_t rest = buffer_size; for (; !IS_LAST_ENTRY(entry); entry = EXT3_XATTR_NEXT(entry)) { struct xattr_handler *handler = ext3_xattr_handler(entry->e_name_index); if (handler) { size_t size = handler->list(inode, buffer, rest, entry->e_name, entry->e_name_len); if (buffer) { if (size > rest) return -ERANGE; buffer += size; } rest -= size; } } return buffer_size - rest; } static int ext3_xattr_block_list(struct inode *inode, char *buffer, size_t buffer_size) { struct buffer_head *bh = NULL; int error; ea_idebug(inode, "buffer=%p, buffer_size=%ld", buffer, (long)buffer_size); error = 0; if (!EXT3_I(inode)->i_file_acl) goto cleanup; ea_idebug(inode, "reading block %u", EXT3_I(inode)->i_file_acl); bh = sb_bread(inode->i_sb, EXT3_I(inode)->i_file_acl); error = -EIO; if (!bh) goto cleanup; ea_bdebug(bh, "b_count=%d, refcount=%d", atomic_read(&(bh->b_count)), le32_to_cpu(BHDR(bh)->h_refcount)); if (ext3_xattr_check_block(bh)) { ext3_error(inode->i_sb, __FUNCTION__, "inode %ld: bad block %u", inode->i_ino, EXT3_I(inode)->i_file_acl); error = -EIO; goto cleanup; } ext3_xattr_cache_insert(bh); error = ext3_xattr_list_entries(inode, BFIRST(bh), buffer, buffer_size); cleanup: brelse(bh); return error; } static int ext3_xattr_ibody_list(struct inode *inode, char *buffer, size_t buffer_size) { struct ext3_xattr_ibody_header *header; struct ext3_inode *raw_inode; struct ext3_iloc iloc; void *end; int error; if (!(EXT3_I(inode)->i_state & EXT3_STATE_XATTR)) return 0; error = ext3_get_inode_loc(inode, &iloc); if (error) return error; raw_inode = ext3_raw_inode(&iloc); header = IHDR(inode, raw_inode); end = (void *)raw_inode + EXT3_SB(inode->i_sb)->s_inode_size; error = ext3_xattr_check_names(IFIRST(header), end); if (error) goto cleanup; error = ext3_xattr_list_entries(inode, IFIRST(header), buffer, buffer_size); cleanup: brelse(iloc.bh); return error; } /* * ext3_xattr_list() * * Copy a list of attribute names into the buffer * provided, or compute the buffer size required. * Buffer is NULL to compute the size of the buffer required. * * Returns a negative error number on failure, or the number of bytes * used / required on success. */ int ext3_xattr_list(struct inode *inode, char *buffer, size_t buffer_size) { int i_error, b_error; down_read(&EXT3_I(inode)->xattr_sem); i_error = ext3_xattr_ibody_list(inode, buffer, buffer_size); if (i_error < 0) { b_error = 0; } else { if (buffer) { buffer += i_error; buffer_size -= i_error; } b_error = ext3_xattr_block_list(inode, buffer, buffer_size); if (b_error < 0) i_error = 0; } up_read(&EXT3_I(inode)->xattr_sem); return i_error + b_error; } /* * If the EXT3_FEATURE_COMPAT_EXT_ATTR feature of this file system is * not set, set it. */ static void ext3_xattr_update_super_block(handle_t *handle, struct super_block *sb) { if (EXT3_HAS_COMPAT_FEATURE(sb, EXT3_FEATURE_COMPAT_EXT_ATTR)) return; lock_super(sb); if (ext3_journal_get_write_access(handle, EXT3_SB(sb)->s_sbh) == 0) { EXT3_SB(sb)->s_es->s_feature_compat |= cpu_to_le32(EXT3_FEATURE_COMPAT_EXT_ATTR); sb->s_dirt = 1; ext3_journal_dirty_metadata(handle, EXT3_SB(sb)->s_sbh); } unlock_super(sb); } /* * Release the xattr block BH: If the reference count is > 1, decrement * it; otherwise free the block. */ static void ext3_xattr_release_block(handle_t *handle, struct inode *inode, struct buffer_head *bh) { struct mb_cache_entry *ce = NULL; ce = mb_cache_entry_get(ext3_xattr_cache, bh->b_bdev, bh->b_blocknr); if (BHDR(bh)->h_refcount == cpu_to_le32(1)) { ea_bdebug(bh, "refcount now=0; freeing"); if (ce) mb_cache_entry_free(ce); ext3_free_blocks(handle, inode, bh->b_blocknr, 1); get_bh(bh); ext3_forget(handle, 1, inode, bh, bh->b_blocknr); } else { if (ext3_journal_get_write_access(handle, bh) == 0) { lock_buffer(bh); BHDR(bh)->h_refcount = cpu_to_le32( le32_to_cpu(BHDR(bh)->h_refcount) - 1); ext3_journal_dirty_metadata(handle, bh); if (IS_SYNC(inode)) handle->h_sync = 1; DQUOT_FREE_BLOCK(inode, 1); unlock_buffer(bh); ea_bdebug(bh, "refcount now=%d; releasing", le32_to_cpu(BHDR(bh)->h_refcount)); } if (ce) mb_cache_entry_release(ce); } } struct ext3_xattr_info { int name_index; const char *name; const void *value; size_t value_len; }; struct ext3_xattr_search { struct ext3_xattr_entry *first; void *base; void *end; struct ext3_xattr_entry *here; int not_found; }; static int ext3_xattr_set_entry(struct ext3_xattr_info *i, struct ext3_xattr_search *s) { struct ext3_xattr_entry *last; size_t free, min_offs = s->end - s->base, name_len = strlen(i->name); /* Compute min_offs and last. */ last = s->first; for (; !IS_LAST_ENTRY(last); last = EXT3_XATTR_NEXT(last)) { if (!last->e_value_block && last->e_value_size) { size_t offs = le16_to_cpu(last->e_value_offs); if (offs < min_offs) min_offs = offs; } } free = min_offs - ((void *)last - s->base) - sizeof(__u32); if (!s->not_found) { if (!s->here->e_value_block && s->here->e_value_size) { size_t size = le32_to_cpu(s->here->e_value_size); free += EXT3_XATTR_SIZE(size); } free += EXT3_XATTR_LEN(name_len); } if (i->value) { if (free < EXT3_XATTR_SIZE(i->value_len) || free < EXT3_XATTR_LEN(name_len) + EXT3_XATTR_SIZE(i->value_len)) return -ENOSPC; } if (i->value && s->not_found) { /* Insert the new name. */ size_t size = EXT3_XATTR_LEN(name_len); size_t rest = (void *)last - (void *)s->here + sizeof(__u32); memmove((void *)s->here + size, s->here, rest); memset(s->here, 0, size); s->here->e_name_index = i->name_index; s->here->e_name_len = name_len; memcpy(s->here->e_name, i->name, name_len); } else { if (!s->here->e_value_block && s->here->e_value_size) { void *first_val = s->base + min_offs; size_t offs = le16_to_cpu(s->here->e_value_offs); void *val = s->base + offs; size_t size = EXT3_XATTR_SIZE( le32_to_cpu(s->here->e_value_size)); if (i->value && size == EXT3_XATTR_SIZE(i->value_len)) { /* The old and the new value have the same size. Just replace. */ s->here->e_value_size = cpu_to_le32(i->value_len); memset(val + size - EXT3_XATTR_PAD, 0, EXT3_XATTR_PAD); /* Clear pad bytes. */ memcpy(val, i->value, i->value_len); return 0; } /* Remove the old value. */ memmove(first_val + size, first_val, val - first_val); memset(first_val, 0, size); s->here->e_value_size = 0; s->here->e_value_offs = 0; min_offs += size; /* Adjust all value offsets. */ last = s->first; while (!IS_LAST_ENTRY(last)) { size_t o = le16_to_cpu(last->e_value_offs); if (!last->e_value_block && last->e_value_size && o < offs) last->e_value_offs = cpu_to_le16(o + size); last = EXT3_XATTR_NEXT(last); } } if (!i->value) { /* Remove the old name. */ size_t size = EXT3_XATTR_LEN(name_len); last = ENTRY((void *)last - size); memmove(s->here, (void *)s->here + size, (void *)last - (void *)s->here + sizeof(__u32)); memset(last, 0, size); } } if (i->value) { /* Insert the new value. */ s->here->e_value_size = cpu_to_le32(i->value_len); if (i->value_len) { size_t size = EXT3_XATTR_SIZE(i->value_len); void *val = s->base + min_offs - size; s->here->e_value_offs = cpu_to_le16(min_offs - size); memset(val + size - EXT3_XATTR_PAD, 0, EXT3_XATTR_PAD); /* Clear the pad bytes. */ memcpy(val, i->value, i->value_len); } } return 0; } struct ext3_xattr_block_find { struct ext3_xattr_search s; struct buffer_head *bh; }; static int ext3_xattr_block_find(struct inode *inode, struct ext3_xattr_info *i, struct ext3_xattr_block_find *bs) { struct super_block *sb = inode->i_sb; int error; ea_idebug(inode, "name=%d.%s, value=%p, value_len=%ld", i->name_index, i->name, i->value, (long)i->value_len); if (EXT3_I(inode)->i_file_acl) { /* The inode already has an extended attribute block. */ bs->bh = sb_bread(sb, EXT3_I(inode)->i_file_acl); error = -EIO; if (!bs->bh) goto cleanup; ea_bdebug(bs->bh, "b_count=%d, refcount=%d", atomic_read(&(bs->bh->b_count)), le32_to_cpu(BHDR(bs->bh)->h_refcount)); if (ext3_xattr_check_block(bs->bh)) { ext3_error(sb, __FUNCTION__, "inode %ld: bad block %u", inode->i_ino, EXT3_I(inode)->i_file_acl); error = -EIO; goto cleanup; } /* Find the named attribute. */ bs->s.base = BHDR(bs->bh); bs->s.first = BFIRST(bs->bh); bs->s.end = bs->bh->b_data + bs->bh->b_size; bs->s.here = bs->s.first; error = ext3_xattr_find_entry(&bs->s.here, i->name_index, i->name, bs->bh->b_size, 1); if (error && error != -ENODATA) goto cleanup; bs->s.not_found = error; } error = 0; cleanup: return error; } static int ext3_xattr_block_set(handle_t *handle, struct inode *inode, struct ext3_xattr_info *i, struct ext3_xattr_block_find *bs) { struct super_block *sb = inode->i_sb; struct buffer_head *new_bh = NULL; struct ext3_xattr_search *s = &bs->s; struct mb_cache_entry *ce = NULL; int error; #define header(x) ((struct ext3_xattr_header *)(x)) if (i->value && i->value_len > sb->s_blocksize) return -ENOSPC; if (s->base) { ce = mb_cache_entry_get(ext3_xattr_cache, bs->bh->b_bdev, bs->bh->b_blocknr); if (header(s->base)->h_refcount == cpu_to_le32(1)) { if (ce) { mb_cache_entry_free(ce); ce = NULL; } ea_bdebug(bs->bh, "modifying in-place"); error = ext3_journal_get_write_access(handle, bs->bh); if (error) goto cleanup; lock_buffer(bs->bh); error = ext3_xattr_set_entry(i, s); if (!error) { if (!IS_LAST_ENTRY(s->first)) ext3_xattr_rehash(header(s->base), s->here); ext3_xattr_cache_insert(bs->bh); } unlock_buffer(bs->bh); if (error == -EIO) goto bad_block; if (!error) error = ext3_journal_dirty_metadata(handle, bs->bh); if (error) goto cleanup; goto inserted; } else { int offset = (char *)s->here - bs->bh->b_data; if (ce) { mb_cache_entry_release(ce); ce = NULL; } ea_bdebug(bs->bh, "cloning"); s->base = kmalloc(bs->bh->b_size, GFP_KERNEL); error = -ENOMEM; if (s->base == NULL) goto cleanup; memcpy(s->base, BHDR(bs->bh), bs->bh->b_size); s->first = ENTRY(header(s->base)+1); header(s->base)->h_refcount = cpu_to_le32(1); s->here = ENTRY(s->base + offset); s->end = s->base + bs->bh->b_size; } } else { /* Allocate a buffer where we construct the new block. */ s->base = kmalloc(sb->s_blocksize, GFP_KERNEL); /* assert(header == s->base) */ error = -ENOMEM; if (s->base == NULL) goto cleanup; memset(s->base, 0, sb->s_blocksize); header(s->base)->h_magic = cpu_to_le32(EXT3_XATTR_MAGIC); header(s->base)->h_blocks = cpu_to_le32(1); header(s->base)->h_refcount = cpu_to_le32(1); s->first = ENTRY(header(s->base)+1); s->here = ENTRY(header(s->base)+1); s->end = s->base + sb->s_blocksize; } error = ext3_xattr_set_entry(i, s); if (error == -EIO) goto bad_block; if (error) goto cleanup; if (!IS_LAST_ENTRY(s->first)) ext3_xattr_rehash(header(s->base), s->here); inserted: if (!IS_LAST_ENTRY(s->first)) { new_bh = ext3_xattr_cache_find(inode, header(s->base), &ce); if (new_bh) { /* We found an identical block in the cache. */ if (new_bh == bs->bh) ea_bdebug(new_bh, "keeping"); else { /* The old block is released after updating the inode. */ error = -EDQUOT; if (DQUOT_ALLOC_BLOCK(inode, 1)) goto cleanup; error = ext3_journal_get_write_access(handle, new_bh); if (error) goto cleanup_dquot; lock_buffer(new_bh); BHDR(new_bh)->h_refcount = cpu_to_le32(1 + le32_to_cpu(BHDR(new_bh)->h_refcount)); ea_bdebug(new_bh, "reusing; refcount now=%d", le32_to_cpu(BHDR(new_bh)->h_refcount)); unlock_buffer(new_bh); error = ext3_journal_dirty_metadata(handle, new_bh); if (error) goto cleanup_dquot; } mb_cache_entry_release(ce); ce = NULL; } else if (bs->bh && s->base == bs->bh->b_data) { /* We were modifying this block in-place. */ ea_bdebug(bs->bh, "keeping this block"); new_bh = bs->bh; get_bh(new_bh); } else { /* We need to allocate a new block */ ext3_fsblk_t goal = le32_to_cpu( EXT3_SB(sb)->s_es->s_first_data_block) + (ext3_fsblk_t)EXT3_I(inode)->i_block_group * EXT3_BLOCKS_PER_GROUP(sb); ext3_fsblk_t block = ext3_new_block(handle, inode, goal, &error); if (error) goto cleanup; ea_idebug(inode, "creating block %d", block); new_bh = sb_getblk(sb, block); if (!new_bh) { getblk_failed: ext3_free_blocks(handle, inode, block, 1); error = -EIO; goto cleanup; } lock_buffer(new_bh); error = ext3_journal_get_create_access(handle, new_bh); if (error) { unlock_buffer(new_bh); goto getblk_failed; } memcpy(new_bh->b_data, s->base, new_bh->b_size); set_buffer_uptodate(new_bh); unlock_buffer(new_bh); ext3_xattr_cache_insert(new_bh); error = ext3_journal_dirty_metadata(handle, new_bh); if (error) goto cleanup; } } /* Update the inode. */ EXT3_I(inode)->i_file_acl = new_bh ? new_bh->b_blocknr : 0; /* Drop the previous xattr block. */ if (bs->bh && bs->bh != new_bh) ext3_xattr_release_block(handle, inode, bs->bh); error = 0; cleanup: if (ce) mb_cache_entry_release(ce); brelse(new_bh); if (!(bs->bh && s->base == bs->bh->b_data)) kfree(s->base); return error; cleanup_dquot: DQUOT_FREE_BLOCK(inode, 1); goto cleanup; bad_block: ext3_error(inode->i_sb, __FUNCTION__, "inode %ld: bad block %u", inode->i_ino, EXT3_I(inode)->i_file_acl); goto cleanup; #undef header } struct ext3_xattr_ibody_find { struct ext3_xattr_search s; struct ext3_iloc iloc; }; static int ext3_xattr_ibody_find(struct inode *inode, struct ext3_xattr_info *i, struct ext3_xattr_ibody_find *is) { struct ext3_xattr_ibody_header *header; struct ext3_inode *raw_inode; int error; if (EXT3_I(inode)->i_extra_isize == 0) return 0; raw_inode = ext3_raw_inode(&is->iloc); header = IHDR(inode, raw_inode); is->s.base = is->s.first = IFIRST(header); is->s.here = is->s.first; is->s.end = (void *)raw_inode + EXT3_SB(inode->i_sb)->s_inode_size; if (EXT3_I(inode)->i_state & EXT3_STATE_XATTR) { error = ext3_xattr_check_names(IFIRST(header), is->s.end); if (error) return error; /* Find the named attribute. */ error = ext3_xattr_find_entry(&is->s.here, i->name_index, i->name, is->s.end - (void *)is->s.base, 0); if (error && error != -ENODATA) return error; is->s.not_found = error; } return 0; } static int ext3_xattr_ibody_set(handle_t *handle, struct inode *inode, struct ext3_xattr_info *i, struct ext3_xattr_ibody_find *is) { struct ext3_xattr_ibody_header *header; struct ext3_xattr_search *s = &is->s; int error; if (EXT3_I(inode)->i_extra_isize == 0) return -ENOSPC; error = ext3_xattr_set_entry(i, s); if (error) return error; header = IHDR(inode, ext3_raw_inode(&is->iloc)); if (!IS_LAST_ENTRY(s->first)) { header->h_magic = cpu_to_le32(EXT3_XATTR_MAGIC); EXT3_I(inode)->i_state |= EXT3_STATE_XATTR; } else { header->h_magic = cpu_to_le32(0); EXT3_I(inode)->i_state &= ~EXT3_STATE_XATTR; } return 0; } /* * ext3_xattr_set_handle() * * Create, replace or remove an extended attribute for this inode. Buffer * is NULL to remove an existing extended attribute, and non-NULL to * either replace an existing extended attribute, or create a new extended * attribute. The flags XATTR_REPLACE and XATTR_CREATE * specify that an extended attribute must exist and must not exist * previous to the call, respectively. * * Returns 0, or a negative error number on failure. */ int ext3_xattr_set_handle(handle_t *handle, struct inode *inode, int name_index, const char *name, const void *value, size_t value_len, int flags) { struct ext3_xattr_info i = { .name_index = name_index, .name = name, .value = value, .value_len = value_len, }; struct ext3_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext3_xattr_block_find bs = { .s = { .not_found = -ENODATA, }, }; int error; if (!name) return -EINVAL; if (strlen(name) > 255) return -ERANGE; down_write(&EXT3_I(inode)->xattr_sem); error = ext3_get_inode_loc(inode, &is.iloc); if (error) goto cleanup; if (EXT3_I(inode)->i_state & EXT3_STATE_NEW) { struct ext3_inode *raw_inode = ext3_raw_inode(&is.iloc); memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size); EXT3_I(inode)->i_state &= ~EXT3_STATE_NEW; } error = ext3_xattr_ibody_find(inode, &i, &is); if (error) goto cleanup; if (is.s.not_found) error = ext3_xattr_block_find(inode, &i, &bs); if (error) goto cleanup; if (is.s.not_found && bs.s.not_found) { error = -ENODATA; if (flags & XATTR_REPLACE) goto cleanup; error = 0; if (!value) goto cleanup; } else { error = -EEXIST; if (flags & XATTR_CREATE) goto cleanup; } error = ext3_journal_get_write_access(handle, is.iloc.bh); if (error) goto cleanup; if (!value) { if (!is.s.not_found) error = ext3_xattr_ibody_set(handle, inode, &i, &is); else if (!bs.s.not_found) error = ext3_xattr_block_set(handle, inode, &i, &bs); } else { error = ext3_xattr_ibody_set(handle, inode, &i, &is); if (!error && !bs.s.not_found) { i.value = NULL; error = ext3_xattr_block_set(handle, inode, &i, &bs); } else if (error == -ENOSPC) { error = ext3_xattr_block_set(handle, inode, &i, &bs); if (error) goto cleanup; if (!is.s.not_found) { i.value = NULL; error = ext3_xattr_ibody_set(handle, inode, &i, &is); } } } if (!error) { ext3_xattr_update_super_block(handle, inode->i_sb); inode->i_ctime = CURRENT_TIME_SEC; error = ext3_mark_iloc_dirty(handle, inode, &is.iloc); /* * The bh is consumed by ext3_mark_iloc_dirty, even with * error != 0. */ is.iloc.bh = NULL; if (IS_SYNC(inode)) handle->h_sync = 1; } cleanup: brelse(is.iloc.bh); brelse(bs.bh); up_write(&EXT3_I(inode)->xattr_sem); return error; } /* * ext3_xattr_set() * * Like ext3_xattr_set_handle, but start from an inode. This extended * attribute modification is a filesystem transaction by itself. * * Returns 0, or a negative error number on failure. */ int ext3_xattr_set(struct inode *inode, int name_index, const char *name, const void *value, size_t value_len, int flags) { handle_t *handle; int error, retries = 0; retry: handle = ext3_journal_start(inode, EXT3_DATA_TRANS_BLOCKS(inode->i_sb)); if (IS_ERR(handle)) { error = PTR_ERR(handle); } else { int error2; error = ext3_xattr_set_handle(handle, inode, name_index, name, value, value_len, flags); error2 = ext3_journal_stop(handle); if (error == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) goto retry; if (error == 0) error = error2; } return error; } /* * ext3_xattr_delete_inode() * * Free extended attribute resources associated with this inode. This * is called immediately before an inode is freed. We have exclusive * access to the inode. */ void ext3_xattr_delete_inode(handle_t *handle, struct inode *inode) { struct buffer_head *bh = NULL; if (!EXT3_I(inode)->i_file_acl) goto cleanup; bh = sb_bread(inode->i_sb, EXT3_I(inode)->i_file_acl); if (!bh) { ext3_error(inode->i_sb, __FUNCTION__, "inode %ld: block %u read error", inode->i_ino, EXT3_I(inode)->i_file_acl); goto cleanup; } if (BHDR(bh)->h_magic != cpu_to_le32(EXT3_XATTR_MAGIC) || BHDR(bh)->h_blocks != cpu_to_le32(1)) { ext3_error(inode->i_sb, __FUNCTION__, "inode %ld: bad block %u", inode->i_ino, EXT3_I(inode)->i_file_acl); goto cleanup; } ext3_xattr_release_block(handle, inode, bh); EXT3_I(inode)->i_file_acl = 0; cleanup: brelse(bh); } /* * ext3_xattr_put_super() * * This is called when a file system is unmounted. */ void ext3_xattr_put_super(struct super_block *sb) { mb_cache_shrink(sb->s_bdev); } /* * ext3_xattr_cache_insert() * * Create a new entry in the extended attribute cache, and insert * it unless such an entry is already in the cache. * * Returns 0, or a negative error number on failure. */ static void ext3_xattr_cache_insert(struct buffer_head *bh) { __u32 hash = le32_to_cpu(BHDR(bh)->h_hash); struct mb_cache_entry *ce; int error; ce = mb_cache_entry_alloc(ext3_xattr_cache); if (!ce) { ea_bdebug(bh, "out of memory"); return; } error = mb_cache_entry_insert(ce, bh->b_bdev, bh->b_blocknr, &hash); if (error) { mb_cache_entry_free(ce); if (error == -EBUSY) { ea_bdebug(bh, "already in cache"); error = 0; } } else { ea_bdebug(bh, "inserting [%x]", (int)hash); mb_cache_entry_release(ce); } } /* * ext3_xattr_cmp() * * Compare two extended attribute blocks for equality. * * Returns 0 if the blocks are equal, 1 if they differ, and * a negative error number on errors. */ static int ext3_xattr_cmp(struct ext3_xattr_header *header1, struct ext3_xattr_header *header2) { struct ext3_xattr_entry *entry1, *entry2; entry1 = ENTRY(header1+1); entry2 = ENTRY(header2+1); while (!IS_LAST_ENTRY(entry1)) { if (IS_LAST_ENTRY(entry2)) return 1; if (entry1->e_hash != entry2->e_hash || entry1->e_name_index != entry2->e_name_index || entry1->e_name_len != entry2->e_name_len || entry1->e_value_size != entry2->e_value_size || memcmp(entry1->e_name, entry2->e_name, entry1->e_name_len)) return 1; if (entry1->e_value_block != 0 || entry2->e_value_block != 0) return -EIO; if (memcmp((char *)header1 + le16_to_cpu(entry1->e_value_offs), (char *)header2 + le16_to_cpu(entry2->e_value_offs), le32_to_cpu(entry1->e_value_size))) return 1; entry1 = EXT3_XATTR_NEXT(entry1); entry2 = EXT3_XATTR_NEXT(entry2); } if (!IS_LAST_ENTRY(entry2)) return 1; return 0; } /* * ext3_xattr_cache_find() * * Find an identical extended attribute block. * * Returns a pointer to the block found, or NULL if such a block was * not found or an error occurred. */ static struct buffer_head * ext3_xattr_cache_find(struct inode *inode, struct ext3_xattr_header *header, struct mb_cache_entry **pce) { __u32 hash = le32_to_cpu(header->h_hash); struct mb_cache_entry *ce; if (!header->h_hash) return NULL; /* never share */ ea_idebug(inode, "looking for cached blocks [%x]", (int)hash); again: ce = mb_cache_entry_find_first(ext3_xattr_cache, 0, inode->i_sb->s_bdev, hash); while (ce) { struct buffer_head *bh; if (IS_ERR(ce)) { if (PTR_ERR(ce) == -EAGAIN) goto again; break; } bh = sb_bread(inode->i_sb, ce->e_block); if (!bh) { ext3_error(inode->i_sb, __FUNCTION__, "inode %ld: block %lu read error", inode->i_ino, (unsigned long) ce->e_block); } else if (le32_to_cpu(BHDR(bh)->h_refcount) >= EXT3_XATTR_REFCOUNT_MAX) { ea_idebug(inode, "block %lu refcount %d>=%d", (unsigned long) ce->e_block, le32_to_cpu(BHDR(bh)->h_refcount), EXT3_XATTR_REFCOUNT_MAX); } else if (ext3_xattr_cmp(header, BHDR(bh)) == 0) { *pce = ce; return bh; } brelse(bh); ce = mb_cache_entry_find_next(ce, 0, inode->i_sb->s_bdev, hash); } return NULL; } #define NAME_HASH_SHIFT 5 #define VALUE_HASH_SHIFT 16 /* * ext3_xattr_hash_entry() * * Compute the hash of an extended attribute. */ static inline void ext3_xattr_hash_entry(struct ext3_xattr_header *header, struct ext3_xattr_entry *entry) { __u32 hash = 0; char *name = entry->e_name; int n; for (n=0; n < entry->e_name_len; n++) { hash = (hash << NAME_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^ *name++; } if (entry->e_value_block == 0 && entry->e_value_size != 0) { __le32 *value = (__le32 *)((char *)header + le16_to_cpu(entry->e_value_offs)); for (n = (le32_to_cpu(entry->e_value_size) + EXT3_XATTR_ROUND) >> EXT3_XATTR_PAD_BITS; n; n--) { hash = (hash << VALUE_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^ le32_to_cpu(*value++); } } entry->e_hash = cpu_to_le32(hash); } #undef NAME_HASH_SHIFT #undef VALUE_HASH_SHIFT #define BLOCK_HASH_SHIFT 16 /* * ext3_xattr_rehash() * * Re-compute the extended attribute hash value after an entry has changed. */ static void ext3_xattr_rehash(struct ext3_xattr_header *header, struct ext3_xattr_entry *entry) { struct ext3_xattr_entry *here; __u32 hash = 0; ext3_xattr_hash_entry(header, entry); here = ENTRY(header+1); while (!IS_LAST_ENTRY(here)) { if (!here->e_hash) { /* Block is not shared if an entry's hash value == 0 */ hash = 0; break; } hash = (hash << BLOCK_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - BLOCK_HASH_SHIFT)) ^ le32_to_cpu(here->e_hash); here = EXT3_XATTR_NEXT(here); } header->h_hash = cpu_to_le32(hash); } #undef BLOCK_HASH_SHIFT int __init init_ext3_xattr(void) { ext3_xattr_cache = mb_cache_create("ext3_xattr", NULL, sizeof(struct mb_cache_entry) + sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]), 1, 6); if (!ext3_xattr_cache) return -ENOMEM; return 0; } void exit_ext3_xattr(void) { if (ext3_xattr_cache) mb_cache_destroy(ext3_xattr_cache); ext3_xattr_cache = NULL; }