/* * Copyright (C) 2008, 2009 Intel Corporation * Authors: Andi Kleen, Fengguang Wu * * This software may be redistributed and/or modified under the terms of * the GNU General Public License ("GPL") version 2 only as published by the * Free Software Foundation. * * High level machine check handler. Handles pages reported by the * hardware as being corrupted usually due to a multi-bit ECC memory or cache * failure. * * In addition there is a "soft offline" entry point that allows stop using * not-yet-corrupted-by-suspicious pages without killing anything. * * Handles page cache pages in various states. The tricky part * here is that we can access any page asynchronously in respect to * other VM users, because memory failures could happen anytime and * anywhere. This could violate some of their assumptions. This is why * this code has to be extremely careful. Generally it tries to use * normal locking rules, as in get the standard locks, even if that means * the error handling takes potentially a long time. * * It can be very tempting to add handling for obscure cases here. * In general any code for handling new cases should only be added iff: * - You know how to test it. * - You have a test that can be added to mce-test * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ * - The case actually shows up as a frequent (top 10) page state in * tools/vm/page-types when running a real workload. * * There are several operations here with exponential complexity because * of unsuitable VM data structures. For example the operation to map back * from RMAP chains to processes has to walk the complete process list and * has non linear complexity with the number. But since memory corruptions * are rare we hope to get away with this. This avoids impacting the core * VM. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "ras/ras_event.h" int sysctl_memory_failure_early_kill __read_mostly = 0; int sysctl_memory_failure_recovery __read_mostly = 1; atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) u32 hwpoison_filter_enable = 0; u32 hwpoison_filter_dev_major = ~0U; u32 hwpoison_filter_dev_minor = ~0U; u64 hwpoison_filter_flags_mask; u64 hwpoison_filter_flags_value; EXPORT_SYMBOL_GPL(hwpoison_filter_enable); EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); static int hwpoison_filter_dev(struct page *p) { struct address_space *mapping; dev_t dev; if (hwpoison_filter_dev_major == ~0U && hwpoison_filter_dev_minor == ~0U) return 0; /* * page_mapping() does not accept slab pages. */ if (PageSlab(p)) return -EINVAL; mapping = page_mapping(p); if (mapping == NULL || mapping->host == NULL) return -EINVAL; dev = mapping->host->i_sb->s_dev; if (hwpoison_filter_dev_major != ~0U && hwpoison_filter_dev_major != MAJOR(dev)) return -EINVAL; if (hwpoison_filter_dev_minor != ~0U && hwpoison_filter_dev_minor != MINOR(dev)) return -EINVAL; return 0; } static int hwpoison_filter_flags(struct page *p) { if (!hwpoison_filter_flags_mask) return 0; if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == hwpoison_filter_flags_value) return 0; else return -EINVAL; } /* * This allows stress tests to limit test scope to a collection of tasks * by putting them under some memcg. This prevents killing unrelated/important * processes such as /sbin/init. Note that the target task may share clean * pages with init (eg. libc text), which is harmless. If the target task * share _dirty_ pages with another task B, the test scheme must make sure B * is also included in the memcg. At last, due to race conditions this filter * can only guarantee that the page either belongs to the memcg tasks, or is * a freed page. */ #ifdef CONFIG_MEMCG u64 hwpoison_filter_memcg; EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); static int hwpoison_filter_task(struct page *p) { if (!hwpoison_filter_memcg) return 0; if (page_cgroup_ino(p) != hwpoison_filter_memcg) return -EINVAL; return 0; } #else static int hwpoison_filter_task(struct page *p) { return 0; } #endif int hwpoison_filter(struct page *p) { if (!hwpoison_filter_enable) return 0; if (hwpoison_filter_dev(p)) return -EINVAL; if (hwpoison_filter_flags(p)) return -EINVAL; if (hwpoison_filter_task(p)) return -EINVAL; return 0; } #else int hwpoison_filter(struct page *p) { return 0; } #endif EXPORT_SYMBOL_GPL(hwpoison_filter); /* * Kill all processes that have a poisoned page mapped and then isolate * the page. * * General strategy: * Find all processes having the page mapped and kill them. * But we keep a page reference around so that the page is not * actually freed yet. * Then stash the page away * * There's no convenient way to get back to mapped processes * from the VMAs. So do a brute-force search over all * running processes. * * Remember that machine checks are not common (or rather * if they are common you have other problems), so this shouldn't * be a performance issue. * * Also there are some races possible while we get from the * error detection to actually handle it. */ struct to_kill { struct list_head nd; struct task_struct *tsk; unsigned long addr; short size_shift; }; /* * Send all the processes who have the page mapped a signal. * ``action optional'' if they are not immediately affected by the error * ``action required'' if error happened in current execution context */ static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) { struct task_struct *t = tk->tsk; short addr_lsb = tk->size_shift; int ret; pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", pfn, t->comm, t->pid); if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, addr_lsb, current); } else { /* * Don't use force here, it's convenient if the signal * can be temporarily blocked. * This could cause a loop when the user sets SIGBUS * to SIG_IGN, but hopefully no one will do that? */ ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, addr_lsb, t); /* synchronous? */ } if (ret < 0) pr_info("Memory failure: Error sending signal to %s:%d: %d\n", t->comm, t->pid, ret); return ret; } /* * When a unknown page type is encountered drain as many buffers as possible * in the hope to turn the page into a LRU or free page, which we can handle. */ void shake_page(struct page *p, int access) { if (PageHuge(p)) return; if (!PageSlab(p)) { lru_add_drain_all(); if (PageLRU(p)) return; drain_all_pages(page_zone(p)); if (PageLRU(p) || is_free_buddy_page(p)) return; } /* * Only call shrink_node_slabs here (which would also shrink * other caches) if access is not potentially fatal. */ if (access) drop_slab_node(page_to_nid(p)); } EXPORT_SYMBOL_GPL(shake_page); static unsigned long dev_pagemap_mapping_shift(struct page *page, struct vm_area_struct *vma) { unsigned long address = vma_address(page, vma); pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; pgd = pgd_offset(vma->vm_mm, address); if (!pgd_present(*pgd)) return 0; p4d = p4d_offset(pgd, address); if (!p4d_present(*p4d)) return 0; pud = pud_offset(p4d, address); if (!pud_present(*pud)) return 0; if (pud_devmap(*pud)) return PUD_SHIFT; pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return 0; if (pmd_devmap(*pmd)) return PMD_SHIFT; pte = pte_offset_map(pmd, address); if (!pte_present(*pte)) return 0; if (pte_devmap(*pte)) return PAGE_SHIFT; return 0; } /* * Failure handling: if we can't find or can't kill a process there's * not much we can do. We just print a message and ignore otherwise. */ /* * Schedule a process for later kill. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. * TBD would GFP_NOIO be enough? */ static void add_to_kill(struct task_struct *tsk, struct page *p, struct vm_area_struct *vma, struct list_head *to_kill, struct to_kill **tkc) { struct to_kill *tk; if (*tkc) { tk = *tkc; *tkc = NULL; } else { tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); if (!tk) { pr_err("Memory failure: Out of memory while machine check handling\n"); return; } } tk->addr = page_address_in_vma(p, vma); if (is_zone_device_page(p)) tk->size_shift = dev_pagemap_mapping_shift(p, vma); else tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT; /* * Send SIGKILL if "tk->addr == -EFAULT". Also, as * "tk->size_shift" is always non-zero for !is_zone_device_page(), * so "tk->size_shift == 0" effectively checks no mapping on * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times * to a process' address space, it's possible not all N VMAs * contain mappings for the page, but at least one VMA does. * Only deliver SIGBUS with payload derived from the VMA that * has a mapping for the page. */ if (tk->addr == -EFAULT) { pr_info("Memory failure: Unable to find user space address %lx in %s\n", page_to_pfn(p), tsk->comm); } else if (tk->size_shift == 0) { kfree(tk); return; } get_task_struct(tsk); tk->tsk = tsk; list_add_tail(&tk->nd, to_kill); } /* * Kill the processes that have been collected earlier. * * Only do anything when DOIT is set, otherwise just free the list * (this is used for clean pages which do not need killing) * Also when FAIL is set do a force kill because something went * wrong earlier. */ static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, unsigned long pfn, int flags) { struct to_kill *tk, *next; list_for_each_entry_safe (tk, next, to_kill, nd) { if (forcekill) { /* * In case something went wrong with munmapping * make sure the process doesn't catch the * signal and then access the memory. Just kill it. */ if (fail || tk->addr == -EFAULT) { pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", pfn, tk->tsk->comm, tk->tsk->pid); do_send_sig_info(SIGKILL, SEND_SIG_PRIV, tk->tsk, PIDTYPE_PID); } /* * In theory the process could have mapped * something else on the address in-between. We could * check for that, but we need to tell the * process anyways. */ else if (kill_proc(tk, pfn, flags) < 0) pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", pfn, tk->tsk->comm, tk->tsk->pid); } put_task_struct(tk->tsk); kfree(tk); } } /* * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) * on behalf of the thread group. Return task_struct of the (first found) * dedicated thread if found, and return NULL otherwise. * * We already hold read_lock(&tasklist_lock) in the caller, so we don't * have to call rcu_read_lock/unlock() in this function. */ static struct task_struct *find_early_kill_thread(struct task_struct *tsk) { struct task_struct *t; for_each_thread(tsk, t) if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) return t; return NULL; } /* * Determine whether a given process is "early kill" process which expects * to be signaled when some page under the process is hwpoisoned. * Return task_struct of the dedicated thread (main thread unless explicitly * specified) if the process is "early kill," and otherwise returns NULL. */ static struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) { struct task_struct *t; if (!tsk->mm) return NULL; if (force_early) return tsk; t = find_early_kill_thread(tsk); if (t) return t; if (sysctl_memory_failure_early_kill) return tsk; return NULL; } /* * Collect processes when the error hit an anonymous page. */ static void collect_procs_anon(struct page *page, struct list_head *to_kill, struct to_kill **tkc, int force_early) { struct vm_area_struct *vma; struct task_struct *tsk; struct anon_vma *av; pgoff_t pgoff; av = page_lock_anon_vma_read(page); if (av == NULL) /* Not actually mapped anymore */ return; pgoff = page_to_pgoff(page); read_lock(&tasklist_lock); for_each_process (tsk) { struct anon_vma_chain *vmac; struct task_struct *t = task_early_kill(tsk, force_early); if (!t) continue; anon_vma_interval_tree_foreach(vmac, &av->rb_root, pgoff, pgoff) { vma = vmac->vma; if (!page_mapped_in_vma(page, vma)) continue; if (vma->vm_mm == t->mm) add_to_kill(t, page, vma, to_kill, tkc); } } read_unlock(&tasklist_lock); page_unlock_anon_vma_read(av); } /* * Collect processes when the error hit a file mapped page. */ static void collect_procs_file(struct page *page, struct list_head *to_kill, struct to_kill **tkc, int force_early) { struct vm_area_struct *vma; struct task_struct *tsk; struct address_space *mapping = page->mapping; i_mmap_lock_read(mapping); read_lock(&tasklist_lock); for_each_process(tsk) { pgoff_t pgoff = page_to_pgoff(page); struct task_struct *t = task_early_kill(tsk, force_early); if (!t) continue; vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { /* * Send early kill signal to tasks where a vma covers * the page but the corrupted page is not necessarily * mapped it in its pte. * Assume applications who requested early kill want * to be informed of all such data corruptions. */ if (vma->vm_mm == t->mm) add_to_kill(t, page, vma, to_kill, tkc); } } read_unlock(&tasklist_lock); i_mmap_unlock_read(mapping); } /* * Collect the processes who have the corrupted page mapped to kill. * This is done in two steps for locking reasons. * First preallocate one tokill structure outside the spin locks, * so that we can kill at least one process reasonably reliable. */ static void collect_procs(struct page *page, struct list_head *tokill, int force_early) { struct to_kill *tk; if (!page->mapping) return; tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); if (!tk) return; if (PageAnon(page)) collect_procs_anon(page, tokill, &tk, force_early); else collect_procs_file(page, tokill, &tk, force_early); kfree(tk); } static const char *action_name[] = { [MF_IGNORED] = "Ignored", [MF_FAILED] = "Failed", [MF_DELAYED] = "Delayed", [MF_RECOVERED] = "Recovered", }; static const char * const action_page_types[] = { [MF_MSG_KERNEL] = "reserved kernel page", [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", [MF_MSG_SLAB] = "kernel slab page", [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", [MF_MSG_HUGE] = "huge page", [MF_MSG_FREE_HUGE] = "free huge page", [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", [MF_MSG_UNMAP_FAILED] = "unmapping failed page", [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", [MF_MSG_DIRTY_LRU] = "dirty LRU page", [MF_MSG_CLEAN_LRU] = "clean LRU page", [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", [MF_MSG_BUDDY] = "free buddy page", [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", [MF_MSG_DAX] = "dax page", [MF_MSG_UNKNOWN] = "unknown page", }; /* * XXX: It is possible that a page is isolated from LRU cache, * and then kept in swap cache or failed to remove from page cache. * The page count will stop it from being freed by unpoison. * Stress tests should be aware of this memory leak problem. */ static int delete_from_lru_cache(struct page *p) { if (!isolate_lru_page(p)) { /* * Clear sensible page flags, so that the buddy system won't * complain when the page is unpoison-and-freed. */ ClearPageActive(p); ClearPageUnevictable(p); /* * Poisoned page might never drop its ref count to 0 so we have * to uncharge it manually from its memcg. */ mem_cgroup_uncharge(p); /* * drop the page count elevated by isolate_lru_page() */ put_page(p); return 0; } return -EIO; } static int truncate_error_page(struct page *p, unsigned long pfn, struct address_space *mapping) { int ret = MF_FAILED; if (mapping->a_ops->error_remove_page) { int err = mapping->a_ops->error_remove_page(mapping, p); if (err != 0) { pr_info("Memory failure: %#lx: Failed to punch page: %d\n", pfn, err); } else if (page_has_private(p) && !try_to_release_page(p, GFP_NOIO)) { pr_info("Memory failure: %#lx: failed to release buffers\n", pfn); } else { ret = MF_RECOVERED; } } else { /* * If the file system doesn't support it just invalidate * This fails on dirty or anything with private pages */ if (invalidate_inode_page(p)) ret = MF_RECOVERED; else pr_info("Memory failure: %#lx: Failed to invalidate\n", pfn); } return ret; } /* * Error hit kernel page. * Do nothing, try to be lucky and not touch this instead. For a few cases we * could be more sophisticated. */ static int me_kernel(struct page *p, unsigned long pfn) { return MF_IGNORED; } /* * Page in unknown state. Do nothing. */ static int me_unknown(struct page *p, unsigned long pfn) { pr_err("Memory failure: %#lx: Unknown page state\n", pfn); return MF_FAILED; } /* * Clean (or cleaned) page cache page. */ static int me_pagecache_clean(struct page *p, unsigned long pfn) { struct address_space *mapping; delete_from_lru_cache(p); /* * For anonymous pages we're done the only reference left * should be the one m_f() holds. */ if (PageAnon(p)) return MF_RECOVERED; /* * Now truncate the page in the page cache. This is really * more like a "temporary hole punch" * Don't do this for block devices when someone else * has a reference, because it could be file system metadata * and that's not safe to truncate. */ mapping = page_mapping(p); if (!mapping) { /* * Page has been teared down in the meanwhile */ return MF_FAILED; } /* * Truncation is a bit tricky. Enable it per file system for now. * * Open: to take i_mutex or not for this? Right now we don't. */ return truncate_error_page(p, pfn, mapping); } /* * Dirty pagecache page * Issues: when the error hit a hole page the error is not properly * propagated. */ static int me_pagecache_dirty(struct page *p, unsigned long pfn) { struct address_space *mapping = page_mapping(p); SetPageError(p); /* TBD: print more information about the file. */ if (mapping) { /* * IO error will be reported by write(), fsync(), etc. * who check the mapping. * This way the application knows that something went * wrong with its dirty file data. * * There's one open issue: * * The EIO will be only reported on the next IO * operation and then cleared through the IO map. * Normally Linux has two mechanisms to pass IO error * first through the AS_EIO flag in the address space * and then through the PageError flag in the page. * Since we drop pages on memory failure handling the * only mechanism open to use is through AS_AIO. * * This has the disadvantage that it gets cleared on * the first operation that returns an error, while * the PageError bit is more sticky and only cleared * when the page is reread or dropped. If an * application assumes it will always get error on * fsync, but does other operations on the fd before * and the page is dropped between then the error * will not be properly reported. * * This can already happen even without hwpoisoned * pages: first on metadata IO errors (which only * report through AS_EIO) or when the page is dropped * at the wrong time. * * So right now we assume that the application DTRT on * the first EIO, but we're not worse than other parts * of the kernel. */ mapping_set_error(mapping, -EIO); } return me_pagecache_clean(p, pfn); } /* * Clean and dirty swap cache. * * Dirty swap cache page is tricky to handle. The page could live both in page * cache and swap cache(ie. page is freshly swapped in). So it could be * referenced concurrently by 2 types of PTEs: * normal PTEs and swap PTEs. We try to handle them consistently by calling * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, * and then * - clear dirty bit to prevent IO * - remove from LRU * - but keep in the swap cache, so that when we return to it on * a later page fault, we know the application is accessing * corrupted data and shall be killed (we installed simple * interception code in do_swap_page to catch it). * * Clean swap cache pages can be directly isolated. A later page fault will * bring in the known good data from disk. */ static int me_swapcache_dirty(struct page *p, unsigned long pfn) { ClearPageDirty(p); /* Trigger EIO in shmem: */ ClearPageUptodate(p); if (!delete_from_lru_cache(p)) return MF_DELAYED; else return MF_FAILED; } static int me_swapcache_clean(struct page *p, unsigned long pfn) { delete_from_swap_cache(p); if (!delete_from_lru_cache(p)) return MF_RECOVERED; else return MF_FAILED; } /* * Huge pages. Needs work. * Issues: * - Error on hugepage is contained in hugepage unit (not in raw page unit.) * To narrow down kill region to one page, we need to break up pmd. */ static int me_huge_page(struct page *p, unsigned long pfn) { int res = 0; struct page *hpage = compound_head(p); struct address_space *mapping; if (!PageHuge(hpage)) return MF_DELAYED; mapping = page_mapping(hpage); if (mapping) { res = truncate_error_page(hpage, pfn, mapping); } else { unlock_page(hpage); /* * migration entry prevents later access on error anonymous * hugepage, so we can free and dissolve it into buddy to * save healthy subpages. */ if (PageAnon(hpage)) put_page(hpage); dissolve_free_huge_page(p); res = MF_RECOVERED; lock_page(hpage); } return res; } /* * Various page states we can handle. * * A page state is defined by its current page->flags bits. * The table matches them in order and calls the right handler. * * This is quite tricky because we can access page at any time * in its live cycle, so all accesses have to be extremely careful. * * This is not complete. More states could be added. * For any missing state don't attempt recovery. */ #define dirty (1UL << PG_dirty) #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) #define unevict (1UL << PG_unevictable) #define mlock (1UL << PG_mlocked) #define writeback (1UL << PG_writeback) #define lru (1UL << PG_lru) #define head (1UL << PG_head) #define slab (1UL << PG_slab) #define reserved (1UL << PG_reserved) static struct page_state { unsigned long mask; unsigned long res; enum mf_action_page_type type; int (*action)(struct page *p, unsigned long pfn); } error_states[] = { { reserved, reserved, MF_MSG_KERNEL, me_kernel }, /* * free pages are specially detected outside this table: * PG_buddy pages only make a small fraction of all free pages. */ /* * Could in theory check if slab page is free or if we can drop * currently unused objects without touching them. But just * treat it as standard kernel for now. */ { slab, slab, MF_MSG_SLAB, me_kernel }, { head, head, MF_MSG_HUGE, me_huge_page }, { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, /* * Catchall entry: must be at end. */ { 0, 0, MF_MSG_UNKNOWN, me_unknown }, }; #undef dirty #undef sc #undef unevict #undef mlock #undef writeback #undef lru #undef head #undef slab #undef reserved /* * "Dirty/Clean" indication is not 100% accurate due to the possibility of * setting PG_dirty outside page lock. See also comment above set_page_dirty(). */ static void action_result(unsigned long pfn, enum mf_action_page_type type, enum mf_result result) { trace_memory_failure_event(pfn, type, result); pr_err("Memory failure: %#lx: recovery action for %s: %s\n", pfn, action_page_types[type], action_name[result]); } static int page_action(struct page_state *ps, struct page *p, unsigned long pfn) { int result; int count; result = ps->action(p, pfn); count = page_count(p) - 1; if (ps->action == me_swapcache_dirty && result == MF_DELAYED) count--; if (count > 0) { pr_err("Memory failure: %#lx: %s still referenced by %d users\n", pfn, action_page_types[ps->type], count); result = MF_FAILED; } action_result(pfn, ps->type, result); /* Could do more checks here if page looks ok */ /* * Could adjust zone counters here to correct for the missing page. */ return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; } /** * get_hwpoison_page() - Get refcount for memory error handling: * @page: raw error page (hit by memory error) * * Return: return 0 if failed to grab the refcount, otherwise true (some * non-zero value.) */ int get_hwpoison_page(struct page *page) { struct page *head = compound_head(page); if (!PageHuge(head) && PageTransHuge(head)) { /* * Non anonymous thp exists only in allocation/free time. We * can't handle such a case correctly, so let's give it up. * This should be better than triggering BUG_ON when kernel * tries to touch the "partially handled" page. */ if (!PageAnon(head)) { pr_err("Memory failure: %#lx: non anonymous thp\n", page_to_pfn(page)); return 0; } } if (get_page_unless_zero(head)) { if (head == compound_head(page)) return 1; pr_info("Memory failure: %#lx cannot catch tail\n", page_to_pfn(page)); put_page(head); } return 0; } EXPORT_SYMBOL_GPL(get_hwpoison_page); /* * Do all that is necessary to remove user space mappings. Unmap * the pages and send SIGBUS to the processes if the data was dirty. */ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, int flags, struct page **hpagep) { enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; struct address_space *mapping; LIST_HEAD(tokill); bool unmap_success; int kill = 1, forcekill; struct page *hpage = *hpagep; bool mlocked = PageMlocked(hpage); /* * Here we are interested only in user-mapped pages, so skip any * other types of pages. */ if (PageReserved(p) || PageSlab(p)) return true; if (!(PageLRU(hpage) || PageHuge(p))) return true; /* * This check implies we don't kill processes if their pages * are in the swap cache early. Those are always late kills. */ if (!page_mapped(hpage)) return true; if (PageKsm(p)) { pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); return false; } if (PageSwapCache(p)) { pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", pfn); ttu |= TTU_IGNORE_HWPOISON; } /* * Propagate the dirty bit from PTEs to struct page first, because we * need this to decide if we should kill or just drop the page. * XXX: the dirty test could be racy: set_page_dirty() may not always * be called inside page lock (it's recommended but not enforced). */ mapping = page_mapping(hpage); if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && mapping_cap_writeback_dirty(mapping)) { if (page_mkclean(hpage)) { SetPageDirty(hpage); } else { kill = 0; ttu |= TTU_IGNORE_HWPOISON; pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", pfn); } } /* * First collect all the processes that have the page * mapped in dirty form. This has to be done before try_to_unmap, * because ttu takes the rmap data structures down. * * Error handling: We ignore errors here because * there's nothing that can be done. */ if (kill) collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); unmap_success = try_to_unmap(hpage, ttu, NULL); if (!unmap_success) pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", pfn, page_mapcount(hpage)); /* * try_to_unmap() might put mlocked page in lru cache, so call * shake_page() again to ensure that it's flushed. */ if (mlocked) shake_page(hpage, 0); /* * Now that the dirty bit has been propagated to the * struct page and all unmaps done we can decide if * killing is needed or not. Only kill when the page * was dirty or the process is not restartable, * otherwise the tokill list is merely * freed. When there was a problem unmapping earlier * use a more force-full uncatchable kill to prevent * any accesses to the poisoned memory. */ forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); return unmap_success; } static int identify_page_state(unsigned long pfn, struct page *p, unsigned long page_flags) { struct page_state *ps; /* * The first check uses the current page flags which may not have any * relevant information. The second check with the saved page flags is * carried out only if the first check can't determine the page status. */ for (ps = error_states;; ps++) if ((p->flags & ps->mask) == ps->res) break; page_flags |= (p->flags & (1UL << PG_dirty)); if (!ps->mask) for (ps = error_states;; ps++) if ((page_flags & ps->mask) == ps->res) break; return page_action(ps, p, pfn); } static int memory_failure_hugetlb(unsigned long pfn, int flags) { struct page *p = pfn_to_page(pfn); struct page *head = compound_head(p); int res; unsigned long page_flags; if (TestSetPageHWPoison(head)) { pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn); return 0; } num_poisoned_pages_inc(); if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { /* * Check "filter hit" and "race with other subpage." */ lock_page(head); if (PageHWPoison(head)) { if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) || (p != head && TestSetPageHWPoison(head))) { num_poisoned_pages_dec(); unlock_page(head); return 0; } } unlock_page(head); dissolve_free_huge_page(p); action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); return 0; } lock_page(head); page_flags = head->flags; if (!PageHWPoison(head)) { pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); num_poisoned_pages_dec(); unlock_page(head); put_hwpoison_page(head); return 0; } /* * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so * simply disable it. In order to make it work properly, we need * make sure that: * - conversion of a pud that maps an error hugetlb into hwpoison * entry properly works, and * - other mm code walking over page table is aware of pud-aligned * hwpoison entries. */ if (huge_page_size(page_hstate(head)) > PMD_SIZE) { action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); res = -EBUSY; goto out; } if (!hwpoison_user_mappings(p, pfn, flags, &head)) { action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); res = -EBUSY; goto out; } res = identify_page_state(pfn, p, page_flags); out: unlock_page(head); return res; } static int memory_failure_dev_pagemap(unsigned long pfn, int flags, struct dev_pagemap *pgmap) { struct page *page = pfn_to_page(pfn); const bool unmap_success = true; unsigned long size = 0; struct to_kill *tk; LIST_HEAD(tokill); int rc = -EBUSY; loff_t start; /* * Prevent the inode from being freed while we are interrogating * the address_space, typically this would be handled by * lock_page(), but dax pages do not use the page lock. This * also prevents changes to the mapping of this pfn until * poison signaling is complete. */ if (!dax_lock_mapping_entry(page)) goto out; if (hwpoison_filter(page)) { rc = 0; goto unlock; } switch (pgmap->type) { case MEMORY_DEVICE_PRIVATE: case MEMORY_DEVICE_PUBLIC: /* * TODO: Handle HMM pages which may need coordination * with device-side memory. */ goto unlock; default: break; } /* * Use this flag as an indication that the dax page has been * remapped UC to prevent speculative consumption of poison. */ SetPageHWPoison(page); /* * Unlike System-RAM there is no possibility to swap in a * different physical page at a given virtual address, so all * userspace consumption of ZONE_DEVICE memory necessitates * SIGBUS (i.e. MF_MUST_KILL) */ flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); list_for_each_entry(tk, &tokill, nd) if (tk->size_shift) size = max(size, 1UL << tk->size_shift); if (size) { /* * Unmap the largest mapping to avoid breaking up * device-dax mappings which are constant size. The * actual size of the mapping being torn down is * communicated in siginfo, see kill_proc() */ start = (page->index << PAGE_SHIFT) & ~(size - 1); unmap_mapping_range(page->mapping, start, start + size, 0); } kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); rc = 0; unlock: dax_unlock_mapping_entry(page); out: /* drop pgmap ref acquired in caller */ put_dev_pagemap(pgmap); action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); return rc; } /** * memory_failure - Handle memory failure of a page. * @pfn: Page Number of the corrupted page * @flags: fine tune action taken * * This function is called by the low level machine check code * of an architecture when it detects hardware memory corruption * of a page. It tries its best to recover, which includes * dropping pages, killing processes etc. * * The function is primarily of use for corruptions that * happen outside the current execution context (e.g. when * detected by a background scrubber) * * Must run in process context (e.g. a work queue) with interrupts * enabled and no spinlocks hold. */ int memory_failure(unsigned long pfn, int flags) { struct page *p; struct page *hpage; struct page *orig_head; struct dev_pagemap *pgmap; int res; unsigned long page_flags; if (!sysctl_memory_failure_recovery) panic("Memory failure on page %lx", pfn); p = pfn_to_online_page(pfn); if (!p) { if (pfn_valid(pfn)) { pgmap = get_dev_pagemap(pfn, NULL); if (pgmap) return memory_failure_dev_pagemap(pfn, flags, pgmap); } pr_err("Memory failure: %#lx: memory outside kernel control\n", pfn); return -ENXIO; } if (PageHuge(p)) return memory_failure_hugetlb(pfn, flags); if (TestSetPageHWPoison(p)) { pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn); return 0; } orig_head = hpage = compound_head(p); num_poisoned_pages_inc(); /* * We need/can do nothing about count=0 pages. * 1) it's a free page, and therefore in safe hand: * prep_new_page() will be the gate keeper. * 2) it's part of a non-compound high order page. * Implies some kernel user: cannot stop them from * R/W the page; let's pray that the page has been * used and will be freed some time later. * In fact it's dangerous to directly bump up page count from 0, * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. */ if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { if (is_free_buddy_page(p)) { action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); return 0; } else { action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); return -EBUSY; } } if (PageTransHuge(hpage)) { lock_page(p); if (!PageAnon(p) || unlikely(split_huge_page(p))) { unlock_page(p); if (!PageAnon(p)) pr_err("Memory failure: %#lx: non anonymous thp\n", pfn); else pr_err("Memory failure: %#lx: thp split failed\n", pfn); if (TestClearPageHWPoison(p)) num_poisoned_pages_dec(); put_hwpoison_page(p); return -EBUSY; } unlock_page(p); VM_BUG_ON_PAGE(!page_count(p), p); hpage = compound_head(p); } /* * We ignore non-LRU pages for good reasons. * - PG_locked is only well defined for LRU pages and a few others * - to avoid races with __SetPageLocked() * - to avoid races with __SetPageSlab*() (and more non-atomic ops) * The check (unnecessarily) ignores LRU pages being isolated and * walked by the page reclaim code, however that's not a big loss. */ shake_page(p, 0); /* shake_page could have turned it free. */ if (!PageLRU(p) && is_free_buddy_page(p)) { if (flags & MF_COUNT_INCREASED) action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); else action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); return 0; } lock_page(p); /* * The page could have changed compound pages during the locking. * If this happens just bail out. */ if (PageCompound(p) && compound_head(p) != orig_head) { action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); res = -EBUSY; goto out; } /* * We use page flags to determine what action should be taken, but * the flags can be modified by the error containment action. One * example is an mlocked page, where PG_mlocked is cleared by * page_remove_rmap() in try_to_unmap_one(). So to determine page status * correctly, we save a copy of the page flags at this time. */ if (PageHuge(p)) page_flags = hpage->flags; else page_flags = p->flags; /* * unpoison always clear PG_hwpoison inside page lock */ if (!PageHWPoison(p)) { pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); num_poisoned_pages_dec(); unlock_page(p); put_hwpoison_page(p); return 0; } if (hwpoison_filter(p)) { if (TestClearPageHWPoison(p)) num_poisoned_pages_dec(); unlock_page(p); put_hwpoison_page(p); return 0; } if (!PageTransTail(p) && !PageLRU(p)) goto identify_page_state; /* * It's very difficult to mess with pages currently under IO * and in many cases impossible, so we just avoid it here. */ wait_on_page_writeback(p); /* * Now take care of user space mappings. * Abort on fail: __delete_from_page_cache() assumes unmapped page. * * When the raw error page is thp tail page, hpage points to the raw * page after thp split. */ if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); res = -EBUSY; goto out; } /* * Torn down by someone else? */ if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); res = -EBUSY; goto out; } identify_page_state: res = identify_page_state(pfn, p, page_flags); out: unlock_page(p); return res; } EXPORT_SYMBOL_GPL(memory_failure); #define MEMORY_FAILURE_FIFO_ORDER 4 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) struct memory_failure_entry { unsigned long pfn; int flags; }; struct memory_failure_cpu { DECLARE_KFIFO(fifo, struct memory_failure_entry, MEMORY_FAILURE_FIFO_SIZE); spinlock_t lock; struct work_struct work; }; static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); /** * memory_failure_queue - Schedule handling memory failure of a page. * @pfn: Page Number of the corrupted page * @flags: Flags for memory failure handling * * This function is called by the low level hardware error handler * when it detects hardware memory corruption of a page. It schedules * the recovering of error page, including dropping pages, killing * processes etc. * * The function is primarily of use for corruptions that * happen outside the current execution context (e.g. when * detected by a background scrubber) * * Can run in IRQ context. */ void memory_failure_queue(unsigned long pfn, int flags) { struct memory_failure_cpu *mf_cpu; unsigned long proc_flags; struct memory_failure_entry entry = { .pfn = pfn, .flags = flags, }; mf_cpu = &get_cpu_var(memory_failure_cpu); spin_lock_irqsave(&mf_cpu->lock, proc_flags); if (kfifo_put(&mf_cpu->fifo, entry)) schedule_work_on(smp_processor_id(), &mf_cpu->work); else pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", pfn); spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); put_cpu_var(memory_failure_cpu); } EXPORT_SYMBOL_GPL(memory_failure_queue); static void memory_failure_work_func(struct work_struct *work) { struct memory_failure_cpu *mf_cpu; struct memory_failure_entry entry = { 0, }; unsigned long proc_flags; int gotten; mf_cpu = this_cpu_ptr(&memory_failure_cpu); for (;;) { spin_lock_irqsave(&mf_cpu->lock, proc_flags); gotten = kfifo_get(&mf_cpu->fifo, &entry); spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); if (!gotten) break; if (entry.flags & MF_SOFT_OFFLINE) soft_offline_page(pfn_to_page(entry.pfn), entry.flags); else memory_failure(entry.pfn, entry.flags); } } static int __init memory_failure_init(void) { struct memory_failure_cpu *mf_cpu; int cpu; for_each_possible_cpu(cpu) { mf_cpu = &per_cpu(memory_failure_cpu, cpu); spin_lock_init(&mf_cpu->lock); INIT_KFIFO(mf_cpu->fifo); INIT_WORK(&mf_cpu->work, memory_failure_work_func); } return 0; } core_initcall(memory_failure_init); #define unpoison_pr_info(fmt, pfn, rs) \ ({ \ if (__ratelimit(rs)) \ pr_info(fmt, pfn); \ }) /** * unpoison_memory - Unpoison a previously poisoned page * @pfn: Page number of the to be unpoisoned page * * Software-unpoison a page that has been poisoned by * memory_failure() earlier. * * This is only done on the software-level, so it only works * for linux injected failures, not real hardware failures * * Returns 0 for success, otherwise -errno. */ int unpoison_memory(unsigned long pfn) { struct page *page; struct page *p; int freeit = 0; static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); if (!pfn_valid(pfn)) return -ENXIO; p = pfn_to_page(pfn); page = compound_head(p); if (!PageHWPoison(p)) { unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", pfn, &unpoison_rs); return 0; } if (page_count(page) > 1) { unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", pfn, &unpoison_rs); return 0; } if (page_mapped(page)) { unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", pfn, &unpoison_rs); return 0; } if (page_mapping(page)) { unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", pfn, &unpoison_rs); return 0; } /* * unpoison_memory() can encounter thp only when the thp is being * worked by memory_failure() and the page lock is not held yet. * In such case, we yield to memory_failure() and make unpoison fail. */ if (!PageHuge(page) && PageTransHuge(page)) { unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", pfn, &unpoison_rs); return 0; } if (!get_hwpoison_page(p)) { if (TestClearPageHWPoison(p)) num_poisoned_pages_dec(); unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", pfn, &unpoison_rs); return 0; } lock_page(page); /* * This test is racy because PG_hwpoison is set outside of page lock. * That's acceptable because that won't trigger kernel panic. Instead, * the PG_hwpoison page will be caught and isolated on the entrance to * the free buddy page pool. */ if (TestClearPageHWPoison(page)) { unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", pfn, &unpoison_rs); num_poisoned_pages_dec(); freeit = 1; } unlock_page(page); put_hwpoison_page(page); if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) put_hwpoison_page(page); return 0; } EXPORT_SYMBOL(unpoison_memory); static struct page *new_page(struct page *p, unsigned long private) { int nid = page_to_nid(p); return new_page_nodemask(p, nid, &node_states[N_MEMORY]); } /* * Safely get reference count of an arbitrary page. * Returns 0 for a free page, -EIO for a zero refcount page * that is not free, and 1 for any other page type. * For 1 the page is returned with increased page count, otherwise not. */ static int __get_any_page(struct page *p, unsigned long pfn, int flags) { int ret; if (flags & MF_COUNT_INCREASED) return 1; /* * When the target page is a free hugepage, just remove it * from free hugepage list. */ if (!get_hwpoison_page(p)) { if (PageHuge(p)) { pr_info("%s: %#lx free huge page\n", __func__, pfn); ret = 0; } else if (is_free_buddy_page(p)) { pr_info("%s: %#lx free buddy page\n", __func__, pfn); ret = 0; } else { pr_info("%s: %#lx: unknown zero refcount page type %lx\n", __func__, pfn, p->flags); ret = -EIO; } } else { /* Not a free page */ ret = 1; } return ret; } static int get_any_page(struct page *page, unsigned long pfn, int flags) { int ret = __get_any_page(page, pfn, flags); if (ret == 1 && !PageHuge(page) && !PageLRU(page) && !__PageMovable(page)) { /* * Try to free it. */ put_hwpoison_page(page); shake_page(page, 1); /* * Did it turn free? */ ret = __get_any_page(page, pfn, 0); if (ret == 1 && !PageLRU(page)) { /* Drop page reference which is from __get_any_page() */ put_hwpoison_page(page); pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", pfn, page->flags, &page->flags); return -EIO; } } return ret; } static int soft_offline_huge_page(struct page *page, int flags) { int ret; unsigned long pfn = page_to_pfn(page); struct page *hpage = compound_head(page); LIST_HEAD(pagelist); /* * This double-check of PageHWPoison is to avoid the race with * memory_failure(). See also comment in __soft_offline_page(). */ lock_page(hpage); if (PageHWPoison(hpage)) { unlock_page(hpage); put_hwpoison_page(hpage); pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); return -EBUSY; } unlock_page(hpage); ret = isolate_huge_page(hpage, &pagelist); /* * get_any_page() and isolate_huge_page() takes a refcount each, * so need to drop one here. */ put_hwpoison_page(hpage); if (!ret) { pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); return -EBUSY; } ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, MIGRATE_SYNC, MR_MEMORY_FAILURE); if (ret) { pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", pfn, ret, page->flags, &page->flags); if (!list_empty(&pagelist)) putback_movable_pages(&pagelist); if (ret > 0) ret = -EIO; } else { /* * We set PG_hwpoison only when the migration source hugepage * was successfully dissolved, because otherwise hwpoisoned * hugepage remains on free hugepage list, then userspace will * find it as SIGBUS by allocation failure. That's not expected * in soft-offlining. */ ret = dissolve_free_huge_page(page); if (!ret) { if (set_hwpoison_free_buddy_page(page)) num_poisoned_pages_inc(); else ret = -EBUSY; } } return ret; } static int __soft_offline_page(struct page *page, int flags) { int ret; unsigned long pfn = page_to_pfn(page); /* * Check PageHWPoison again inside page lock because PageHWPoison * is set by memory_failure() outside page lock. Note that * memory_failure() also double-checks PageHWPoison inside page lock, * so there's no race between soft_offline_page() and memory_failure(). */ lock_page(page); wait_on_page_writeback(page); if (PageHWPoison(page)) { unlock_page(page); put_hwpoison_page(page); pr_info("soft offline: %#lx page already poisoned\n", pfn); return -EBUSY; } /* * Try to invalidate first. This should work for * non dirty unmapped page cache pages. */ ret = invalidate_inode_page(page); unlock_page(page); /* * RED-PEN would be better to keep it isolated here, but we * would need to fix isolation locking first. */ if (ret == 1) { put_hwpoison_page(page); pr_info("soft_offline: %#lx: invalidated\n", pfn); SetPageHWPoison(page); num_poisoned_pages_inc(); return 0; } /* * Simple invalidation didn't work. * Try to migrate to a new page instead. migrate.c * handles a large number of cases for us. */ if (PageLRU(page)) ret = isolate_lru_page(page); else ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); /* * Drop page reference which is came from get_any_page() * successful isolate_lru_page() already took another one. */ put_hwpoison_page(page); if (!ret) { LIST_HEAD(pagelist); /* * After isolated lru page, the PageLRU will be cleared, * so use !__PageMovable instead for LRU page's mapping * cannot have PAGE_MAPPING_MOVABLE. */ if (!__PageMovable(page)) inc_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page)); list_add(&page->lru, &pagelist); ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, MIGRATE_SYNC, MR_MEMORY_FAILURE); if (ret) { if (!list_empty(&pagelist)) putback_movable_pages(&pagelist); pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", pfn, ret, page->flags, &page->flags); if (ret > 0) ret = -EIO; } } else { pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", pfn, ret, page_count(page), page->flags, &page->flags); } return ret; } static int soft_offline_in_use_page(struct page *page, int flags) { int ret; int mt; struct page *hpage = compound_head(page); if (!PageHuge(page) && PageTransHuge(hpage)) { lock_page(page); if (!PageAnon(page) || unlikely(split_huge_page(page))) { unlock_page(page); if (!PageAnon(page)) pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); else pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); put_hwpoison_page(page); return -EBUSY; } unlock_page(page); } /* * Setting MIGRATE_ISOLATE here ensures that the page will be linked * to free list immediately (not via pcplist) when released after * successful page migration. Otherwise we can't guarantee that the * page is really free after put_page() returns, so * set_hwpoison_free_buddy_page() highly likely fails. */ mt = get_pageblock_migratetype(page); set_pageblock_migratetype(page, MIGRATE_ISOLATE); if (PageHuge(page)) ret = soft_offline_huge_page(page, flags); else ret = __soft_offline_page(page, flags); set_pageblock_migratetype(page, mt); return ret; } static int soft_offline_free_page(struct page *page) { int rc = dissolve_free_huge_page(page); if (!rc) { if (set_hwpoison_free_buddy_page(page)) num_poisoned_pages_inc(); else rc = -EBUSY; } return rc; } /** * soft_offline_page - Soft offline a page. * @page: page to offline * @flags: flags. Same as memory_failure(). * * Returns 0 on success, otherwise negated errno. * * Soft offline a page, by migration or invalidation, * without killing anything. This is for the case when * a page is not corrupted yet (so it's still valid to access), * but has had a number of corrected errors and is better taken * out. * * The actual policy on when to do that is maintained by * user space. * * This should never impact any application or cause data loss, * however it might take some time. * * This is not a 100% solution for all memory, but tries to be * ``good enough'' for the majority of memory. */ int soft_offline_page(struct page *page, int flags) { int ret; unsigned long pfn = page_to_pfn(page); if (is_zone_device_page(page)) { pr_debug_ratelimited("soft_offline: %#lx page is device page\n", pfn); if (flags & MF_COUNT_INCREASED) put_page(page); return -EIO; } if (PageHWPoison(page)) { pr_info("soft offline: %#lx page already poisoned\n", pfn); if (flags & MF_COUNT_INCREASED) put_hwpoison_page(page); return -EBUSY; } get_online_mems(); ret = get_any_page(page, pfn, flags); put_online_mems(); if (ret > 0) ret = soft_offline_in_use_page(page, flags); else if (ret == 0) ret = soft_offline_free_page(page); return ret; }